汽车防撞预警系统毕业设计论文
- 格式:docx
- 大小:357.36 KB
- 文档页数:47
汽车碰撞监测与预警系统设计与实现随着汽车交通的不断发展和普及,汽车碰撞事故成为一种严重威胁道路安全的风险。
为了提高驾驶员的安全意识和行车素质,汽车碰撞监测与预警系统应运而生。
本文将探讨汽车碰撞监测与预警系统的设计与实现。
1. 系统总体设计汽车碰撞监测与预警系统的总体设计包括硬件、软件和通信子系统。
硬件设计方面,首先需要安装前向摄像头、红外传感器、毫米波雷达和控制单元等装置。
前向摄像头用于实时拍摄路面情况,红外传感器用于检测行驶中的物体,毫米波雷达则可以更加精准地探测周围环境。
控制单元将负责对传感器获取的数据进行处理和判断。
软件设计方面,其中最关键的是图像识别和数据分析算法。
图像识别算法可以识别前方的障碍物类型和距离,通过比对相关数据库中的车辆信息,判断是否存在碰撞的风险。
数据分析算法则负责对传感器获取的数据进行处理,通过对车辆运动轨迹、速度和加速度的分析,判断可能的碰撞情况。
通信设计方面,汽车碰撞监测与预警系统需要与车辆的中央计算机和位置导航系统进行通信。
通过与中央计算机通信,系统可以获取车辆的基本信息,并进行数据传输和处理。
与位置导航系统的通信可以实时获取车辆的位置信息,从而更加准确地预警驾驶员。
2. 功能实现汽车碰撞监测与预警系统主要包括前方碰撞预警、车道偏离预警和盲点检测等功能。
前方碰撞预警是系统的核心功能之一。
当系统检测到前方障碍物,并判断存在碰撞风险时,会通过视觉提示、声音警示或震动座椅等方式提醒驾驶员采取紧急刹车或躲避行动。
预警信息可以通过中央显示屏显示,同时也会通过语音指令告知驾驶员。
车道偏离预警可以有效防止驾驶员因为驾驶疲劳或分神导致车辆偏离车道。
当系统检测到车辆偏离车道时,会及时通过声音或震动进行提醒。
此外,还可以通过驾驶员座椅调整或方向盘振动来改变驾驶员的注意力。
盲点检测可以消除驾驶员在车辆转弯或换道时盲点带来的安全隐患。
系统会通过物体检测和距离计算算法检测侧后方的车辆,在有车辆进入盲区时,及时通过声音或显示指示驾驶员注意,并避免发生碰撞。
摘要近年来,随着汽车产业的迅速发展和人们生活水平的不断提高,我国的汽车数量正逐年增加。
同时汽车驾驶人员中非职业汽车驾驶人员的比例也逐年增加。
在公路、街道、停车场、车库等拥挤、狭窄的地方倒车时,驾驶员既要前瞻,又要后顾,稍微不小心就会发生追尾事故。
据相关调查统计,15%的汽车碰撞事故是因倒车时汽车的后视能力不良造成的。
因此,增加汽车的后视能力,研制汽车后部探测障碍物的倒车雷达便成为近些年来的研究热点。
为此,设计了以单片机为核心,利用超声波实现无接触测距的倒车雷达系统。
超声波一般指频率在20 kHz以上的机械波,具有穿透性强,衰减小,反射能力强等特点。
工作时,超声波发射器不断发射出一系列连续脉冲,给测量逻辑电路提供一个短脉冲。
最后由信号处理装置对接收的信号依据时间差进行处理,自动计算出车与障碍物之间的距离。
超声波测距原理简单,成本低,制作方便,但其传输速度受天气影响较大,不能精确测距;因此大都用于汽车倒车雷达等近距离测距中本文根据声波在空气中传播反射原理,以超声波换能器为接口部件,介绍了基于STC89S52单片机的超声波测距器。
该设计由超声波发射模块、信号接收模块、单片机处理模块、数码显示以及声光报警显示模块等部分组成,文中详细介绍了测距器的硬件组成、检测原理、方法以及软件结构。
接收电路使用SONY公司的CX20106A红外检测专用芯片,该芯片常用于38kHz的检波电路,文中通过对芯片内部电路的仔细分析,设计出能够成功对40kHz超声波检波的硬件电路,并且增益可调,与传统超声波检波电路相比,电路变得精简,调试变得相对容易。
关键词:超声波;报警;STC89C52;调试;设计ABSTRACTIn recent years, with the rapid development of automobile industry and the continuous improvement of people's living standard, China's number of cars is increasing every year. Driving in Central Africa at the same time professional staff of the proportion of car drivers is also increasing year by year. Highways, streets, parking, garage and other crowded places narrow reverse, the driver should not only forward but also looking back, a little rear-end careless accidents can occur. According to related statistics, 15% of motor vehicle collisions when the vehicle is reversing, as the capacity of the latter