桩基负摩擦力
- 格式:ppt
- 大小:717.50 KB
- 文档页数:28
关于桥梁桩长计算中的负摩阻力探讨摘要当遇到不良地质条件时,桥梁桩基础设计中桩侧负摩阻力对桥梁的安全性、可靠性和经济等方面都有着重要的影响,本文介绍了桩侧负摩阻力产生的原因,影响因素和计算方法。
关键词桩基负摩阻力产生原因计算方法桩基具有承载力高、地质适应性强、施工便捷、沉降小、工期短等优点,采用桩基作为桥梁基础日趋普遍。
桩的承载力是由桩底支承力与桩周土体的侧摩阻力两部分组成的。
当桩底穿过并支承在各种压缩性土层中时,桩主要依靠桩侧土的摩阻力支承竖向荷载。
因此,桩侧摩阻力的大小对结构基础的稳定性起着决定作用。
如果桩周土体与桩身表面发生负摩阻力,使桩侧土一部分重量传递给桩,不但不是桩承载力的一部分,反而变成施加在桩上的外荷载,这是在软弱粘土和湿陷性黄土等地基确定单桩轴向容许承载力时应该注意的。
一、产生负摩阻力的条件和原因在桩顶竖向荷载作用下,当桩相对于桩侧土体向下位移时,桩侧土体对桩产生向上作用的摩擦力,称为正摩阻力(图1a),正摩阻力能抵抗桥梁上部结构及桥墩等产生的荷载。
但是,当桩侧土体因某种原因而下沉,且其下沉量大于桩的沉降(即桩侧土体相对于桩产生向下的位移)时,土对桩产生向下的摩擦力,称为负摩阻力(图1b),负摩阻力变成施加在桩上的外荷载,相当于增加了作用在桩基上的桥梁上部结构及桥墩等产生的荷载。
桩侧负摩阻力问题,本质上和正摩阻力一样,只要得知土与桩之间的相对位移或趋势以及负摩阻力与相对位移之间的关系,就可以了解桩侧负摩阻力的分布和桩身轴力与截面位移了。
产生负摩阻力的情况有多种:(1) 桩穿过欠固结的软粘土或新填土,由于这些土层在重力作用下的压缩固结,产生对桩身侧面的负摩擦力;(2) 在桩侧软土的表面有大面积堆载或新填土(桥头路堤填土),使桩周的土层产生压缩变形;(3) 由于从软弱土层下的透水层中抽水或其它原因,使地下水位下降,土中有效力增大,从而引起桩周土下沉;(4) 桩数很多的密集群桩打桩时,使桩周土产生很大的超空隙水压力,打桩停止后桩周土的再固结作用引起下沉;(5) 在黄土、冻土中的桩基,因黄土湿陷、冻土融化产生地面下沉。
桩侧负摩阻力的计算一、 规范对桩侧负摩阻力计算规定符合下列条件之一的桩基,当桩周土层产生的沉降超过基桩的沉降时,在计算基桩承 载力时应计入桩侧负摩阻力:1、 桩穿越较厚松散填土、自重湿陷性黄土、欠固结土、液化土层进入相对较硬土层时;2、 桩周存在软弱土层,邻近桩侧地面承受局部较大的长期荷载,或地面大面积堆载(包括 填土)时;3、 由于降低地下水位,使桩周土有效应力增大,并产生显著压缩沉降时。
4、 桩周土沉降可能引起桩侧负摩阻力时,应根据工程具体情况考虑负摩阻力对桩基承载力 和沉降的影响;当缺乏可参照的工程经验时,可按下列规定验算。
① 对于摩擦型基桩,可取桩身计算中性点以上侧阻力为零,并可按下式验算基桩承载力:N k 乞 R a( 7-9-1)② 对于端承型基桩,除应满足上式要求外,尚应考虑负摩阻力引起基桩的下拉荷载,并 可按下式验算基桩承载力:N k Q g <Ra( 7-9-2)③ 当土层不均匀或建筑物对不均匀沉降较敏感时,尚应将负摩阻力引起的下拉荷载计入 附加荷载验算桩基沉降。
注:本条中基桩的竖向承载力特征值只计中性点以下部分侧阻值及端阻值。
