现代导航技术第九章(陀螺仪随机漂移的分析与处理)
- 格式:pdf
- 大小:914.38 KB
- 文档页数:33
陀螺仪角度随机游走定义
陀螺仪角度随机游走是指陀螺仪在没有外界干扰的情况下,其角度随机变化的
性质。
陀螺仪是一种测量和检测物体旋转姿态的装置,在惯性导航系统、航空航天等领域有着广泛的应用。
陀螺仪内部的转子通过陀螺效应来感应旋转角度,这种效应是指当陀螺仪在一
定速度旋转时,会产生一个力矩,使其保持固定的旋转轴。
然而,在没有外界干扰的情况下,陀螺仪的旋转轴并不总是能保持在一个特定的方向上。
陀螺仪角度随机游走是由于微小的不均匀性和噪音引起的。
陀螺仪内部的各种
元件、材料和电路都存在微小的不均匀性,这些不均匀性会导致转子受到微小的扰动。
而同时,环境中的噪音也会对陀螺仪产生影响。
这些微小的扰动和噪音导致了陀螺仪角度的随机变化。
陀螺仪角度随机游走在实际应用中需要进行补偿和校正。
由于随机游走的性质,陀螺仪在长时间的使用中角度会逐渐偏离真实值。
为了解决这个问题,需要利用其他传感器或者算法来校正陀螺仪的角度,以确保其测量结果的准确性。
总之,陀螺仪角度随机游走是由于微小的不均匀性和噪音引起的陀螺仪角度随
机变化现象。
在实际应用中,需要进行补偿和校正,以确保陀螺仪测量结果的准确性。
ⅠⅡΩΩ捷联惯导系统的导航的精度将会随着时问的推移而降低,因为无论采取什么手段,只要惯导器件误差不为零,那么惯导系统的导航误差就要随时间而积累,这是由惯性导航原理决定的。
而两种主要的惯性元件陀螺仪和加速度计中,加速度计的精度通常比陀螺仪高一个数量级以上,一般能够满足导航要求。
因此陀螺漂移的合理补偿就成为了提高导航精度的关键。
陀螺漂移补偿的方案有很多种,本文曾对几种漂移补偿方案进行了实验比较,并在此基础上提出了一种在一定条件下行之有效的加速度计辅助补偿法。
下面介绍曾实验的几种方案并详细介绍加速度计辅助补偿法。
方案一称为动态校零的漂移补偿方法,这种方法的背景是:基于对压电陀螺的研究,发现压电陀螺始终存在零位不重复性和零位不稳定性。
零位不重复性是指在静止状态下,不同时间给陀螺通电,陀螺的输出电压各不相同;零位不稳定性是指在静止状态下,给陀螺通电,陀螺的输出电压随时间的推移而变化。
动态校零分为针对零位不重复性的开机零位校正和针对零位不稳定性的零位漂移抑制过程。
零位信号是一个变化较缓慢的信号,在短时间内,可以看作直流分量。
因此,开机零位校正可以采用一个求和过程,对开机时静态陀螺信号进行求和,再将所求之和除以积分的时间得均值,即可将开机零位分离出来。
本文采用的是开机一分钟的均值。
而零位漂移抑制则需要通过对大量陀螺数据的分析,总结出其漂移规律,根据规律预置漂移速率,由漂移抑制算法消除零位的不稳定性。
但是这个方一案存在一些问题,首先零位信号是随时间漂移的,那么开机所求得的零位信号在之后的导航解算中很可能与实际情况不符合从而影响修正的效果;另外,预置漂移速率要求陀螺输出有较强的规律性,而经过大量实验数据的采集和分析,证实本实验采用的陀螺不具有很强的规律性,所以此种动态校零的修正方案在本文并不适用。
方案二本文曾提出过一种方案,称之为最小二乘拟合法。
是根据对采集的大量陀螺数据的分析,建立一个陀螺输出漂移与时间关系的最小二乘的模型,并将陀螺输出分为若干小的时间段,例如I0s(因为在相邻的短时间段内规律性可视为相同),由于时间短,可将每个时间段内的模型近似认为是Y=aX十b, Y为陀螺输出,X为时间变量,a, b为待辨识参数,利用本时间段采集的数据实时估计的陀螺输出漂移的最小二乘模型来预估下一时间段陀螺输出漂移值,将据此估计值下一时间段中对实际陀螺输出进行修正。
