浅谈负摩阻力(一)
- 格式:docx
- 大小:12.59 KB
- 文档页数:2
桩基负摩阻力影响的浅析【摘要】负摩阻力严重影响着建筑物的安全,其大小受多种因素的影响,因此很难准确计算其数值。
总结分析桩侧负摩阻力产生的条件、机理及影响因素,提出减少桩侧负摩阻力的方法和防治措施。
【关键词】负摩阻力;成因;影响因素;中性点;下拉力;防治措施1. 前言(1)随着人文居住环境的改善以及土地价格的不断攀升,建筑物已从多层不断的转向高层建筑,从而对地基承载力和变形的要求也越来越高,越来越严格。
当土体在其自重作用下尚未完成固结,或者由于其他原因造成土体的沉降继续发展,当土体沉降大于桩的沉降时,置于这些土层中的桩会不同程度地受到负摩阻力的影响。
负摩阻力对于桩基的不利影响已经引起了广泛的关注。
(2)在设计桩基时如果不考虑负摩阻力,可能会造成不利影响,如:桩端地基的屈服或破坏;桩身破坏;结构物不均匀沉降等。
然而在实际工程中,负摩阻力常常被忽视,造成工程事故。
(3)下面对负摩阻力的问题进行分析、阐述。
2. 负摩阻力的产生条件2.1负摩阻力的产生是由于桩周土的沉降变形大于桩的沉降变形而致。
而造成桩周土沉降变形的原因是多方面的,如:(1)桩穿过新沉积的欠固结软粘土或新填土而支撑在硬持力层上时,土层产生自重固结下沉。
(2)饱和软土中打入密集的桩群,引起超孔隙水压力,土体大量上涌,随后土体引起超孔隙水压力消散而重新固结时,或灵敏度较高的饱和粘性土,受打桩等施工扰动(振动、挤压、推移)影响,附加超静孔隙水压力增加,软土触变增强后又产生新的固结下沉。
(3)在正常固结粘土和粉土地基中,由于下卧砂层、砾石层中抽取地下水或其他引起地下水位降低的原因,使土层产生自重固结下沉。
(4)桩侧地面因大面积堆载或大面积填土而大量下沉时。
(5)在黄土、冻土中的桩,因黄土湿陷、冻土融化产生地面下沉。
2.2综上所述,当桩穿过软弱高压缩性土层而支承在坚硬的持力层上时最易发生桩的负摩阻力。
桩基负摩阻力可能发生在施工过程、使用前或使用过程中的任何阶段,其中发生在使用过程时最为不利。
浅议桩基负摩阻力1.引言- 论文的背景介绍- 目的和意义阐述2.桩基负摩阻力的概念及形成机理- 桩基负摩阻力的定义- 负摩阻力形成的机理及主要因素- 负摩阻力与桩身受到的荷载关系3.桩基负摩阻力的计算方法- 基于静力法的计算方法- 基于动力法的计算方法- 基于试验方法的计算方法- 各种方法的适用范围及其优缺点分析4.桩基负摩阻力的影响因素- 桩土界面的摩擦特性影响- 土层物理力学特性影响- 施工方法的影响5.桩基负摩阻力的应用实例- 国内外实际项目中的应用- 实例中桩基负摩阻力的计算方法和影响因素分析- 实例研究成果的总结和启示结论- 桩基负摩阻力的研究现状和未来发展趋势- 桩基负摩阻力的重要性和应用前景分析第一章节:引言随着城市化进程的不断加速,建筑物的高度、规模和复杂性也随之不断提高,更高的技术要求也在城市建筑的基础工程中得到了体现。
桩基工程是其中一项基础工程,广泛应用于高层、特大型结构或地质条件较差的建筑物中,具有承受大荷载、传递荷载的功能。
在桩基工程中,桩身所受到的摩阻力是重要的荷载分担形式之一,而负摩阻力则是桩身所受到的荷载分担形式之一。