二、 计算方法桩侧负摩阻力及其引起的下拉荷载,当无实测资料时可按下列规定计算: 1、中性点以上单桩桩周第 i 层土负摩阻力标准值,可按下列公式计算:q ?i = ni ;「i( 7-9-3)当填土、自重湿陷性黄土湿陷、欠固结土层产生固结和地下水降低时:i 71ri -mm i 厶i m =2(7-9-3 )〜(7-9-5)式中:q ?i ――第i 层土桩侧负摩阻力标准值;当按式(7-9-3)计算值大于正摩阻力标准值时,取正摩阻力标准值进行设计;-ri ――由土自重引起的桩周第i 层土平均竖向有效应力;桩群外围桩自地面算起,桩群内部桩自承台底算起;当地面分布大面积荷载时:;★二p • c ri(7-9-4) 其中, (7-9-5)Ci ■――桩周第i层土平均竖向有效应力;i, m――分别为第i计算土层和其上第 m土层的重度,地下水位以下取浮重度;.'■■Zi ---- 第 i 层土、第 m层土的厚度;p――地面均布荷载;桩周第i层土负摩阻力系数,可按表 7-9-1取值;表7-9-1 负摩阻力系数匕土类5土类5饱和软土0.15 〜0.25 砂土0.35 〜0.50粘性土、粉土0.25 〜0.40 自重湿陷性黄土0.20 〜0.35②填土按其组成取表中同类土的较大值;2、考虑群桩效应的基桩下拉荷载可按下式计算:nQ f 二n 八側(7-9-6)(7-9-7)式中,n ――中性点以上土层数;l i――中性点以上第i土层的厚度;n ――负摩阻力群桩效应系数;S ax, S ay ――分别为纵横向桩的中心距;q S?――中性点以上桩周土层厚度加权平均负摩阻力标准值;m――中性点以上桩周土层厚度加权平均重度(地下水位以下取浮重度)。
浅析桩基础负摩阻力的防治对策近几年来,部分地区的建筑物出现了裂损和倾斜现象,严重影响了建筑物的使用,若由此而引发建筑物倒塌事件,将会对居民的生命和财产造成巨大威胁。
根据相关调查发现,建筑物结构不稳定是由桩基础不稳固造成,因为桩基础自身存在负摩阻力,降低了桩基础的荷载承受能力,从而发生不均匀沉降,由此导致建筑物不稳。
一、防治桩基础负摩阻力的重要意义随着建筑事业的迅猛发展,桩基础被广泛应用于各类建筑施工中,特别是对于软弱地基的处理,桩基础施工技术非常关键。
桩基础不仅可以承受建筑物的各种荷载,像水平荷载、竖向荷载等,更具有较大的刚度和整体性,能够增强建筑物的整体稳定。
然而桩基础的负摩阻力却降低了其承受能力,对桩基础产生了负面的影响,由于桩基础存在负摩阻力,增加了桩基础的自重,从而相应的降低了对于外荷载的承受能力,若负摩阻力过大将导致桩基础发生不均匀沉降,不仅降低建筑物的使用寿命,严重者将威胁居民的人身安全。
基于此,防治桩基础的负摩阻力具有重要意义,减少负摩阻力对桩基础的影响,不仅可以提高建筑工程质量,增加建筑物使用年限,更為人们提供了安全稳定的居住环境[1]。
二、负摩阻力产生的原因分析由于桩基础会与土体进行直接接触,两者若存在相对位移,就会产生一定的摩擦阻力,而摩擦阻力的作用将由具体位移情况决定。
桩基础会因为建筑物给予的竖向荷载而发生下沉,同时建筑地基也会受到各方面因素发生下沉,如果两者的下沉速率相同,摩擦阻力将不会产生,但是在现实情况中该种现象极少或者根本不会发生,正是由于两者发生的下沉速率不同,而造成了摩擦阻力的产生。