caused by bad.So after the increase of motor vehicles as the ability to detect obstacles on the development of the rear of the car reversing radar has become the research hotspot in recent years. To this end, the design of a single-chip microcomputer as the core, the use of ultrasonic ranging to achieve non-contact reversing radar system.Generally refers to ultrasonic frequencies above 20 kHz mechanical waves, with penetrating, and attenuation of small, reflecting the ability and so on. Work, the ultrasonic transmitter continuously emits a series of consecutive pulses to the measurement of logic circuits to provide a short pulse. Finally, signal processing devices based on the received signal for processing the time difference, automatic calculation of turnout and the distance between obstacles. Ultrasonic Ranging simple, low cost, easy production, but the transmission speed by a larger weather can not be precise range;Thus reversing radar are used in cars, such as close range in this paper, according to the spread of sound waves in air reflection to ultrasonic transducer interface components, based on MCU STC89S52 ultrasonic range-finder. Designed by the ultrasonic transmitter module, receiver module, single-chip processing module, a digital display and alarm sound and light display module, such as parts, the text in detail the range of hardware devices, detection theory, methods and software architecture. Receiving circuit using the SONY company dedicated CX20106A infrared detecting chip, the chip used in the detector circuit 38kHz, the text of the chip through the careful analysis of the internal circuit design can successfully 40kHz ultrasonic detection of hardware circuitry and adjustable gain, and compared to conventional ultrasonic detection circuit, the circuit has become streamlined and easier to debug.Key words:Silent Wave;Alerting; STC89C52;Debug; Design目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 课题的背景 (1)1.2 课题设计的意义 (1)1.3 超声波防装系统的应用介绍 (2)1.4 课题主要研究的内容 (3)第2章课题的方案设计与论证 (4)2.1 系统的总体设计 (4)2.1.1 系统总体框图 (4)2.1.2 传感器的位置 (5)2.2 设计方案的论证 (5)2.3 本章小结 (5)第3章系统的硬件结构设计 (7)3.1单片机的选择 (7)3.2 发射电路设计 (12)3.3 接收电路设计 (12)3.4 显示报警电路的设计 (15)3.4.1 MAX232 (15)3.5本章小结 (16)第4章系统的硬件结构设计 (17)4.1主程序流程图 (19)4.2超声波发射程序编写原理 (22)4.3本章小结 (22)第5章制作与调试 (23)5.1 硬件的制作 (23)5.1.1 焊接时布线及其注意事项 (23)5.1.2硬件的整体焊接 (26)5.2 硬件调试 (27)5.2.1 发射调试 (28)5.2.2 接收调试 (29)5.2.3 显示调试 (30)5.2.4报警调试 (31)5.3 软件调试 (32)5.3.1 超声波接收发射调试过程 (33)5.4本章小结 (34)结论 (35)参考文献 (36)致谢 (36)附录 (38)附录A 英文文献与中文参考译文 (38)附录B 整机原理图 (45)附录C实物效果图 (49)附录D材料清单 (51)附录 E 源程序 (53)第1章绪论1.1 课题背景随着经济的发展与汽车科学技术的进步,公路交通呈现出行驶高速化、车流密集化和驾驶员非职业化的趋势。
基于激光雷达汽车防撞预警系统的设计与实现随着汽车的普及和城市化进程的加快,道路交通是人们生活中不可或缺的部分。
但是,交通事故一直是世界各国面临的难题。
为了降低交通事故的发生率,汽车防撞预警系统已经引起了世界的广泛关注。
本文将介绍一种基于激光雷达的汽车防撞预警系统的设计和实现。
1. 激光雷达的基本原理和特点激光雷达是一种利用激光束进行探测和跟踪的雷达。
它主要由激光发射器、光电探测器、信号处理器和数据处理器等组成。
激光雷达的工作原理是,通过激光发射器向目标发射激光束,当激光束遇到目标物体时,会反射回来,被光电探测器接收。
通过测量激光的时间延迟和频率变化等信息,可以确定目标物体的距离、速度、方向等参数。
激光雷达具有高精度、高可靠性、高分辨率、宽动态范围、抗干扰能力强等优点,因此在汽车防撞预警系统中得到了广泛应用。
2. 汽车防撞预警系统的工作原理汽车防撞预警系统会根据目标物体的距离、速度等参数来预测是否会与目标物体发生碰撞,并发出相应的警报。
如果司机没有及时采取措施避免碰撞,汽车防撞预警系统还可以根据预测结果自动制动。
汽车防撞预警系统主要由激光雷达、信号处理器、数据处理器、显示器等部分组成。
激光雷达的选择应根据目标检测的距离、角度、精度等需求进行选择。
同时,为了提高激光雷达的探测精度和稳定性,一般需要采用高精度的激光雷达控制器和滤波器等措施。
信号处理器主要负责从激光雷达中接收到的信号中提取有用的信息,并将其转化成数字信号传送到数据处理器进行处理。
为了保证信号的稳定性和可靠性,一般还需要采取多种滤波器对信号进行处理和优化。
数据处理器主要负责对激光雷达获取到的数据进行处理和分析,并根据预定的算法和逻辑来进行目标检测和预测。
为了提高系统的实时性和准确性,一般需要采用高速、低功耗的数据处理器。
显示器主要用于显示系统运行状态、目标检测结果和警报信息等。
4. 结论汽车防撞预警系统可以通过基于激光雷达的目标探测和预测来降低交通事故的发生率。
基于激光雷达汽车防撞预警系统的设计与实现一、激光雷达汽车防撞预警系统的原理激光雷达是一种通过测量光的时间差来确定目标距离的传感器。
在汽车防撞预警系统中,激光雷达主要用来探测前方障碍物的距离和速度,从而实现对潜在碰撞危险的监测和预警。
激光雷达汽车防撞预警系统的工作原理如下:当汽车发动机启动后,激光雷达系统开始工作,通过激光发射器发出一束激光,在宽度范围内扫描前方的障碍物。
当激光束遇到障碍物时,一部分激光会被反射回来,激光雷达系统通过接收器接收反射回来的激光,并通过测量激光的时间差来确定障碍物的距离和速度。
系统会将这些数据与车辆自身的速度和加速度等信息结合起来,通过算法分析得出可能的碰撞危险,并及时做出警告或者自动刹车等措施,从而避免碰撞事故的发生。
1. 系统硬件设计激光雷达汽车防撞预警系统的硬件主要包括激光发射器、接收器、信号处理器、控制器等组成部分。
激光发射器用于产生激光束,接收器用于接收反射回来的激光,信号处理器用于对接收到的激光信号进行处理,控制器用于系统的整体控制和数据处理。
在设计时,需要根据汽车的实际情况和需要,选择合适的硬件设备,并设计相应的电路和系统结构。
激光雷达汽车防撞预警系统的软件设计包括激光雷达信号处理算法、碰撞检测算法、预警系统算法等。
激光雷达信号处理算法主要用于对接收到的激光信号进行滤波、增强和去噪等处理,以提高系统的性能和稳定性。
碰撞检测算法主要用于对处理后的激光信号进行分析,判断潜在的碰撞危险。
预警系统算法主要用于根据检测到的碰撞危险,做出相应的警告和控制决策。
软件设计时需要根据系统的实际需求和硬件设备的特点,选择合适的算法,并进行相应的优化和调试,以确保系统的准确性和稳定性。
3. 系统集成与测试在硬件和软件设计完成后,需要对系统进行集成和测试。
集成阶段主要包括硬件设备的安装和连接,软件的加载和配置等。
测试阶段主要包括系统的功能测试、性能测试和稳定性测试等。
通过集成和测试,可以发现和解决系统中可能存在的问题,确保系统能够正常工作和达到预期的效果。
汽车碰撞预警与防护系统的设计与实现随着汽车行业的快速发展,交通事故对公共安全和人身安全构成了巨大的威胁。
为了减少交通事故的发生,汽车碰撞预警与防护系统设计与实现成为了汽车安全技术的重要方向之一。
这个系统可以帮助驾驶员及时感知到可能的碰撞和事故,并采取相应的措施来保护乘客的生命安全。