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201910275379.X(22)申请日 2019.04.08(71)申请人 深圳市智微智能科技开发有限公司地址 518000 广东省深圳市福田区车公庙泰然九路海松大厦B-1303(72)发明人 付炜 (74)专利代理机构 深圳市科冠知识产权代理有限公司 44355代理人 王海骏(51)Int.Cl.G01C 19/00(2013.01)(54)发明名称一种解决陀螺仪漂移的方法(57)摘要本发明适用于陀螺仪漂移技术领域,包括系统模块,传感器集线器模块,陀螺仪模块,加速度模块;通过传感器集线器模块分别采集陀螺仪模块输出的第一数据和加速度模块输出的第二数据,对第一数据和第二数据进行算法融合成第三数据,并缓存最近获得的16个第三数据,对最近获得的16个第三数据进行排序,取中间值的小数点后九位,对中间值作二进制的整型转换;并设定精度值,精度值为将中间值作二进制的整型转换后最少输出的数字位数;在将中间值作二进制的整型转换后乘以精度值再除以精度值,并保留七位有效数字,最后将保留的七位有效数字上报给系统模块;从而解决陀螺仪漂移的问题,进而提高了用户体验。
权利要求书1页 说明书2页 附图1页CN 109945848 A 2019.06.28C N 109945848A1.一种解决陀螺仪漂移的方法,包括系统模块,传感器集线器模块,陀螺仪模块,加速度模块;其特征在于,所述方法包括下述步骤:传感器集线器模块分别采集所述陀螺仪模块输出的第一数据和所述加速度模块输出的第二数据,对所述第一数据和所述第二数据进行算法融合成第三数据,将所述第三数据输出给所述系统模块。
2.如权利要求1所述的方法,其特征在于,将所述第三数据输出给所述系统模块之前还包括:缓存最近获得的16个所述第三数据,并对最近获得的16个所述第三数据进行排序,取中间值上报给所述系统模块。
第31卷第3期2018年3月传感技术学报CHINESEJOURNALOFSENSORSANDACTUATORSVol 31㊀No 3Mar.2018项目来源:甘肃省基础研究创新群体计划项目(1606RJIA327)ꎻ陇原青年创新人才扶持计划项目(2016-43)ꎻ甘肃省自然青年基金项目(1606RJYA225)收稿日期:2017-08-27㊀㊀修改日期:2017-12-27AnalysisandCompensationofDriftandNoiseinMEMSGyroscope∗LIUXiaobo1ꎬ2ꎬCHENGuangwu1ꎬ2ꎬWANGDi1ꎬ2ꎬWANGDengfei1ꎬ2(1.AutomaticControlResearchInstituteꎬLanzhouJiaotongUniversityꎬLanzhou730070ꎬChinaꎻ2.GansuProvincialKeyLaboratoryofTrafficInformationEngineeringandControlꎬLanzhou730070ꎬChina)Abstract:Thetraditionalmethodofgyroscopedataanalysisisthetaildataprocessingtoreducetherandomerroru ̄singtheKalmanfilterꎬthegyrosensorwiththeimpactofchangesintheexternalenvironmentwillhaveanonlinearerrorꎬtheintroductionofEKFfilteringfornonlinearsystems.Inordertorapidlyfilterthenoisegeneratedbythesys ̄temintheactualenvironmentꎬthetraditionalmedianfilteringalgorithmisimprovedtoreduceitscomputationalcomplexityꎬandadifferentialmeanmedianfilteringmethodisproposed.ThispaperfirstuseAllen(ALLAN)analysisofvarianceoftheerrorcharacteristicsofgyroscopeꎬerrorsourcesforthesemethodsareproposedtooffsetcorrectionꎬaftertheestablishmentofautoregressivemovingaveragemodel(ARMAmodel)errormodelinganalysisofthegyroscopedataꎬandfinallyusetheEKFalgorithmtoreducetherandomerror.Experimentalresultsshowthattheproposedmethodhasbetterfilteringeffectꎬlowercomputationalcomplexityandbetterreal ̄timeperformancethantraditionalmethods.Keywords:kalmanfilteringꎻAllanVarianceAnlaAalyseꎻauto ̄regressivemoving ̄averagemodelEEACC:7630㊀㊀㊀㊀doi:10.3969/j.issn.1004-1699.2018.03.009MEMS陀螺仪漂移和噪声的分析和补偿∗刘孝博1ꎬ2ꎬ陈光武1ꎬ2∗ꎬ王㊀迪1ꎬ2ꎬ王登飞1ꎬ2(1.兰州交通大学自动控制研究所ꎬ兰州730070ꎻ2.甘肃省高原交通信息工程及控制重点实验室ꎬ兰州730070)摘㊀要:对陀螺仪数据分析的传统方法是使用kalman滤波器做尾数据处理来降低随机误差ꎬ由于陀螺仪传感器随着外界环境的变化的影响会有非线性误差ꎬ传统的kalman滤波算法处理的是线性误差ꎬ因此引进了适用于非线性系统的EKF滤波ꎮ为了快速滤除系统在实际环境中产生的噪声ꎬ对传统的中值滤波算法进行了改进ꎬ降低其计算复杂度ꎬ提出差分-均值中值滤波法ꎮ本文首先使用阿伦(ALLAN)方差分析了陀螺仪的误差特性ꎬ对于这些误差源分别提出了偏移校正的方法ꎬ之后建立自动回归-滑动平均模型(ARMA模型)对陀螺仪数据进行误差建模分析ꎬ最后使用EKF算法降低随机误差ꎮ实验结果表明该方法比传统的方法滤波效果好㊁计算复杂度低㊁实时性好ꎮ关键词:kalman滤波器ꎻ阿伦方差分析ꎻ自动回归-滑动平均模型中图分类号:V241.5㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀文章编号:1004-1699(2018)03-0368-06㊀㊀MEMS陀螺仪是一种惯性元件ꎬ具有低成本㊁低功耗㊁小尺寸㊁精度高等许多优势[1]ꎮ因此ꎬMEMS技术不断得到发展ꎬ其性能也在大幅度地提升ꎮ第4代导航系统研究发展的方向是高精度㊁低成本㊁小型化[2]ꎮ有许多学者将MEMS陀螺仪作为低成本惯性导航系统重点来研究[3-4]ꎮ虽然目前的MEMS陀螺仪在精度方面较之前有了明显的改善ꎬ但还是由于当前的制造工艺的限制ꎬ使得它的非线性的㊁不平稳的误差和其他不确定性的随机漂移比较大ꎬ此外还有影响数据精度的噪声使它的应用领域大大受限ꎮ因此ꎬ找出一种高效的㊁可靠的去噪方法和能提高数据精度的漂移补偿算法就显得特别重要了ꎮ为了提升MEMS陀螺仪传感器的性能ꎬ分析它的误差特性是必要的ꎮ阿伦方差对于误差的识别和建模来说是一个简单有效的方法ꎬ这种方法能够有效地识别出MEMS陀螺仪的每种随机误差并且能够高效地直接估计出陀螺仪的性能ꎬ所以这种方法的到了广泛的使用ꎮ同时对数据的不同误差源进行第3期刘孝博ꎬ陈光武等:MEMS陀螺仪漂移和噪声的分析和补偿㊀㊀相应的补偿ꎬ之后将补偿的数据使用改进型的中值滤波算法进行去噪处理ꎬ这些将在第1部分介绍ꎮ在时域分析中对于陀螺仪漂移模型的建立最有力的工具ꎬ通常使用自动回归模型(Auto ̄regressivemodel)和自动回归-滑动平均模型(Auto ̄regressivemoving ̄averagemodel)对陀螺仪漂移信号进行建模ꎮ本文在第2部分选用ARMA模型进行误差建模分析ꎮ然而ꎬ陀螺仪的漂移和噪声是随机的ꎬ所以一般用Kalman滤波器是降低这些噪声和漂移ꎮ由于Kalman滤波器处理数据的非线性效果不佳ꎬ所以使用了EKF算法(扩展卡尔曼算法)ꎮ这部分我们将在第3部分介绍ꎮ1㊀MEMS陀螺仪误差分析及去噪1.1㊀阿伦(Allan)方差分析传感器的误差性阿伦方差分析技术源于19世纪60年代中期ꎬ是为了研究精密仪器频率稳定度[5]ꎮ它是一种基于时域的分析方法ꎬ能够有效地辨识出传感器的各项误差源ꎬ而且这种方法都已经被应用于各种各样的传感器的随机漂移特性分析[6]ꎮ接下来我们来简述一下阿伦方差分析的原理ꎮ假设对陀螺仪原始数据有N个采样点ꎬ采样时间为 