巷道围岩稳定性及控制技术综述
- 格式:ppt
- 大小:2.82 MB
- 文档页数:50
地质构造区巷道掘进及回采围岩控制技术地质构造区是指具有特定的地质构造特征的煤矿区域。
地质构造区巷道掘进及回采围岩控制技术是煤矿开采过程中的关键技术之一,对保证矿井的安全稳定和高效开采具有重要意义。
本文将对地质构造区巷道掘进及回采围岩控制技术进行详细阐述。
一、地质构造特征及影响因素地质构造特征是指地质构造对煤层和围岩性质形成的影响。
常见的地质构造特征包括断层、褶皱、岩体结构等。
这些地质构造特征会导致煤层和围岩的变形、断裂、滑动等现象,进而影响巷道的稳定性和开采效果。
地质构造特征对巷道掘进及回采围岩控制技术的影响主要有以下几个方面:1. 地应力分布不均匀:地质构造的存在导致地应力分布不均匀,使得煤层和围岩的应力状态复杂多样,增加了巷道开挖和围岩控制的难度。
2. 煤层倾角和变形:地质构造引起的煤层倾角和变形会导致巷道的变形和破坏,增加了巷道围岩控制的难度。
3. 地质构造带:地质构造带是地质构造的显著特征,具有较大的空间扩展性和影响范围。
在地质构造带附近进行巷道掘进和回采时,需特别注意围岩的稳定性,采取相应的支护措施。
二、巷道掘进技术1. 顺层巷道开挖:在地质构造区进行巷道开挖时,优先选择顺层巷道。
顺层巷道开挖相对较容易,可减少地质构造带的影响。
2. 断层横越巷道:在遇到断层时,可以选择横越断层开挖巷道的方式。
通过在断层两侧设置悬索锚杆或盘状锚杆支护,保证巷道的稳定。
3. 导坑法:在遇到较大的断层时,可以采用导坑法进行巷道掘进。
导坑是一种预先探测断层情况的方法,通过导入小断层,探测地质构造带的性质和变形情况,为后续巷道掘进提供参考。
三、回采围岩控制技术1. 安全巷道:在地质构造区进行煤层回采时,需要设置安全巷道以确保矿工的安全。
安全巷道要远离断层和其他地质构造带,采取坚固的支护措施,保证矿工在紧急情况下的疏散通道。
2. 支护措施选择:对于需要支护的巷道,应根据地质构造的特点选择合适的支护措施。
常用的支护措施包括锚杆、锚网、喷锚、打炮锚等。
煤矿深部岩巷围岩控制理论与支护技术摘要近年来,随着我国煤矿产能的不断提高,开采的深度也随之增加,采区也开始由浅入深,基于这一现状,致使井下巷道围岩的应力也随之增大,围岩条件日趋复杂,巷道变形、巷道底鼓等现象常有发生,这些问题都严重影响了巷道围岩的稳定性,也为煤矿井下开采工作的顺利进行埋下了隐患。
因此,对煤矿深部岩巷围岩的稳定性进行控制已经迫在眉睫。
本文首先对煤矿深部围岩稳定性控制理论进行概述,进而简要地阐述了煤矿深部岩巷围岩支护原则,并根据笔者多年的工作实践经验总结出煤矿深部岩巷围岩支护技术,期望以此能够为煤矿的安全生产提供一些帮助。
关键词煤矿深部岩巷;围岩;控制理论;支护原则;支护技术1 煤矿深部围岩稳定性控制理论概述从力学性质的角度讲,围岩的稳定性通常取决于岩体自身的变形性质和强度。
另外,围岩自身所受的应力状态也对其稳定性有一定影响。
围岩体主要由两部分组成:一是岩石骨架,二是结构面。
通常煤矿深部的围岩都经历了漫长的地质年代,并且在长期的高压作用影响下使得岩石骨架变得异常致密和坚硬,所以实际影响煤矿深部围岩变形性质和强度的因素主要是结构面。
因此,想要控制煤矿深部围岩的稳定主要应从结构面和应力状态着手。
煤矿深部岩巷开挖过程中,使围岩体所受的应力状态发生了变化,导致了围岩从原本的稳定状态逐渐转变为非稳定状态,虽然,在开挖初期,围岩的抗压强度比较高,但是随着不断的开挖卸荷,致使围岩的侧压有所下降,正常情况下,近表围岩的侧压将会降至为零。