摩擦阻力分为两种,一种是正摩阻力,即桩基础的下沉速度较快,由于两者存在相对位移,地基会对桩基础产生向上的作用力,对桩基础起到一定的支撑作用。
另一种是负摩阻力,它与正摩阻力的产生正好相反,是由于地基的下沉速度过快产生的,对桩基础将产生一定的抵抗作用,降低桩基础的承载能力。
通过以上分析,不难发现导致负摩阻力产生的原因,一般就是造成地基快速下沉的原因,对此进行具体的总结归纳。
软土地基桩侧负摩阻力亟待解决的几个关键问题 1中性点的确定桩基负摩阻力产生的原因,但是如何正确计算负摩阻力导致的下拉荷载,需首先解决的一个关键问题就是中性点深度如何合理确定。
中性点深度受到桩土相互作用的各种因素的影响而呈明显的动态变化,考虑中如何反映施工过程以及以后使用过程中可能遇到的因素变化等,对于负摩阻力桩的合理设计等意义重大。
由于中性点是桩土相对位移为零的点,而桩的压缩变形较易确定,故从土体沉降量的准确计算方面来确定中性点深度。
(中性点唯一吗?不见得)2现场原位测试及测试技术由于桩土相互作用的复杂性、原位测试费用等原因,桩侧表面负摩阻力的现场原位测试仍然少见。
仅仅依靠那些层层简化的理论公式或者实测数据不多的经验公式是解决不了问题的,将来将会出现越来越多的负摩阻力问题,如城市中的环境岩土工程问题、沿海沿江超高填土码头、围海造陆工程等都不可避免遇到负摩阻力问题。
从规范角度强调应做一定比例的桩的负摩阻力原位试验,这对于验证并完善桩基负摩阻力的计算方法等具有重要意义。
另外,在存在负摩阻力的桩基中,桩基的静载试验如何反映负摩阻力的存在及大小一直是一个难点。
建议对重大工程应采用先进测试仪器做负摩阻力的长期测试观测,包括桩、土体各控制断面点的沉降以及桩身轴力测试等,同时应做好优化工作。
3桩侧负摩阻力的合理计算实际上桩侧表面负摩阻力的发挥及大小与桩土的相对位移密切相关,因此桩侧负摩阻力并不是都同时达到极限,即具有不同步性。
而目前的研究中,基本上都是采用理想弹塑性模型,即认为桩侧负摩阻力发挥到极限值后保持恒定,而实际情况远非如此,这主要是由桩土相互作用的复杂性所决定的。
特别是近年来各种大直径超长桩以及各种新型桩的出现,对桩侧表面负摩阻力的确定提出了新的课题与挑战。
对特定类型地基土体可通过室内模型试验,结合有关现场测试数据,建立起负摩阻力与桩土相对位移的关系以及负摩阻力与地表沉降量之间的关系,从而才能更科学地计算负摩阻力产生的下拉荷载。
软土地基桩基负摩阻力简化计算方法随着城市化的发展,建筑物的高度和质量不断提高,软土地基作为一种常见的基础类型,在建筑工程中得到了广泛应用。
而在针对软土地基的基础设计中,桩基扮演着非常重要的角色。
为了减少桩基工作量,许多工程师选择利用软土地基的负摩阻力来提高桩基承载力。
下面介绍一种适用于软土地基的桩基负摩阻力简化计算方法。
首先,我们需要了解什么是软土地基桩基负摩阻力及其作用。
软土地基较弱,传统的桩基承载力设计难以满足要求。
负摩阻力指的是桩身在沉降过程中,随着桩与土壤间的接触面积增大,产生的上反力。
对于深埋的桩基而言,负摩阻力是桩基承载力的重要组成部分。
因此,利用软土地基负摩阻力提高桩基承载力,可以有效减少总桩数,节约工程成本。
其次,我们需要掌握软土地基桩基负摩阻力计算的一般方法。
目前,常用的负摩阻力计算方法包括:综合法、分类法和简化法。