0ꎮ进而将采样周期进行扩展为 0ꎬ2 0ꎬ ꎬ2n 0ꎬ此时可以将数据分为K组ꎮ每组的采样的长度为nꎬ采样周期t=n 0ꎮ假设陀螺仪角速率瞬时输出值为Ω(t)ꎬ它相对应的积分是转过的角度:θ(t)=ʏtΩ(tᶄ)dtᶄ(1)在取样间隔加倍时ꎬ在相继奇偶序号角速率之间做算数平均值即:㊀Ωk(T)=1Tʏtk+TtkΩ(t)dtꎬT=n 0ꎬk=1ꎬ2ꎬ ꎬn(2)阿伦方差定义为:σ2( )=12( Ωk+n- Ωk)2(3)阿伦方差的平方根σ( )为阿伦标准差ꎬ在双对数图中不同直线的斜率代表不同的误差ꎮ惯性测试平台的陀螺仪传感器性能参数如表1所示ꎬ图1是我们所使用的惯性测试平台ꎬ采集了181877个静态数据ꎬ采样时间间隔为0.05sꎬ采样所用时间为3个多小时ꎮ陀螺仪的原始数据如图2所示ꎬ为了满足阿伦方差分析所选数据的是平稳性这一特性ꎬ对数据进行了预处理ꎬ我们用预处理后的数据进行阿伦方差分析ꎮ阿伦曲线图如图3所示ꎮ表1㊀惯性测试平台陀螺仪原始性能参数性能指标参数静态角度误差(俯仰㊁滚动)ʃ0.1ʎ动态角度误差(俯仰㊁滚动)ʃ1.0ʎ静态角度误差(航向)ʃ0.5ʎ动态角度误差(航向)ʃ2ʎ航向角分辨率<0.1ʎ速率陀螺仪测量范围ʃ250ʎ㊀ʃ200ʎ㊀ʃ500ʎ速率陀螺仪零偏稳定性0.2%图1㊀惯性测试平台图2㊀陀螺仪原始数据图3㊀阿伦方差曲线㊀㊀从图3可以看出阿伦曲线图中有一小块区域的斜率约为0ꎬ它是零偏不稳定噪声(BI)ꎮ最左边的区域斜率约为-1/2的地方主要表现出的误差为角度随机游走(ARW)ꎬ它是带宽角速率白噪声积分的结果ꎮ最右端的阿伦曲线斜率约为-1ꎬ表现出的误差源为量化噪声(QN)ꎬ只要将输出的信号数字量化编码采样ꎬ必然与真实值之间存在微小的误差[7-10]ꎮ1.2㊀噪声的移除为了去除噪声所引起的角度㊁角速率随机误差ꎬ963传㊀感㊀技㊀术㊀学㊀报www.chinatransducers.com第31卷采用中值滤波算法ꎮ由于传统的中值滤波算法需要对分成多组数据的每组数据要进行从大到小或者从小到大的排序ꎬ然后取出每组的中间值ꎮ这无疑增加了运算的复杂度(尤其是像本文中讨论的181877个数据处理)ꎬ造成了系统计算复杂度高㊁实时性差的问题ꎮ为了解决该问题ꎬ我们对传统的中值滤波算法进行了改进ꎮ从原始数据数据中取出一个元素b(i)ꎬ所选择的滤波窗口为[-nꎬn]ꎬ输出元素为y(i)ꎮ传统的中值滤波的步骤为:①首先给b(i)从大到小或者从小到大排序ꎻ②将中间一个数据最为输出数据如式6所示y(i)={b(i-n)ꎬb(i-n+1)ꎬ ꎬb(i+n-1)ꎬb(i+n)}mid(4)图4是传统的中值滤波的效果ꎬ由原始数据直接进行中值滤波所得ꎮ图4㊀未改进的中值滤波蓝色数据表示原始数据ꎬ红色数据是经过中值滤波滤波后的数据ꎮ改进的中值滤波算法步骤为:①先对输入数据进行一阶差分处理ꎬ假设输出信号为c(i)ꎬ输入信号为b(i)ꎬ一阶差分预处理的数学表达式如式(5)所示ꎮc(i)=b(i)-b(i-1)(5)②一阶差分处理后的数据为c(i)ꎬ所选择的滤波窗口为[-nꎬn]ꎬ输出元素为d(i)ꎬ对窗口内的数据求平均值如式(6)所示d(i)=12nðn-nc(i)(6)以上是改进的中值滤波建模过程ꎬ式(7)我们中值滤波的函数式y(i)=12nðni=-n(b(i)-d(i))ꎻ{0ɤiɤmax}(7)首先我们先将所采集的数据进行一阶差分预处理ꎬ处理结果如图5所示对传统的一阶差分进行了改进ꎬ如式(5)和式(6)所示ꎬ对一阶差分处理后的数据再进行改进图5㊀改进的一阶差分处理后果的数据后中值滤波处理ꎮ改进后的差分-中值滤波结果和未改进的中值滤波结果对比图6所示ꎮ从图6可以看出ꎬ经过改进后的算法对噪声的滤波效果得到了很大的改善ꎬꎮ该算法的优点就是在很大程度上降