本篇文章将探讨汽车碰撞预警与防护系统的设计原理和实现方法。
首先,汽车碰撞预警与防护系统的设计主要基于传感器技术和实时数据分析。
通过安装在车辆上的传感器,可以采集到各种相关的数据,例如车速、加速度、转向角度、距离等。
这些数据是实现碰撞预警和防护系统的基础。
从碰撞预警的角度来看,系统需要对车辆与周围环境的动态变化进行准确监测。
传感器可以实时检测车辆与前方障碍物之间的距离和速度,并通过数据分析判断是否存在潜在的碰撞风险。
当系统检测到潜在风险时,它可以通过驾驶员警告灯、声音或震动等手段提醒驾驶员注意并采取相应的措施。
同时,为了提高预警系统的准确性和可靠性,系统还可以结合车辆的导航系统和卫星定位系统。
通过获取车辆行驶路线、道路交通状况等信息,系统能够更好地判断碰撞风险,并及时预警。
此外,利用车辆的自动驾驶技术,系统还可以与周围车辆进行实时通信,共享车辆的行驶状态和预测行为,从而进一步提高碰撞预警的准确性。
当系统判断碰撞是不可避免的时候,防护系统将会发挥作用。
防护系统的设计目标是在碰撞发生前和发生时尽量减少乘客受伤的风险。
一种常见的防护系统是主动制动系统,它可以通过自动制动来减少碰撞的冲击力。
该系统通过收集到的车辆和环境数据来判断是否需要紧急制动,并自动控制车辆制动以避免碰撞发生。
此外,防护系统还可以采用气囊、安全带和座椅调整等被动防护装置来保护乘客的安全。
气囊是一种常见的防护装置,当系统检测到碰撞风险时,会迅速充气以吸收碰撞的能量,从而减少乘客身体部位的受伤。
安全带能够将乘客牢固地固定在座位上,大大减少受伤的可能性。
座椅调整功能可以根据乘客的身高和体重等信息来调整座椅的位置和角度,以最大程度地减少碰撞对乘客身体的伤害。
目录第一章绪论 (1)1.1选题意义和背景 (1)1.2国内外研究的现状 (2)1.3本文的主要工作和内容安排 (5)第二章几种测距方式的比较和选择 (6)2.1激光方式 (7)2.2超声波方式 (8)2.3红外线方式 (9)第三章系统模型的建立 (10)3.1追尾防撞模型的建立 (10)3.1.1模型建立的理论依据 (10)3.1.2模型的建立 (12)3.1.3模型的讨论 (17)3.1.4模型参数的讨论 (18)3.2超车侧向防撞模型的建立 (19)3.2.1模型的建立 (19)3.2.2模型参数的选择 (26)3.2.3模型的最小转角与最大转角数据分析 (28)第四章系统硬件设计 (30)4.1 单片机的性能特点 (30)4.1.1单片机的选择 (30)4.1.2 MCS-51单片机的主要性能 (31)4.1.3单片机系统的设计要求 (31)4.2 追尾碰撞报警系统硬件设计 (32)4.2.1测量距离通道的设计 (32)4.2.2测速通道的设计 (33)4.2.3开关量输入通道的设计 (34)4.2.4转向、油门、制动信号的采集 (35)4.2.5声光报警的设计 (36)4.2.6显示装置的设计 (39)4.2.7电源设计 (43)4.2.8电路板的电源保护装置和电源的抗干扰的设计 (44)4.2.9“看门狗”电路的设计 (44)4.3系统主要传感器 (47)4.3.1毫米波雷达传感器 (48)4.3.2超声波传感器 (53)4.3.3红外线传感器 (55)4.3.4霍尔车速传感器 (55)4.3.5转向角度传感器 (59)4.3.6制动踏板传感器 (60)4.3.7油门传感器 (61)4.3.8路面状况选择开关 (61)4.4 系统总体电路图 (64)第五章报警系统软件程序的实现 (65)5.1系统报警方式 (65)5.2程序设计思想 (65)5.3程序的实现 (66)第六章结论与展望 (71)6.1结论 (71)6.2展望 (71)参考文献 (73)附录 (76)第一章绪论1.1选题意义和背景汽车业与电子业是世界工业的两大金字塔,随着汽车工业与电子工业的不断发展,在现代汽车上,电子技术的应用越来越来广泛,汽车电子化的程度越来越高。
基于激光雷达汽车防撞预警系统的设计与实现随着汽车的普及和交通量的增加,交通事故也越来越多。
由于驾驶员的疏忽或操作失误导致的追尾事故占据了很大的比例。
为了解决这一问题,汽车防撞预警系统应运而生。
而基于激光雷达的汽车防撞预警系统由于其精准度高、反应速度快等优点受到了广泛关注。
本文将介绍一种基于激光雷达的汽车防撞预警系统的设计与实现。
一、系统设计1. 激光雷达传感器激光雷达传感器是整个系统的核心部件,它主要负责对前方的障碍物进行探测和测距。
激光雷达采用激光束来扫描周围环境,并通过接收返回的激光信号来计算出障碍物的距离和形状。
激光雷达传感器的性能将直接影响到整个系统的准确性和可靠性。
2. 数据处理模块通过激光雷达传感器获取到的障碍物信息需要经过数据处理模块进行处理和分析。
数据处理模块主要负责对激光雷达传感器采集到的数据进行滤波、特征提取、目标识别等处理,从而得到准确的障碍物位置和状态信息。
3. 预警系统预警系统是整个汽车防撞预警系统的重要组成部分,它通过接收数据处理模块输出的障碍物信息,并根据事先设定的算法判断是否存在碰撞危险。
一旦系统判断存在碰撞危险,就会通过声光等方式向驾驶员发出警告,提醒其及时采取避让措施。
二、系统实现在实际应用中,一般会选择360度全向扫描的激光雷达传感器,以确保对全方位的障碍物进行探测。