负摩阻力指的是桩体在静态荷载作用下,土体对桩体产生的力与荷载方向相反,对于提高桩基工程的可靠性和安全性具有重要意义。
本文主要讨论桩基负摩阻力的影响因素、计算方法及应用实例等相关研究。
首先,介绍桩基负摩阻力的概念及形成机理,主要从负摩阻力的定义、形成机制和与荷载的关系等方面来阐述,为进一步展开研究奠定基础。
然后,提出桩基负摩阻力的计算方法。
介绍静力法、动力法和试验方法,详细介绍每种方法的基本原理和应用范围,并对其优缺点进行比较分析,以期能够为实际工程设计提供一些帮助。
其次,分析了影响负摩阻力形成的主要因素,包括土层的物理力学特性、桩土界面的摩擦特性、施工方法及操作等。
本部分探讨各种因素对计算值的影响,同时提出了如何合理避免负摩阻力等问题,以期更好地处理实际工程的问题。
产生负摩阻力的原因
负摩阻力,桩周土由于自重固结、湿陷、地面载荷作用等原因产生大于基桩的沉降引起的对桩表面的向下摩擦阻力。
设计时,如忽视这一因素,将会造成桩端地基的屈服或破坏,桩身破坏、结构物不均匀沉降等,引发建筑物沉降、倾斜、开裂等工程事故。
1、位于桩周的欠固结软粘土或新近填土在其自重作用下产生新的固结。
2、大面积堆载使桩周土层压密固结下沉。
3、在正常固结或轻微超固结的软粘土地区,由于抽取地下水或深基坑开挖降水等原因引起地下水位全面降低,致使土的有效应力增加,同时产生大面积的地面沉降。
4、自重湿陷性黄土浸水后产生湿陷:砂土液化后和冻土融化而发生下沉时也会对桩基产生负摩擦力。
5、灵敏度较高的饱和粘性土,受打桩等施工扰动(振动、挤压、推移)影响,附加超静孔隙水压力增加,软土触变增强,后又产生新的固结下沉。
6、大面积软土地区达打入挤土桩,使原来地面壅高,桩土内总应力和孔隙水压力都普遍增高,随后这部分桩间土的固结引起土相对于桩体的下沉。
负摩阻力系数
负摩阻力系数是空气动力学中一个重要的概念,它可以衡量物体在空气中的流体阻力。
它有助于理解飞机如何在空中飞行,也有助于预测飞行物体的性能上的特征。
在本文中,我们将讨论负摩阻力系数的定义、计算方法和在空气动力学中的应用。
首先,负摩阻力系数是用来衡量在空气中流体阻力的一个重要参数。
负摩阻力系数可以定义为:负摩阻力系数=流体阻力÷体积质量。
因此,负摩阻力系数可以用来描述物体在空气中的特性,以及它在空气流动的阻力的大小。
负摩阻力系数的计算方法是:一个物体在特定的流体动力学条件下,其负摩阻力系数是由流体动力学分析得出的。
该系数的计算包括三个步骤:确定物体的流体动力学参数,将参数输入流体动力学分析软件,分析后得出最终负摩阻力系数。
负摩阻力系数在空气动力学中具有重要的意义。
它可以帮助人们理解和预测飞行物体的性能特性。
例如,负摩阻力系数可以用来衡量飞机在空中的速度变化,以及预测飞机的最大速度。
此外,它还可以用来帮助设计飞行器的外形,以及研究流体动力学中流体阻力的影响。
总之,负摩阻力系数是一个重要的概念,它可以帮助我们理解和预测飞行器的性能特性。
负摩阻力系数的计算方法也比较简单,并且在空气动力学中具有重要的应用价值。
此外,负摩阻力系数也可以用来指导飞行器设计,并且可以帮助我们了解流体动力学中流体阻力的影响。
因此,负摩阻力系数在飞机设计及空气动力学上有着重要的作
用。