与此同时,大部分应力开始向巷道周向转移,使得应力集中,这时的周向应力一般会升高3倍左右。
通常煤矿700m~900m深度的巷道,近表围岩的围压卸荷幅度大约在20MPa,巷道周向的应力将会增加近60MPa,在如此大的应力作用下,会使围岩的劣化速度不断加快,裂缝也会从表面不断向内部扩散,进而造成围岩失稳。
为了确保围岩的稳定性,就必须在对巷道进行开挖后立即进行必要的支护。
2 煤矿深部岩巷围岩支护原则在对煤矿深部岩巷围岩进行支护时,应遵循以下支护原则:首先,应尽量维护并保持围岩体自身残余强度的原则。
文章编号:1009-6825(2009)30-0111-02浅谈地下工程围岩稳定性与围岩控制收稿日期:2009-06-14作者简介:段学超(1974-),男,工程师,山西省交通建设工程监理总公司,山西太原 030006段学超摘 要:对影响地下工程围岩稳定性的自然因素进行了详细分析,讨论了围岩稳定性与围岩控制的方法与思路,介绍了围岩稳定性的监测方法和手段,论述了锚杆工作载荷与围岩稳定性的相互关系,用锚杆无损监测的方法来全程监测围岩稳定性对研究围岩稳定及工程施工具有很大的指导意义。
关键词:围岩稳定性,锚杆,围岩控制,锚杆无损监测中图分类号:T U 457文献标识码:A地下工程围岩的稳定性对工程的正常运营是至关重要的。
地下工程围岩的稳定性主要与岩石的性质、岩体的结构与构造、地下水、岩体的天然应力状态、地质构造等自然因素有关[1],并且还与开挖方式及支护的形式和时间等因素有关。
本文将对围岩稳定性监测的手段进行讨论,详细的论述利用锚杆工作载荷与围岩稳定性的关系来全程动态检测围岩稳定性的方法。
1 地下工程围岩稳定性因素1.1 岩石性质及岩体的结构围岩的岩石性质和岩体结构是影响围岩稳定性的基本因素。
从岩性的角度,可以将围岩分为塑性围岩和脆性围岩,塑性围岩主要包括各类黏土质岩石、破碎松散岩石以及吸水易膨胀的岩石等,通常具有风化速度快,力学强度低以及遇水软化、崩解、膨胀等不良性质,故对隧道围岩的稳定最为不利;脆性围岩主要指各类坚硬体,由于岩石本身的强度远高于结构面的强度,这类围岩的强度取决于岩体结构。
从岩体的结构角度,可将岩体结构划分为整体块状结构、层状结构、碎裂结构、散体结构。
松散结构及破碎结构岩体的稳定性最差;薄层状结构岩体次之;厚层状块体最好。
对于脆性的厚层状和块状岩体,其强度主要受软弱结构面的分布特点和较弱夹层的物质成分所控制,结构面对围岩的影响不仅取决于结构面的本身特征,还与结构面的组合关系及这种组合与临空面的交切关系密切相关。
巷道围岩控制
巷道围岩控制是指在地下巷道开挖过程中,通过采取一系列的措施和手段,以保证巷道周围岩层的稳定性和安全性。
巷道围岩控制是地下工程施工中的重要环节,主要目的包括以下几个方面:
1. 防止巷道塌方:采用支护结构和材料,如钢支撑、锚杆、锚喷等,对巷道周围的岩层进行支护,防止其塌方。
2. 防止岩爆和冒顶:通过喷浆封孔、锚喷、钻爆、预裂、顶板保护等措施,增强巷道周围岩体的稳定性,防止岩爆和冒顶的发生。
3. 控制地表沉降:在地下巷道开挖过程中,采用合适的措施和技术,控制地表沉降的幅度和范围,保护地表建筑物的安全。
4. 控制地下水:巷道开挖过程中,地下水的水压和渗流量增大,容易引起巷道周围岩体的涌水和破坏。
因此,需要采取合适的水文地质措施,控制地下水的水压和渗流,保证巷道的稳定和安全。
总之,巷道围岩控制是地下巷道施工中的重要环节,需要综合考虑地质条件、工程要求和施工技术等因素,采取相应的措施和手段,确保巷道的稳定和安全。