低了中值滤波器的计算复杂度ꎬ提高了数据处理的实时性和可靠性ꎬ使得滤波效果更好ꎮ图6㊀两者效果对比图7㊀随温度变化的陀螺仪数据1.3㊀温度误差补偿在阿伦方差曲线图中虽然没有出现速率斜坡误差ꎬ那是因为在外界环境变化不大的情况下测量的数据ꎮ现代化的设备正在向小型化ꎬ高精度方向发展ꎬ在这种情况下硅器件材料显得十分重要ꎬ尤其是温度影响是硅器件材料的误差源之一[11-12]ꎮ当我们让测试环境的温度波动比较大时ꎬ陀螺仪就会出现温度漂移误差ꎬ使用陀螺仪内部自带的温度传感器获取当前工作温度ꎬ我们采集了它工作在20ħ~45ħ的静态数据ꎬ陀螺仪的每个轴数据其随温度变化情况如图7所示ꎮ073第3期刘孝博ꎬ陈光武等:MEMS陀螺仪漂移和噪声的分析和补偿㊀㊀构造温度误差模型的方法分为两种:一是多项式曲线拟合ꎬ二是BP神经网络算法[13]ꎮ从图7中可以看出随温度变化的各轴数据是平缓的ꎬ因此我们使用线性回归的方法(多项式曲线拟合)对这些数据进行处理ꎮ为了创建出比较精确的回归方程ꎬ至少需要5个以上的数据ꎬ在此我们采集了25个数据进行线性拟合[14]ꎮ一旦获得随着温度变化的有效的数据ꎬ那么整个模型就会得到更新ꎮ线性拟合方程式如式(5)所示:Ωx(t)=Ωx(0)+RxtΩy(t)=Ωy(0)+RytΩz(t)=Ωz(0)+Rztìîíïïïï(8)R是角加速率误差系数ꎬ也就是斜坡速率系数ꎬΩ(0)是0度时的静态偏移量ꎬRt是温度偏移量ꎮ一旦模型被完成ꎬ随着温度变化的偏移量就会被预测从而数据得到更新ꎮ经过我们多次拟合ꎬ确定出一组最好的角加速度误差系数Rꎬ文献[15]使用最小二乘法对温度进行拟合ꎬ本文将两个方法进行了对比ꎬ最终两者的拟合效果如图8所示ꎮ图8㊀拟合后的随温度变化的陀螺仪数据表2㊀两种拟合比较X轴Y轴Z轴运行时间/msLSE方差0.0007070.0003210.2370320线性回归方差0.0064940.0033780.05968635㊀㊀表2为用两种不同方法拟合的3个轴陀螺仪数据的方差同时还有其运行时间ꎬ由图8和表2可以看出线性回归的方法比LSE的方差小ꎬ数据更加集中并且运行时间少㊁计算复杂度低ꎮ2㊀ARMA建模分析一般来说ꎬMEMS的ARMA模型不需要太高的阶数ꎬ通常AR(1)ꎬAR(2)ꎬAR(3)ꎬARMA(1ꎬ1)和ARMA(2ꎬ1)这些模型被选择ꎮMEMS陀螺仪的参数模型的漂移情况如表3所示ꎮ表3㊀模型参数AR(1)AR(2)AR(3)ARMA(1ꎬ1)φ1-0.1184-0.1118-0.1166㊀0.1473φ20.05530.0651φ30.0880θ1-0.2747AIC-4.5422-4.6478-4.6944-4.8903㊀㊀我们选用ARMA(1ꎬ1)模型ꎬ因为该模型的AIC值最小ꎬ并且ARMA(1ꎬ1)计算复杂度低ꎬ精度也足够高ꎮARMA(pꎬq)的传递函数如式(9)所示:HARMA(z)=1+ðqk=1bkz-k1-ðpk=1akz-k(9)通过极大似然估计法对ARMA(1ꎬ1)的参数估计结果为:^a1=^ρx(2)^ρx(1)ꎬ^b1=-c+sign(c)c2-42ꎬσ2=1-^a211+2^a1^b1+^b12^γx(0)式中:Kk=Pxyꎬk/k-1P-1yꎬk/k-1ꎻ^xk=^xk/k-1+Kk(yk-^yk/k-1)ꎻPxꎬk=Pxꎬk/k-1+KkPyꎬk/k-1KTkꎮ用ARMA(1ꎬ1)模型处理后的图如图9所示ꎮ图9㊀ARMA数据处理图模型3㊀EKF滤波算法EKF滤波的主要不同之处体现在:①为了提高预测精度ꎬ直接通过非线性方程进行状态和量测预测ꎬ而不是用一阶线性近似外推预测ꎻ②利用雅可比矩阵作为状态一步转移矩阵和量测矩阵进行均方误差阵更新[16]ꎮ接下来我们对EKF算法进行描述ꎮ假设系统量测方程和状态方程模型如下xk=f(xk-1)+Bk-1Wk-1yk=h(xk)+vk{(10)k-1时刻状态xk-1的一个参考值为xnk-1ꎬ那么两173传㊀感㊀技㊀术㊀学㊀报www.chinatransducers.com第31卷者之间的差值为Δxk-1=xk-1-xnk-1(11)在忽略噪声的情况之下ꎬ我