在汽车上会通过精心的布置,将激光雷达传感器安装在车辆前部,保证对前方障碍物的有效探测。
数据处理模块的设计需要采用成熟的算法和技术,比如在目标识别方面可以使用深度学习等技术,以提高系统的检测准确性和鲁棒性。
数据处理模块还需要考虑系统的实时性和稳定性,确保系统可以在实时和动态的交通环境中正常运行。
预警系统的开发需要结合驾驶员的习惯和反应时间,设计合理的预警算法。
一般来说,预警系统会通过声音、光线、振动等方式向驾驶员发出警告,同时还要考虑驾驶员在接收警告后的反应,以免因为警告过于突然而导致驾驶员的慌乱。
泰山学院本科毕业设计基于单片机的汽车防撞报警系统设计所在学院机械与工程学院专业名称机械设计制造及其自动化申请学士学位所属学科工学年级二〇一一级 (3+2) 学生姓名、学号王俊基 ********** 指导教师姓名、职称张秀红讲师完成日期 2013年 5月30日摘要摘要汽车业和电子业是工业界的两大巨头,伴随着汽车和电子工业不断地发展与进步,在现代化的汽车上,越来越广泛地应用了电子技术,汽车的电子化程度愈来愈高。
现在的交通运输业向着高密度的方向发展,电子方面的控制技术也进一步地应用在了汽车的行车安全性与导航方面。
随着社会的不断发展与进步,家庭汽车的数量越来越多,交通事故也与日俱增,交通安全愈来愈引起人们的重视,汽车防撞报警系统也应运而生。
本文以AT89S51单片机为核心,设计汽车的防撞报警系统,且借助于DSP 技术,实现了低成本、高精度测距测速功能的FMCW(调频连续波)防撞雷达设计方案,同时还利用电磁铁同性磁极排斥的原理主动减速,达到防撞的效果。
该防撞报警系统以毫米波雷达为目标探测方式,提出了一款多功能汽车防撞报警系统。
该系统适应性强,有广阔的应用空间,当然还有待于进一步开发。
关键词:AT89S51单片机,DSP,电磁铁,毫米波雷达IAbstractABSTRACTAutomotive industry and the electronics industry is the industry's two giants, along with the automotive and electronics industries continue to develop and progress in the modern car, more and more widely used in the electronics, automotive electronics higher and higher degree of . Now transport direction is towardhigh-density development, electronics control technology is further used in the car driving safety and navigation.With the continuous development and progress of society, more and more family vehicle, traffic accidents also grow with each passing day, traffic safety is paid more and more attention, the automobile anti-collision alarm system also emerge as the times require.This paper takes AT89S51 microcontroller as the core, anti-collision alarm system design of automobile, and with the help of DSP technology, to realize the low cost, high precision ranging measurement function of the FMCW (frequency modulated continuous wave) radar design, but also the principle of electromagnet magnetic poles repel the deceleration, achieve the collision effect. The collision warning system in millimeter wave radar for target detection, while expanding the tracking and recognition to the target, the track-while-scan radar target detection theory, put forward collision warning system is a multifunctional automobile.The system has strong adaptability, broad application space, of course, also need to be further