浅谈桩的负摩阻力及实际工程中的处理[摘要]:负摩阻力是桩基础设计时常见的问题,本文从负摩阻力的产生机理出发,探讨了负摩阻力的计算方法,给出了减小负摩阻力的措施;并结合实际工程分析了桩与承台共同作用机理在负摩阻力桩基础工程中的适用范围。
[关键字]:负摩阻力桩与承台共同作用1 前言桩基础是目前采用广泛的一种软弱地基处理方式,其承载力由桩侧土的摩擦力和桩端反力共同构成。
但是在有些地质条件下,由于某些原因,当桩周土体的沉降量大于桩本身的沉降时,桩侧表面的一部分面积上将产生负摩阻力。
负摩阻力对桩产生下拉作用,致使桩基的荷载增加,变相的降低了桩的承载力,使其沉降加大,严重时会导致建筑物的损害或破坏,由于设计人员忽略了负摩阻力的影响从而引起的工程事故不在少数。
本文对桩的负摩阻力的产生条件及其特性进行分析,探讨了桩负摩阻力的计算方法。
正常情况下,计算桩基础的承载力时,假定上部荷载通过承台传递给桩,然后再传给地基,并不考虑承台底部土的承载作用。
但是,在某些地基土层中,往往在1m左右的根植土下有2-5m的粉质粘土硬壳层,再往下则是10几米甚至20几米的淤泥层。
在这些场地的工程中,一般是采用桩基础进行地基处理,但是由于负摩阻力的存在,正常桩长的单桩承载力往往比较小,布桩很密而且造价比较高;如采用表层换土后作浅层基础,由于硬壳层厚薄不均,填土厚度及质量均难以控制,容易使基础沉降过大或沉降不均匀,影响正常使用。
对于这类场地,由于采用的桩基一般是摩擦型桩,桩与桩间土的变形是相互影响的,桩间土具有一定的承载力,而承台承担的荷载将是可观的。
因此本人认为,在这样的工程中,考虑桩与承台共同工作承担上部荷载是安全合理的,而且具有可观的经济效益。
2 负摩阻力产生机理、特性及其对桩基的影响分析布置在土体里的桩,正常情况下由于上部荷载的作用,桩的沉降速率(或沉降量)大于桩周土的沉降速率(或沉降量),桩周土对桩的侧表面产生向上的摩擦阻力,称之为正摩阻力;反之,当由于以下几种情况:1)桩穿越较厚松散填土、自重湿陷性黄土、欠固结土、液化土层进入相对较硬土层2)桩周存在软弱土层,临近桩侧地面承受局部较大的长期荷载,或地面大面积堆载3)由于降低地下水位,使桩周土中有效应力增大,并产生显著压缩沉降4)冻土融化使得桩周土的沉降速率(或沉降量)大于桩的沉降速率(或沉降量)时,桩周土将对桩产生向下的摩阻力,称之为负摩阻力。
浅谈桩基负摩阻力摘要:本文对变电站桩基设计过程中是否需要考虑桩基负摩阻力的问题进行了深入探讨,采用工作中遇到的两个变电站工程实例进行了对比分析,思考在广东的软弱土层地区,淤泥质土等软弱土层的固结沉降引发的桩基负摩阻力的问题,证明桩基负摩阻力是不可忽略的设计参数之一。
设计人员需要知晓工程中为何会产生桩基负摩阻力,影响负摩阻力的相关因素等问题,在设计过程中予以重视,从而避免因其引起工程事故。
关键词:变电站工程;软弱土层;桩基负摩阻力1.背景广东地区很多工程的地基都存在较厚的软弱土层,如淤泥质土、淤泥质黏性土、松散状态的砂土层、未经处理的填土等,其力学性质较差,表现出欠固结性。
在这些地区,设计人员普遍采用桩来处理大型工程地基,当桩基自身的沉积远小于桩周围土体的沉降量时,周围的土体就会对桩体产生桩侧负摩阻力,并对其作用一个下拉荷载,这样非常容易造成桩身破坏或其他破坏情况。