们对k时刻的状态预测为:xnk/k-1=f(xnk-1)(12)我们记状态预测的偏差为:Δxk-1=xk-xnk/k-1(13)同理量测预测的误差为:Δyk-1=yk-ynk/k-1(14)将f(xnk-1)在xnk-1邻域附近一阶泰勒级数展开并且经过整理为:㊀xk-f(xnk-1)ʈ∂f(xk-1)∂xk-1|xk-1=xnk-1Δxk-1+Bk-1Wk-1(15)同理将h(xk)在xk邻域附近一阶泰勒级数展开并且经过整理为:yk-h(xnk/k-1)ʈ∂h(xk)∂xk|xk=xnk/k-1Δxk+vk(16)令观测方程的雅克比矩阵为:Hnk=∂h(xk)∂xk|xk=xnk/k-1(17)则式(16)可简写为:Δyk=HnkΔxk+vk(18)接下来可以直接用线性Kalman滤波方法进行偏差状态估计ꎬ完整的EKF的公布方式为:Kk=Pxyꎬk/k-1P-1yꎬk/k-1^xk=^xk/k-1+Kk(yk-^yk/k-1)Pxꎬk=Pxꎬk/k-1+KkPyꎬk/k-1KTkìîíïïïï(19)我们把经过RAMA(1ꎬ1)模型处理后的数据进行EKF滤波的结果作为输出ꎬ最终处理的效果如图10所示ꎮ图10㊀EKF滤波使用MATLAB自带的定时器功能ꎬ从传感器原始数据到最终经过EKF滤波后的结果共用时6.0132sꎮ同时ꎬ我们使用传统的数据处理方法对数据进行了处理ꎬ即小波变换-ARMA ̄Kalman对数据进行处理ꎬ结果如图11所示ꎮ图11㊀传统Kalman滤波表4为改进后的EKF与传统Kalman算法的参数对比ꎮ表4㊀两种不同算法的参数对比方法轴漂移衰减/%噪声抑制/%运行时间/skalmanXYZ17.816.518.235373411.320511.143611.6895EKFXYZ21.823.622.13433399.01329.15289.17941改进EKFXYZ26.627.426.94041436.01326.14586.1987㊀㊀该算法耗时11.3205sꎮ通过两幅图对比以及表4可知ꎬ我们提出的算法对于陀螺仪静态数据的处理下过比传统的滤波效果好ꎬ计算复杂度低ꎮ4㊀结论本文研究了MEMS陀螺仪的漂移和噪声的分析和补偿ꎬ首先用阿伦方差分析了MEMS陀螺仪数据的误差源并对其进行了补偿处理ꎬ然后对中值滤波方法进行了改进处理ꎬ其次使用ARMA模型对陀螺仪数据进行误差建模分析ꎬ最后使用EKF对数据进行末级滤波处理ꎮ因此ꎬ本文采用的是系统级标定方法ꎬ主要采用滤波和拟合的算法对误差参数进行估计ꎮ将之与传统的处理方法进行比较ꎬ运行时间提升了约为1.85倍ꎬ滤波效果精度也提升了将近3倍ꎮ因此我们的方法在滤波效果和运算复杂度上都有了明显的改善ꎬ提高了MEMS陀螺仪的性能ꎮ参考文献:[1]㊀LIJꎬLIUJꎬZHANGWD.MEMSBasedMicroInertialMeasurementSystem[J].WSEASTransactionsonCircuitsandSystemsꎬ2006ꎬ37(5):691-696.[2]XieZꎬLiuJYꎬZhaoWꎬetal.TheExploratoryResearchofaNovelGyroscopeBasedonSuperfluidJosephsoneffect[C]//PositionLo ̄273第3期刘孝博ꎬ陈光武等:MEMS陀螺仪漂移和噪声的分析和补偿㊀㊀cationandNavigationSymposium.USA:IEEEꎬ2010:14-19. [3]WangW.StatusandDevelopmentTrendofInertialTechnology[J].ActaAutomaticaSinicaꎬ2013ꎬ39(6):723-729.[4]AllanDW.Stacisticsofatomicfrequencystandards[J].Proceed ̄ingsoftheIEEEꎬ1966ꎬ54(2):221-230.