developed.Key words:AT89S51microcontroller, DSP, electromagnet, millimeter wave radII目录目录1 引言 (1)1.1课题的提出及意义 (1)1.2课题研究现状 (1)1.3课题研究内容和预期目标 (2)2.1设计方案的选择 (4)2.2设计方案的总体结构 (5)2.3汽车防撞报警系统的工作原理 (11)3 汽车防撞报警系统的硬件设计 (13)3.1单片机的选型 (14)3.2 DSP芯片的选择 (15)3.3发射前端电路 (15)3.4中频放大电路 (15)3.5 A/D转换电路 (16)3.6 LED显示电路 (16)3.7声光报警电路 (17)3.8电磁铁减速单元模块电路 (18)3.9电源电路设计 (19)4 汽车防撞报警系统的软件设计 (21)4.1 主程序 (21)4.2控制程序流程设计 (23)5 结论 (26)5.1 硬件调试 (26)5.2 软件调试 (26)5.3仿真实验 (27)5.4 测试结果 (29)III目录5.5设计存在的不足 (29)5.6 总体结论 (29)附录 (31)1.汽车防撞报警系统硬件整体电路图 (31)2.汽车防撞报警系统软件程序 (32)参考文献 (39)致谢 (40)IV泰山学院本科毕业设计1 引言1.1课题的提出及意义随着人们生活水平的不断提高,我国汽车的保有量逐年增加,各类交通事故频频发生,其中汽车碰撞事故占大部分,因此汽车防撞报警是亟待解决的问题。
基于激光雷达汽车防撞预警系统的设计与实现【摘要】本文基于激光雷达技术,设计并实现了一种汽车防撞预警系统。
首先介绍了激光雷达技术的原理和应用情况,然后详细阐述了汽车防撞预警系统的设计原理,并给出了系统实现的具体步骤。
接着对系统进行了测试和评估,并提出了系统优化的建议。
最后进行总结与展望,分析未来发展方向,并总结了研究成果。
通过这篇文章,读者可以深入了解激光雷达在汽车防撞预警系统中的应用,为未来的研究和发展提供了一定的参考。
【关键词】激光雷达、汽车防撞预警系统、设计与实现、技术介绍、系统原理、实现步骤、测试与评估、系统优化、总结与展望、未来发展方向、研究成果。
1. 引言1.1 研究背景随着激光雷达技术的不断发展和成熟,其在汽车防撞预警系统中的应用越来越广泛。
激光雷达传感器能够实时探测车辆周围的障碍物,通过数据处理和算法分析,可以实现车辆的自动刹车或避让,避免碰撞事故的发生。
本研究旨在探讨基于激光雷达技术的汽车防撞预警系统的设计和实现,通过深入研究激光雷达技术的原理和汽车防撞预警系统的设计思路,提高系统的准确性和稳定性,从而有效提高车辆的安全性能。
通过本研究,希望为今后汽车防撞预警系统的发展提供有益的参考和借鉴。
1.2 研究目的研究目的是为了探索基于激光雷达的汽车防撞预警系统的设计与实现,提高汽车行驶安全性能。
通过研究激光雷达技术在汽车防撞系统中的应用,深入理解其工作原理和优势,为未来汽车自动驾驶技术的发展提供技术支持。
通过对汽车防撞预警系统的设计、实现、测试与评估,寻找系统存在的问题并进行优化改进,进一步提高系统的性能稳定性和可靠性。
通过本研究,我们旨在为汽车安全驾驶提供技术支持,实现车辆之间的智能协同,降低交通事故率,提升驾驶舒适性和便利性,为未来智能交通系统的建设做出贡献。
1.3 研究意义汽车防撞预警系统在现代社会中具有重要的研究意义。
随着汽车数量的急剧增加和交通拥堵现象的日益严重,交通事故也随之频繁发生。
基于激光雷达汽车防撞预警系统的设计与实现随着汽车行业的不断发展,汽车安全已经成为人们越来越关注的一个重要问题。
据统计,交通事故是导致人员伤亡和财产损失的主要原因之一,其中许多事故都是由于驾驶员的疏忽或者驾驶技术欠佳造成的。
汽车防撞预警系统的设计和实现变得尤为重要。
本文将介绍一种基于激光雷达的汽车防撞预警系统的设计与实现过程。
一、系统设计1. 激光雷达传感器激光雷达传感器是汽车防撞预警系统的核心部件之一。
它能够通过发射激光束并测量激光束的反射时间来获取周围环境的距离和形状信息。
在设计系统时,需要选择合适的激光雷达传感器,确保其具有较高的测距精度和较大的测距范围。
2. 数据处理模块激光雷达传感器采集到的距离和形状信息需要经过数据处理模块进行处理和分析,以便判断周围环境中是否存在潜在的碰撞危险。
数据处理模块通常由嵌入式微处理器和相关算法组成,能够实现对传感器数据的快速处理和实时分析,并能够及时地生成预警信号。
3. 驾驶员提示装置当系统判断存在碰撞危险时,需要通过驾驶员提示装置向驾驶员发出预警信号,以便提醒驾驶员采取相应的行车措施。
驾驶员提示装置可以采用声音、光线或者振动的方式进行提示,确保驾驶员能够及时地察觉到潜在的碰撞危险。
二、系统实现在选择激光雷达传感器时,需要考虑其测距精度、测距范围、扫描速度等参数,并且需要根据汽车的实际情况进行安装和调试。
通常情况下,激光雷达传感器会安装在汽车的前部和侧部,以确保能够对前方和侧方的环境进行全方位的监测。
驾驶员提示装置需要与汽车的仪表盘或者座椅进行连接,以确保驾驶员能够及时地收到预警信号。
在设计和实现驾驶员提示装置时,需要考虑其提示方式和提示音量,确保能够引起驾驶员的注意并且不会对驾驶员的驾驶安全造成干扰。