当我们选择采用桩基础时会涉及到是否需要考虑桩基负摩阻力,如何考虑的问题,桩基负摩阻力考虑得是否得当关系到桩基承载力计算是否准确,在软土地基区域,因其固结沉降在桩侧引发的负摩阻力关系到整个工程的结构安全及工程危害性,具有非常重要的意义。
2.工程概况工程案例一:220千伏某某变电站位于广东省揭阳市,站址距揭阳市区约有9.0千米,距磐东镇约5.3千米,距榕江南河北岸约200米,距科技大道约60米,交通便利。
变电站站址原始地貌为平原(冲积成因),原为鱼塘及水田,后经改造现站址北部为鱼塘,南侧为荒地和种植经济作物的农田。
场地自然高程(1985国家高程)为1.82~3.52m。
根据《220千伏某某变电站施工图设计阶段岩土工程勘测报告》得知,站址场地下存在厚度为17.22~25.32米不等的淤泥层,分布较广,平均厚度为19.80米,包括平均厚度约12米的流塑性淤泥及平均厚度约6.5米的淤泥质土,计算得知变电站整个场地需填砂厚度约为5.50米,其中未考虑固结下沉深度。
应用科学Ⅵ删斛一蠢2§浅谈负摩阻力王大可易建姣(廊坊市城市建设勘察院河北廊坊065000)[摘要]负摩阻力问题严重影响着建筑物的安全,桩的负摩阻力的大小受多种因素的影响,故其准确数值很难计算。
介绍和阐述桩侧负摩阻力产生的条件和机理,桩侧负摩阻力的计算方法,中性点的确定.防治和减少桩侧负摩阻力的方法.[关键词]负摩阻力中性点成因影响因素防治措施计算方法中图分类号:T u97文献标识码:^文章编号:167t一7597(2008)l l l O!14一O T随着人文居住环境的改善以及土地价格的不断攀升,建筑物已从多层不断的转向岛层建筑,从而对地基承载力和变形要求也越来越高,越来越严格。
因此地基处理变得越来越重要。
在地基处理工程中,因负摩阻力问题,造成下程事故屡有发生(建筑物m现沉降、倾斜、开裂),负摩阻力问题在我国工程实践中已变成一个热点问题。
下面对负摩阻力的问题进行分析、阐述。
一、负一阻力的戚因桩周土的沉降大于桩体的沉降l桩土的相对位移(或者相对位移趋势)是形成摩擦力的原因,桩基础中,如果土给桩体提供向上的摩擦力就称为正摩阻力;反之,则为负摩阻力。
地基土沉降过大,桩和上相对位移过大地基土将对桩产生向下的摩擦力拉力,使原来稳定的地基变得不稳定,实际荷载可能超过原来建议的地基承载力。
一般可能由以下原因或组合造成:未同结的新近回填土地基;地面超载;打桩后孔隙水压力消散引起的固结沉降;地下水位降低,有效应力增加引起土层下沉;非饱和填土因浸水而湿陷;可压缩性土经受持续荷载,引起地基土沉降;地震液化。
二、地基设计为什么要考虑负一阻力桩周负摩阻力非但不能为承担上部荷载作出贡献,反而要产生作用于桩侧的下拉力。
而造成桩端地基的屈服或破坏、桩身破坏、结构物不均匀沉降等影响。
因此,考虑桩侧负摩阻力对桩基础的作用是桩基础设计必不可少的问题之~。
三、如何在现场测试和估算负●阻力在桩体安装应变计这是爿前测单桩负摩阻力问题的最常用的方法。
浅谈桩基负摩阻力摘要:桩基工程中桩侧负摩阻力所产生的下拽力可能引起桩体破坏、桩基不均匀沉降等诸多工程灾害,严重影响着建筑物的安全,而桩的负摩阻力的大小受多种因素的影响,目前其准确数值很难计算。
本文简要介绍和阐述了桩侧负摩阻力产生的条件和机理,目前桩侧负摩阻力的计算方法,中性点的确定,防治和减少桩侧负摩阻力的方法。