[5]CezaryKownacki.OptimizationApproachtoADAPTKALMANFILTersfortheReal ̄TimeApplicationofAccelerometerandGyro ̄scopeSignals Filtering[C]//DigitalSignleProcessing7Septem ̄ber.2010:131-140.[6]YildirimBꎬCochranESꎬChungAꎬetal.OntheReliabilityofQuake ̄CatcherNetworkEarthquakeDetections[J].SeismolResLettꎬ2015ꎬ86(3):856-869ꎬ.[7]严恭敏ꎬ李四海ꎬ秦永元.惯性仪器测试与数据分析[M].北京:国防工业出版社ꎬ2015:28-31.[8]HouH.ModellingInertialSensorsErrorsUsingAllanVariance[J].UCGEReportsNumber20201ꎬ2004:140-147.[9]VukmiricaVꎬTrajkovskiIꎬAsanovicN.TwoMethodsfortheDeter ̄minationofInertialSensorParameters[J].ScientificTechnicalReviewꎬ2010ꎬ60(3-4):27-33.[10]HussenAAꎬNetaIN.Low ̄CostInertialSensorsModellingUsingAllanVariance[J].InternationalJournalofComputerꎬElectricalꎬAutomationꎬControlandInformationEngineeringꎬ2015ꎬ9(5):1237-1242.[11]满海鸥.硅微陀螺仪的温度特性研究[D].长沙:国防科技大学ꎬ2009:56-59.[12]段力ꎬ高均超ꎬ丁桂甫ꎬ等.MEMS高温温度传感器的研制和测量精度研究[J].传感技术学报ꎬ2017ꎬ30(9):1352-1358. [13]MuhammadA.CompensationofTemperatureandAcclerationEffectsonMEMSGryoscope[C]//ProceedingdofInternationalBhurbanConferenceonAppliedSciencesandTechnology.IslamabadꎬPaki ̄stanꎬ2016:274-279.[14]孙田川ꎬ刘洁瑜.一种新的MEMS陀螺温度误差建模与补偿方法[J].压电与声光ꎬ2017(1):136-139.[15]柳小军ꎬ杨波.硅微机械陀螺仪测控电路的温度补偿[J].光学精密工程2013ꎬ21(12):3119-3125.[16]LeyangYanꎬHuiZhangꎬPeiqingYe.MoverPositionDetectionforPMTLMBasedonLinearHallSensorsthroughEKFProcessing[J].Sensorsꎬ2017:782-785.刘孝博(1994-)ꎬ男ꎬ陕西咸阳ꎬ兰州交通大学硕士研究生ꎬ主要研究方向为智能控制ꎬbwllxb@163.comꎻ陈光武(1976-)ꎬ男ꎬ新疆阿克苏市人ꎬ教授ꎬ博士ꎬ主要研究方向为交通信息工程及控制ꎬcgwyjh1976@126.comꎮ373。
MEMS陀螺随机漂移多尺度滤波方法赵世峰;张海;范耀祖【期刊名称】《中国惯性技术学报》【年(卷),期】2007(15)2【摘要】为了能有效地补偿MEMS(微电子机械系统)陀螺仪的随机漂移,提高载体姿态估计的精度,基于小波理论与多尺度分析方法,使用db4小波,将MEMS陀螺仪随机漂移进行深度为4的多尺度分解,得到5组小波系数.根据分解后的各尺度系数进行信号重建,得到5组多尺度陀螺仪漂移数据.对重建后的各尺度漂移数据进行时间序列建模,可以得到MEMS陀螺仪随机漂移的多尺度时间序列模型.在多尺度时间序列模型的基础之上,建立多尺度离散系统的系统模型,使用卡尔曼滤波方法,对个尺度陀螺随机噪声进行滤波,可以有效地滤除MEMS陀螺仪的随机漂移.试验结果表明本方法能有效降低信噪比.