其中,综合法和分类法需要较为复杂的计算和实验数据,难以在实际工程中应用。
而简化法由于其具有计算简便、可靠性高等优点,成为了最常用的负摩阻力计算方法之一。
简化法的核心思路在于,通过人工挖掘的孔洞或者机械开挖的土壤样品来获取土性参数,进行合理的假定和简化,然后应用相关公式进行计算。
在软土地基桩基负摩阻力计算中,常用的简化法有下列两种:1. 等效固结厚度法这种方法的主要假设是,土层只在与桩壁接触的一定深度范围内发生变形,而桩身下面的土体则不发生变形。
将土层压缩变化量进行积分,得到该深度范围内等效固结厚度,根据等效固结厚度计算桩基负摩阻力。
2. 摩阻力系数法此方法假定土壤与桩壁之间存在一定的摩阻力,通过分析其与桩壁间封闭空气的作用关系,得到摩阻力系数,并根据相应的公式进行计算。
最后,需要指出的是,选择合适的方法和计算参数极为重要,尤其是在灰、黏土等非同质土壤中,简化法的可靠性和适用性可能会受到一定影响。
因此,在实际软土地基桩基负摩阻力计算中,需要综合考虑地质条件、桩基类型、土壤类型等因素,选择最合适的计算方法,并结合实验和现场观测数据进行合理调整。
桩侧出现负摩阻力时,桩身轴力分布的特点当桩侧出现负摩阻力时,桩身轴力分布的特点如下:1.桩顶轴力减小:负摩阻力的出现会抵消桩顶处的地基反力,使得桩顶处的轴力减小。
桩顶轴力减小后,将减小桩顶处的弯矩和剪力,从而减小桩身的弯曲和挠度。
2.桩底轴力增大:负摩阻力存在时,会产生一个向上的摩阻力,与桩身重力形成一个抗力的作用。
这个抗力会使得桩顶的负载传递到桩底,使得桩底处的地基反力增大,进而增大桩底的轴力。
3.负摩阻力区域:负摩阻力的出现会在桩颈处形成一个负摩阻力区域。
这个区域是指在桩身上,摩阻力小于零的部分。
在该区域内,桩身的轴力为负值,即桩顶受到的力大于桩底受到的力。
在负摩阻力区域外,桩身的轴力为正值,即桩底受到的力大于桩顶受到的力。
4.桩身内力的分布不均匀:由于负摩阻力的存在,桩身内力的分布不再是均匀的。
负摩阻力会导致桩顶处的轴力减小,而桩底处的轴力增大。
在负摩阻力区域内,桩身轴力为负值,而在负摩阻力区域外,桩身轴力为正值。
此外,负摩阻力还会影响桩身的弯矩和剪力分布,使得其不均匀。
5.桩的侧阻力减小:负摩阻力的出现对桩的侧阻力会产生一定的影响。
侧阻力是指桩在土体中的摩擦力,负摩阻力的出现会导致桩在土体中的摩擦力减小。
因此,在负摩阻力区域内,桩的侧阻力会减小,进而对桩身的轴力分布产生影响。
在实际的工程应用中,负摩阻力的出现对桩身轴力分布会产生一定的影响,需要合理考虑和分析。
只有准确了解和掌握负摩阻力对桩身轴力分布的特点,才能保证桩的设计和施工的合理性,确保桩身的稳定和安全性。
减小桩基负摩阻力措施
减小桩基负摩阻力的措施有:1. 选择适当的桩型:根据地质条件、荷载要求等因素,选择合适的桩型,如沉桩、打击桩、钻孔桩等,减小桩基负摩阻力。
2. 桩身防粘涂料:在桩身表面涂覆一层防粘涂料,可以减小桩身与土层之间的黏附力,降低桩基负摩阻力。
3. 注浆改良土层:通过注浆技术,将高强度浆液注入土层中,增加土层的稠度和抗剪强度,有效减小土层与桩身之间的负摩阻力。
4. 预压处理:在桩基施工前,通过预压的方式施加一定的压力或置入钢筋,使土层产生少量沉降或变形,从而减小后续桩身与土层接触的压力和摩擦力,降低桩基负摩阻力。