《巷道过坚硬顶板房柱式采空区围岩控制技术研究》篇一一、引言随着煤炭资源的不断开采,采空区的安全问题日益突出。
在巷道穿越坚硬顶板房柱式采空区时,围岩控制技术显得尤为重要。
本文旨在研究并探讨该类采空区的围岩控制技术,以提高采矿作业的安全性和效率。
二、坚硬顶板房柱式采空区特点坚硬顶板房柱式采空区具有顶板坚硬、房柱式结构、空间分布不规则等特点。
在开采过程中,由于地质条件和采矿方法的影响,该类采空区往往存在围岩稳定性差、易发生冒顶等问题。
因此,在巷道穿越该类采空区时,必须采取有效的围岩控制技术。
三、围岩控制技术研究(一)监测技术首先,采用先进的监测技术对采空区的围岩进行实时监测。
通过布置监测点,利用地音、微震、应力计等设备,实时监测顶板和房柱的变形、应力变化等情况。
通过分析监测数据,预测围岩的稳定性和可能出现的危险情况。
(二)支护技术针对坚硬顶板房柱式采空区的特点,采用合适的支护技术是保证围岩稳定的关键。
常用的支护技术包括锚杆支护、锚索支护、钢拱架支护等。
根据实际情况,选择合适的支护方式和参数,确保支护结构的稳定性和可靠性。
(三)注浆加固技术注浆加固技术是提高围岩强度和稳定性的有效手段。
通过向围岩内部注入水泥浆、化学浆等材料,提高围岩的承载能力和抗变形能力。
注浆加固技术应根据实际情况选择合适的注浆材料、注浆压力和注浆方式。
四、技术应用与效果分析(一)技术应用在实际应用中,根据采空区的具体情况,综合运用监测技术、支护技术和注浆加固技术。
首先,通过实时监测掌握围岩的变形和应力变化情况;其次,根据监测结果采取合适的支护措施;最后,采用注浆加固技术提高围岩的稳定性和承载能力。
(二)效果分析通过应用上述围岩控制技术,可以有效地提高巷道穿越坚硬顶板房柱式采空区的安全性和效率。
首先,实时监测技术可以及时发现围岩的变形和应力异常情况,为采取措施提供依据;其次,合适的支护措施可以确保巷道的安全通行;最后,注浆加固技术可以提高围岩的稳定性和承载能力,减少冒顶等事故的发生。
深部极复杂软岩巷道围岩稳定控制技术摘要:本文介绍了深部极复杂软岩巷道围岩的稳定控制技术。
首先,将介绍几种常见的地质因素,包括岩性、构造、水文和采矿排放等,以及对深部极复杂软岩巷道的影响。
其次,介绍了应用于深部极复杂软岩巷道的稳定控制技术,这些技术包括巷道增强、支护技术、加固技术、稳定技术、防治技术等,并举例说明了每种技术的应用。
最后,综合考虑上述因素,提出了深部极复杂软岩巷道的稳定控制原则。
关键词:深部极复杂软岩巷道;地质因素;稳定控制技术;稳定控制原则正文:1. 深部极复杂软岩巷道的地质因素在开采深部极复杂软岩巷道时,地质因素是影响巷道稳定性的重要因素。
常见的地质因素包括岩性、构造、水文和采矿排放等。
其中,岩性是深部极复杂软岩巷道稳定性影响最大的因素,岩石的力学性质及其内部微观结构对巷道稳定性有重要影响。
构造因素指的是岩体的构造特征,如断层、褶皱、翘曲等,构造会影响巷道的稳定状态。
水文因素是指地下水的流量和流向,水文因素会导致岩体的浸润和潮湿。
采矿排放包括巷道排气和卸荷,这些会对深部极复杂软岩巷道的稳定性产生影响。
2. 应用于深部极复杂软岩巷道的稳定控制技术为了保证深部极复杂软岩巷道的稳定性,应当应用适当的稳定控制技术。
常见的稳定控制技术包括巷道增强技术、支护技术、加固技术、稳定技术、防治技术等。
巷道增强技术是指通过增加地表巷道的力学强度,使其更加稳定,常见的巷道增强技术有连续墙、不连续墙、夹层墙等。