【总页数】4页(P229-232)【作者】赵世峰;张海;范耀祖【作者单位】北京航空航天大学,自动化科学与电气工程学院,北京,100083;北京航空航天大学,自动化科学与电气工程学院,北京,100083;北京航空航天大学,自动化科学与电气工程学院,北京,100083【正文语种】中文【中图分类】U666.1【相关文献】1.光纤陀螺随机漂移的实时滤波方法研究 [J], 李家垒;许化龙;何婧2.基于时间序列分析的Kalman滤波方法在MEMS陀螺仪随机漂移误差补偿中的应用研究 [J], 李杰;张文栋;刘俊3.基于时间序列分析的Kalman滤波方法在MEMS陀螺仪随机漂移误差补偿中的应用研究 [J], 李杰;张文栋;刘俊4.光纤陀螺随机漂移的建模与实时滤波方法 [J], 刘鑫;乔彦峰5.基于EMD-SVR的MEMS陀螺仪随机漂移多尺度预测 [J], 何嘉宁;钟莹;李醒飞因版权原因,仅展示原文概要,查看原文内容请购买。
光纤陀螺随机漂移的补偿方法研究作者:汪徐胜,张瑞民,信东,李冰来源:《现代电子技术》2009年第12期摘要:在研究高精度光纤陀螺时,尤其是在捷联惯性导航系统中,随机误差是光纤陀螺误差中不可忽视的部分,对光纤陀螺随机误差的补偿就显得非常必要。
这里基于对光纤陀螺随机漂移建模的方法,首先采用ARIMA方法对光纤陀螺仪随机漂移进行建模;然后采用强跟踪卡尔曼滤波器进行滤波补偿,并利用实测数据进行了实验验证。
实验结果证明,这种方法能够较好地补偿光纤陀螺的随机漂移。
关键词:光纤陀螺;捷联惯性导航系统;随机误差;卡尔曼滤波器;自适应滤波器中图分类号:TP274文献标识码:A文章编号:1004-373X(2009)12-095-04Research of Compensation Method for Stochastic Shifting of Fiber Optic GyrosWANG Xusheng1,ZHANG Ruimin1,XIN Dong1,3,LI Bing2(1.The Second Artillery Officer School,Qingzhou,262500,China;2.The Second Artillery Officer Stationed in the Forth Space Flight Academe,Xi′an,710025,China;3.The Second Artillery Engineering College,Xi′an,710025,China)Abstract:When doing research in optical fiber gyros,especially in strapdown inertial navigation system,stochastic error is an assignable part of the errors of optical fiber gyros.It is very necessary to compensate stochastic error of optical fiber gyros.Basing on the first method,the article builds a model for the stochastic shifting,then adopts strong tracing Kalman filter to filter and compensate.At last,the methods are testified by experimental data.The results prove that the method is effective.Keywords:optical fiber gyros;strapdown inertial navigation system;stochastic error;Kalman filter;self-adapting filter0 引言在惯性技术中,通常将惯性敏感元件的误差模型分为静态误差模型、动态误差模型和随机误差模型三类[1,2]。