5. 振动桩法:在桩身振动过程中,由于土层颗粒间的相对滑动,可以减小桩基负摩阻力。
此方法适用于土性松软、湿度较大的场地。
6. 水下回填法:在水下施工桩基时,可采用水下回填法,将细颗粒土壤等较弱土层回填到桩周,形成一个减小阻力的环境,以减小桩基负摩阻力。
7. 减小桩周土层摩擦力:通过加压排土、水作用等方式,减小桩周土层与桩身之间的接触面积,降低桩基负摩阻力。
需要根据具体工程情况以及工程师的指导进行选择和采用相应的措施,以减小桩基负摩阻力。
桩基负摩阻力的试验研究摘要本文旨在通过对桩基负摩阻力的试验研究,探讨负摩阻力的产生机制、影响因素及其在工程实践中的应用。
通过对试验结果的分析,得出桩基负摩阻力的变化规律和影响因素,为工程实践提供理论支持和实践指导。
关键词:桩基,负摩阻力,试验研究,影响因素,工程实践引言桩基是一种常见的地基基础形式,广泛应用于各类建筑物、构筑物和桥梁等工程中。
在桩基设计中,摩阻力是一个重要的力学参数,其值的大小直接影响到桩基的承载能力和稳定性。
然而,在某些情况下,桩基可能会产生负摩阻力,即桩周土体对桩基产生的向上摩擦力,这将对桩基的稳定性产生不利影响。
因此,对桩基负摩阻力的研究具有重要的理论和实践意义。
研究背景桩基负摩阻力现象通常出现在软土地基、填海地基等工程环境中,其产生原因主要包括以下几个方面:软土地基的压缩性和流变性:软土地基的压缩性和流变性会导致桩基在竖向荷载作用下发生沉降,从而产生负摩阻力。
桩基的自身的重力:桩基自身的重力也会引起桩周土体的形变和位移,进而产生负摩阻力。
其他因素:例如,施工过程中的振动、地下水位的变化等因素也可能导致桩基负摩阻力现象的出现。
在工程实践中,桩基负摩阻力对桩基的承载能力和稳定性具有重要影响。
若负摩阻力过大,可能导致桩基沉降加剧,甚至引发桩基失稳等问题。
因此,对桩基负摩阻力的研究具有重要的工程实际意义。
文献综述前人对桩基负摩阻力已经进行了大量研究,主要集中在以下几个方面:桩基负摩阻力的产生机制:前人通过对软土地基和填海地基等工程环境中的桩基负摩阻力现象进行观察和分析,提出了多种关于桩基负摩阻力产生机制的理论和假说。
桩基负摩阻力的影响因素:影响桩基负摩阻力的因素众多,包括地质条件、桩身材料、桩基类型、施工方法等。
前人通过对这些因素进行研究,揭示了其对桩基负摩阻力的影响规律。
桩基负摩阻力的计算方法:前人通过理论分析和数值模拟等方法,提出了多种计算桩基负摩阻力的方法。
这些方法主要基于不同的假设和条件,具有各自的应用范围和局限性。
液化土层中的桩基负摩阻力计算液化土层中的桩基负摩阻力计算随着现代城市建设的不断发展,遇到的地质问题越来越复杂。
其中之一就是液化土层,它是由于自然灾害或人工工程施工等原因引起的土层稳定性恶化,导致土层失去抗剪切能力而发生流态化的一种地质现象。
液化土层在地震烈度较大的地区比较常见。
因此,在桥梁、隧道、大型建筑物等工程建设中涉及到液化土层,就需要考虑桩基负摩阻力的计算和加固方案。
桩基负摩阻力指的是桩基在土层内作用时,由于土层流动导致和桩基摩擦阻力相反的一种阻力。
桩基负摩阻力的大小和液化层的本宽度和桩基直径有关。
随着本宽度的增加和桩直径的增加,桩基负摩阻力逐渐增加。
当桩基负摩阻力超过桩身摩擦阻力时,桩基开始发生破坏。