三、系统性能测试与优化一旦系统实现,并无意味着系统已经能够完全满足汽车行业的要求。
在系统实现之后,需要对系统的性能进行全面的测试,并对系统进行适当的优化。
性能测试主要包括系统的测距精度、测距范围、响应时间等方面的测试,以确保系统能够在不同的环境条件下稳定地工作。
汽车防撞预警系统毕业设计论文
Last revision on 21 December 2020
学号: *********** 毕业论文
汽车防撞报警系统设计 Automotive collision avoidance alarm system design 学院 计算机与电子信息学院 专业 电子信息科学与技术 班级 电子09-1 学生 *** 指导教师(职称) 刘利民(讲师) 完成时间 2013年03月25日至2013年06月15日摘 要 随着经济的高速发展和居民生活水平的不断提高,我国汽车数量逐年递增,各类交通事故频发, 其中多为汽车碰撞事故。为此本文设计了一种以超声波测距和AT89C51 单片机为核心的汽车防撞报警系统,以期提高汽车运行的安全性,减少交通事故。该系统根据超声波测距原理,以AT89C51为核心,设计了汽车防撞报警系统,主要是将单片机控制模块、超声波测距模块、蜂鸣器报警模块、4位数码管显示模块这几个模块结合起来,通过编写的Keil C51“.C”文件来实现测量距离,当距离小于阈值时,发出报警。本设计的核心是超声波测距模块,其他相关模块都是在测距的基础上拓展起来的,测距模块是利用超声波传感器。该系统可提高汽车行进过程中的安全性,构建汽车安全空间。 关键词:超声波传感器; 测距; 防撞; 报警; AT89C51
ABSTRACT With the high-speed development of economy and people life level unceasing enhancement, car ownership in China increasing every year, all kinds of frequent traffic accidents, mostly car collision accident. This paper designed a kind of ultrasonic ranging and AT89C51 as the core of automotive anti-collision alarm system, so as to enhance the safety of vehicle running, reduce traffic accidents. According to the principle of ultrasonic ranging, this system usesUSES AT89C51 as the core, the design of the automotive anti-collision alarm system, the main is the single-chip microcomputer control module, ultrasonic distance measuring module, a buzzer alarm module, the four digital tube display module that combines several modules, written by Keil C51. "C" files to achieve the measurement distance, when the distance is less than the threshold, issued a report to the police. This design is the core of the ultrasonic ranging module, on the basis of other related modules are in the range expansion, ranging module is to use ultrasonic sensors. The system can improve the safety of vehicles in the process of marching, build space of automotive safety. Keywords :ultrasonic sensor; distance measurement; avoiding collision; give an