支护技术是指把支护构件安装在巷道里,以防止岩石出现裂缝,提高深部极复杂软岩巷道的强度。
常见的支护技术有单搭锚、支护网、支护垫等。
加固技术是指对巷道墙体进行加固,以改善岩体的力学性质,加固技术有夹层注浆、初始张力注浆等。
稳定技术是指控制岩体的稳定状态,以防止岩体塌陷,稳定技术有稳固施工、局部增强施工等。
防治技术是指预防和化解巷道塌陷的技术,防治技术有岩爆、岩护、安全监测等。
3. 深部极复杂软岩巷道的稳定控制原则深部极复杂软岩巷道的稳定控制原则是根据巷道地质及巷道结构特点,结合围岩强度及稳定性的评价,合理选择稳定控制技术,以保证深部极复杂软岩巷道的安全及稳定性。
沿空掘巷围岩控制技术沿空掘巷围岩一般松软破碎、强度低,在工作面采动影响时,老顶岩层弧形三角块结构旋转下沉,塑性区、破碎区迅速扩展,导致巷道变形剧烈。
围岩的稳定性主要取决于围岩强度、应力状况及支护与围岩的相互作用关系。
沿在具体的支护过程中要合理利用和充分发挥围岩自身强度,要避开应力高峰区,沿空掘巷一般在上区段工作面采完应力重分布完成之后,沿着采空区边缘掘进巷道,从而避开采动影响带来的支承压力。
围岩承载力与支护在时间上要耦合,即围岩自身要具有一定的承载力又不至于存在难以支护的有害变形且使支护发挥最大的承载能力。
因此沿空掘巷合理围岩控制技术的研究显得尤为重要。
目前,锚杆和锚索已经广泛应用于我国煤矿回采巷道的支护中,对于促进煤矿安全高效生产有显著的作用,由于锚杆和锚索支护技术对于巷道围岩条件有较高的依赖性,对于沿空巷道,在支护的过程中,单纯的依靠增加锚杆、锚索的数量、刚度以及强度,不仅增加了支护成本,而且还不一定达到控制围岩变形的目的。
因此在支护过程中应该注重锚杆锚索的耦合支护,针对沿空巷道围岩由于塑性大变形而产生的变形不协调部位,通过锚网—围岩以及锚索—关键部位支护的耦合而使其变形协调,从而限制围岩产生有害的变形损伤,实现支护一体化,荷载均匀化,达到控制巷道稳定的目的。
4.1 沿空掘巷围岩控制机理4.1.1 围岩-支护共同作用原理支护所受的压力及其变形,来自于围岩在自身平衡过程中变形或破裂导致的对支护的作用。
因此,围岩状态及其变化状况对支护的作用有重要影响。
另一方面,支护以自己的刚度与强度抑制岩体变形和破裂进一步发展,而这一过程同样也影响着支护自身的受力。
于是,围岩与支护形成一种共同体;共同体两方面的耦合作用和互为影响的情况成为围岩-支护共同作用。
一种情况是,当岩体内应力达到峰值前,支护已经到位,岩体的进一步变形(包括其剪涨与扩容)破碎受支护阻挡,构成围岩与支护共同体,形成相互间的共同作用。
如果支护有足够的刚度与强度,则共同体是稳定的。
超化煤矿巷道围岩变形特征及稳定性控制措施分析摘要:本文以超化煤矿22底板轨道下山下段(原中央行人下山)巷道出现的变形破坏问题作为分析对象,对巷道出现的变形破坏原因进行了探究,结合巷道地质条件实际,针对性提出了“锚网喷+底板锚杆+预留变形量+全断面封闭格栅拱形支架”复合型支护方案,从巷道返修情况来看,返修支护方案整体实现了对巷道围岩的稳定性控制,对类似巷道支护有一定的借鉴意义。
关键词:煤矿巷道;围岩变形;特征;稳定性;控制;分析1、工程概况超化煤矿22底板轨道下山下段巷道埋深在660m左右,从地质勘察来看,巷道所在层位主要是粉砂岩,其中包含有较多的裂隙,也含有一定的钙质结核和黄铁矿,包含一层厚度在0.2m左右的泥岩,非常容易出现破碎问题。
根据现场勘测情况来看,最大的水平主应力为水平应力,大小接近29MPa,与巷道呈现出69°的夹角,巷道整体承受着相对较高的地应力影响,虽然巷道围岩的强度相对较大,但是在巷道掘进后,整体表现出较强的变形破坏问题。