因此,准确地计算桩基负摩阻力对于保护工程结构的安全和稳定具有至关重要的意义。
一般来说,液化土层的桩基负摩阻力与桩的长细比和桩的长度有关。
长细比越大,阻力越大;桩的长度越长,负摩阻力越大。
而桩基的直径对负摩阻力的影响则相对较小。
因此,针对不同的设计条件,可以采用不同的方法来计算液化土层中的桩基负摩阻力。
第一种计算方法是基于土-桩相互作用理论,利用桩基和固结土之间的相互作用关系来计算桩基负摩阻力。
这种方法适合于单桩和桩林的设计。
具体计算公式如下:Qr=f(1+0.4β)(cNc+qNq+0.2γBNγ+0.5αBαNα)A 其中,Qr表示桩基负摩阻力;f为土-桩摩擦系数;β为桩的长细比;c为固结土的上覆土层的无粘性剪切强度;Nc,Nq,Nγ,Nα分别为对应的皮托挖掘系数;A为桩截面积;γ为固结土重度;α为地震力系数;B为基础横截面积。
第二种计算方法是基于相似模型试验,根据桩基在液化土层中的受力特点建立试验模型,通过模拟实际工程中桩基负摩阻力的大小和大小来进行计算。
这种方法可以更加准确地考虑桩基在液化土层中的复杂受力状态,但需要进行大量试验才能达到准确性。
总之,在液化土层中设计桩基时,需要根据实际情况选择合适的计算方法,以确保工程的结构安全和稳定。
phc 管桩承载力负摩阻力PHC管桩是一种预制混凝土管桩,由钢筋混凝土制成。
它具有较高的承载力和良好的抗震性能,广泛应用于建筑工程和土木工程中。
在设计和施工过程中,需要考虑到PHC管桩的承载力和负摩阻力,以确保工程的稳定和安全。
PHC管桩的承载力是指其能够承受的竖向荷载。
PHC管桩的承载力可以通过静载试验和动力触探试验等方法来进行测试和确定。
在设计过程中,需要根据不同的土层情况和工程要求来确定PHC管桩的尺寸和布置方式,以满足设计荷载的要求。
承载力的计算一般采用公式法或试验法进行,其中考虑到PHC管桩的几何特性、土层性质、桩身和端部阻力等因素。
负摩阻力是指PHC管桩与土体之间产生的摩擦阻力。
负摩阻力对于提高PHC管桩的承载能力和稳定性非常重要。
根据土层和PHC管桩的特性,可以通过静载试验和动力触探试验等方法来测定负摩阻力的大小。
在设计和施工过程中,需要根据负摩阻力的大小来确定PHC管桩的布置方式和桩端的设计。
为了提高PHC管桩的承载力和负摩阻力,可以采取以下措施:1. 选择合适的PHC管桩规格和尺寸:根据设计要求和土层条件,选择合适的PHC管桩规格和尺寸,以满足设计荷载和负摩阻力的要求。
2. 加强桩端设计:在PHC管桩的桩端部分,可以采用加宽和加固的方式来增加桩端的承载能力和负摩阻力。
可以在桩端部分增加钢筋和混凝土的配筋,以提高桩端的刚度和强度。
3. 进行桩基础处理:在一些特殊地质条件下,可以进行桩基础处理来提高PHC管桩的承载力和负摩阻力。
常见的桩基础处理方法包括振动加固、水泥土桩、灌浆桩等。
4. 控制施工质量:在施工过程中,需要严格控制PHC管桩的制作和安装质量,确保桩身的一致性和稳定性。
选用适当的施工工艺和设备,以确保PHC管桩在安装过程中不会受到破坏或变形。
总之,PHC管桩的承载力和负摩阻力是影响桩基础工程稳定性和安全性的重要因素。
在设计和施工过程中,需要综合考虑土层特性、荷载要求和工程条件等因素,采取合理的措施来提高PHC管桩的承载力和负摩阻力,确保工程的稳定和安全。