alarm; AT89C51 目 录 摘 要 ............................................................... 2 ABSTRACT ............................................................ 3 目 录 ............................................................... 4 第一章 绪 论 ........................................................ 6 课题研究背景及意义............................................... 6 国内外安全防撞预警系统的研究现状 ................................ 9 ............................................................. 9 ............................................................ 10 论文的主要内容和章节安排 ...................................... 11 第二章 防撞预警系统安全距离模型、决策系统 .......................... 12 行车安全距离 .................................................... 12 汽车制动距离 .................................................... 12 驾驶员预估模型报警算法 ........................................ 12 本章小结 ........................................................ 14 第三章 超声波及其工作原理 .......................................... 15 超声波传感器介绍................................................ 15 超声波传感器的特性.............................................. 16 超声波测距的工作原理及实现 ..................................... 17 测距系统的主要参数............................................. 19 本章小结 ........................................................ 20 第四章 防撞预警系统的总体方案 ...................................... 21 设计方案 ....................................................... 21 ............................................................ 21 超声波时序图 ............................................... 22 系统总方案 ..................................................... 23 本章小结 ........................................................ 24 第五章 防撞预警系统硬件电路设计 .................................... 25 单片机系统设计................................................. 25 单片机的选择 .............................................. 25 单片机引脚功能 ............................................ 26 单片机最小系统 ............................................ 30 超声波发射和接收电路设计 ...................................... 31 超声波发射电路设计 ........................................ 31 超声波接收电路设计 ......................................... 32 显示报警模块设计............................................... 34 显示电路的方案比较 ........................................ 34 数码管显示模块设计 ........................................ 35 报警模块设计 .............................................. 36 系统整体电路 ................................................... 37 本章小结 ........................................................ 37 第六章 防撞预警系统的软件设计 ...................................... 38 主程序设计 .................................................... 38