从巷道原支护设计来看,巷道设计采用的是锚网索支护。
2、22底板轨道下山下段巷道变形破坏特点通过对22底板轨道下山下段巷道的现场观测来看,巷道主要的变形破坏特点主要表现在三个方面:首先,巷道在全断面出现了变形破坏问题,巷道两帮内挤明显、底鼓突出、拱顶下沉量较大。
其次,巷道围岩不仅变形量较大,同时,变形速度相对较快,且出现了变形持续时间偏长的问题。
从现场测量来看,很多巷道在掘进后的2d内,变形速度少则达到了12mm/d,多则可以得到110mm/d。
从变形时间来看,巷道变形持续时间达到了8个月,部分地段甚至超过了15个月。
从变形量来看,围岩变形量通常情况再280mm-1000mm之间,部分地段甚至出现了更大的变形。
第三,巷道在变形破坏的过程中,很多支护结构也有着明显的破坏问题,巷道表面的浆体开裂较多,同时,很多地段的锚索、锚索也出现了较多的破断。
虽然技术人员进行了多次修复,围岩的稳定性相对于先前有了提升,但是整体仍旧不能保证较长时间的稳定。
《巷道围岩峰后大变形过程的稳定性特征及锚固控制机理研究》篇一一、引言随着矿山、隧道、地下空间等工程项目的不断发展,对于巷道围岩的稳定性控制成为了重要的研究课题。
特别是峰后大变形过程的稳定性特征,对于保障工程安全具有重要的意义。
本文将就巷道围岩峰后大变形过程的稳定性特征进行探讨,并研究其锚固控制机理。
二、巷道围岩峰后大变形过程的稳定性特征巷道围岩在受到外力作用时,会经历一系列的变形过程。
其中,峰后大变形是指围岩在经过一次或多次峰前变形后,发生的较大幅度且较为复杂的变形过程。
该过程具有以下稳定性特征:1. 突变性:围岩的峰后大变形往往是在短时间内发生的,变形速度快,突变性强,需要迅速作出应对措施。
2. 不可逆性:峰后大变形一旦发生,围岩的稳定性往往会受到严重影响,且难以恢复到原来的状态。
3. 空间效应:围岩的峰后大变形往往伴随着空间效应的改变,如岩体的塌落、滑移等,对工程安全造成较大威胁。
三、锚固控制机理研究针对巷道围岩峰后大变形的稳定性问题,锚固控制是一种有效的手段。
锚固控制是通过在围岩内部设置锚杆、锚索等支护结构,对围岩进行加固和稳定的一种技术手段。
其控制机理主要包括以下几个方面:1. 提高围岩的承载能力:通过锚杆、锚索等支护结构的设置,可以有效地提高围岩的承载能力,使其能够承受更大的外力作用。
2. 改变围岩的应力状态:锚固控制可以通过调整支护结构的预应力,改变围岩的应力状态,使其处于更加稳定的状态。
3. 限制围岩的变形:锚固控制可以通过对围岩施加一定的约束力,限制其变形范围,从而保证工程的稳定性。
四、锚固控制的实施方法及注意事项针对巷道围岩峰后大变形的实际情况,锚固控制的实施方法包括以下几个方面:1. 选择合适的支护结构:根据围岩的实际情况,选择合适的支护结构,如锚杆、锚索等。
2. 设置合理的预应力:根据围岩的应力状态和变形情况,设置合理的预应力,以保证支护结构的有效性。
3. 加强监测与维护:在锚固控制过程中,需要加强监测和维护工作,及时发现并处理问题,保证工程的安全稳定。
深部巷道围岩控制的关键技术研究一、本文概述随着地下矿产资源的不断开采,深部巷道的稳定性问题日益突出,围岩控制技术的研究与应用显得尤为重要。
本文旨在深入探讨深部巷道围岩控制的关键技术,从理论分析和实践应用两方面,对深部巷道围岩的稳定性控制进行全面系统的研究。
文章首先概述了深部巷道围岩控制的背景和研究意义,指出了当前深部巷道围岩控制面临的主要挑战。
随后,文章对深部巷道围岩控制技术的研究现状进行了综述,包括围岩稳定性分析、支护结构设计、施工工艺优化等方面。
在此基础上,文章提出了深部巷道围岩控制的关键技术,包括围岩分类与评价、支护结构设计优化、施工工艺改进、监测与信息化反馈等方面,并详细阐述了这些技术的原理和应用方法。
文章通过案例分析,验证了所提关键技术的有效性和可行性,为深部巷道围岩控制提供了有益的理论支撑和实践指导。
二、深部巷道围岩的地质特征和力学特性在深入研究深部巷道围岩控制技术之前,对深部巷道围岩的地质特征和力学特性进行全面的了解是至关重要的。
深部巷道的围岩地质特征通常表现为高地应力、高温度、高渗透压等复杂的地质环境。
随着开采深度的增加,地应力逐渐增大,使得围岩的变形和破坏行为更加复杂。
深部岩体的节理、裂隙等不连续面更为发育,进一步加剧了围岩的不稳定性。
同时,深部岩体的物理和化学性质也可能发生变化,如岩石的强度、硬度、弹性等力学性质可能随着深度的增加而发生变化。
深部巷道围岩的力学特性主要表现为高强度、高应力、高变形等特点。
在高地应力条件下,围岩的应力状态复杂,容易产生剪切破坏和拉伸破坏。
同时,由于深部岩体的温度较高,可能导致岩石的热膨胀效应,进一步加剧了围岩的变形和破坏。
深部岩体的渗透压也可能对围岩的稳定性产生影响,尤其是在高渗透压条件下,可能导致围岩的渗流破坏。
深部巷道围岩的地质特征和力学特性都极为复杂,这给深部巷道的围岩控制带来了极大的挑战。
深入研究深部巷道围岩的地质特征和力学特性,对于制定有效的围岩控制技术具有重要的指导意义。
简述巷道围岩控制技术一、引言巷道围岩控制技术是煤矿开采中的一个重要环节,其目的是保障工人安全、提高生产效率和降低成本。
随着科技的发展,巷道围岩控制技术也在不断创新和完善。
二、巷道围岩的特点巷道围岩是指煤矿中开采出来的空间所包围的岩体。
其特点主要有以下几个方面:1. 岩层厚度大:由于煤层多数为平面构造,因此开采时需要在地下挖掘出一条宽度较大、长度较长、高度较低的通路,因此巷道围岩厚度相对较大。
2. 岩层变形能力弱:由于巷道围岩受到地质构造和开采活动的影响,其变形能力相对较弱。
3. 工作环境恶劣:由于工作环境复杂,如地质条件不稳定、气体浓度高等,使得巷道围岩控制技术更加复杂和危险。
三、巷道围岩控制技术分类根据不同的需求和要求,巷道围岩控制技术可以分为以下几种:1. 支护技术:通过设置支架、钢架等方式对巷道围岩进行支撑,以达到稳定和控制的目的。
2. 加固技术:通过注浆、锚杆等方式对巷道围岩进行加固,以提高其强度和稳定性。
3. 预应力技术:通过设置预应力杆等方式对巷道围岩进行预应力处理,以提高其承载能力和抗变形能力。
4. 水泥注浆技术:利用水泥注浆剂对巷道围岩进行加固和封闭处理,以达到稳定和防水的目的。
5. 喷射混凝土技术:通过喷射混凝土对巷道围岩进行加固和支护,以提高其承载能力和稳定性。
四、巷道围岩控制技术应用在实际生产中,根据煤矿地质条件、工作环境和开采方式等不同情况,选择不同的巷道围岩控制技术。
以下是一些常见的应用情况:1. 支护技术:在煤矿开采中,支护技术是最常用的一种巷道围岩控制技术。
其优点是支护结构简单、施工方便、成本低等。
2. 加固技术:当巷道围岩强度较弱或存在大块岩体时,加固技术可以提高其承载能力和稳定性。
常见的加固方式有注浆、锚杆等。
3. 预应力技术:预应力技术主要用于需要长期稳定的巷道围岩中。
通过设置预应力杆等方式对巷道围岩进行预应力处理,以提高其承载能力和抗变形能力。
4. 水泥注浆技术:水泥注浆技术主要用于防水和封闭处理。