关键词:负摩阻力中性点成因影响因素防治措施引言:在地基处理工程中,因负摩阻力问题,造成工程事故屡有发生(建筑物出现沉降、倾斜、开裂),负摩阻力问题在我国工程实践中已成为一个很普遍的问题。
下面对负摩阻力的问题进行分析、阐述。
1负摩阻力的成因桩基工程中, 当桩体与桩周土产生相对位移时,桩侧就会产生摩阻力。
当桩体的沉降量大于桩周土的沉降量时, 摩阻力为正;当桩周土的沉降量大于桩体的沉降量时,摩阻力为负。
单桩负摩阻力作用机理如图1 所示[。
桩侧负摩阻力非但不能为承担上部荷载作出贡献, 反而要产生作用于桩侧的下拽力,称为分布于桩侧表面的荷载。
下拽力作用于桩体上, 可能会造成桩身破坏、桩端地基屈服或破坏, 以及上部结构不均匀沉降等问题。
图1单桩负摩阻力作用机理示意单桩负摩阻力一般可能由以下原因或组合造成:①未固结的新近回填土地基:桩基穿过欠固结土层后支撑在硬土层中,使得桩侧土因固结发生的沉降超过桩的沉降;②地面超载:桩侧地面受到较大的地面荷载产生的沉降超过桩的沉降;③孔隙水压力消散引起的固结沉降:群桩施工中敏感度较高的黏土受扰动,超孔隙水压力使得土体上涌,重塑后因超孔隙水压力消散而重新固结;④地下水位降低;桩侧土层地下水位大幅下降,导致有效应力增加引起土层下沉;⑤湿陷性地基:桩基穿过湿陷性土,湿陷性土因浸水湿陷导致土层发生沉降;⑥地震液化:桩基穿过液化土层,地震液化引起桩侧土沉降;⑦以压桩法沉桩后,桩身上部压力消失后发生回弹,产生负摩阻力。
影响负摩阻力大小的主要因素主要有:桩周土的特性、桩端土特性(因为其之间影响着中性点的位置问题)、桩体的形状、桩土模量比等。
浅谈负摩阻力(一)
论文关键词]负摩阻力中性点成因影响因素防治措施计算方法
论文摘要]负摩阻力问题严重影响着建筑物的安全,桩的负摩阻力的大小受多种因素的影响,故其准确数值很难计算。
介绍和阐述桩侧负摩阻力产生的条件和机理,桩侧负摩阻力的计算方法,中性点的确定,防治和减少桩侧负摩阻力的方法。
随着人文居住环境的改善以及土地价格的不断攀升,建筑物已从多层不断的转向高层建筑,从而对地基承载力和变形要求也越来越高,越来越严格。
因此地基处理变得越来越重要。
在地基处理工程中,因负摩阻力问题,造成工程事故屡有发生(建筑物出现沉降、倾斜、开裂),负摩阻力问题在我国工程实践中已变成一个热点问题。
下面对负摩阻力的问题进行分析、阐述。
一、负摩阻力的成因
桩周土的沉降大于桩体的沉降!桩土的相对位移(或者相对位移趋势)是形成摩擦力的原因,桩基础中,如果土给桩体提供向上的摩擦力就称为正摩阻力;反之,则为负摩阻力。
地基土沉降过大,桩和土相对位移过大地基土将对桩产生向下的摩擦力拉力,使原来稳定的地基变得不稳定,实际荷载可能超过原来建议的地基承载力。
一般可能由以下原因或组合造成:未固结的新近回填土地基;地面超载;打桩后孔隙水压力消散引起的固结沉降;地下水位降低,有效应力增加引起土层下沉;非饱和填土因浸水而湿陷;可压缩性土经受持续荷载,引起地基土沉降;地震液化。
二、地基设计为什么要考虑负摩阻力
桩周负摩阻力非但不能为承担上部荷载作出贡献,反而要产生作用于桩侧的下拉力。
而造成桩端地基的屈服或破坏、桩身破坏、结构物不均匀沉降等影响。
因此,考虑桩侧负摩阻力对桩基础的作用是桩基础设计必不可少的问题之一。
三、如何在现场测试和估算负摩阻力
在桩体安装应变计这是目前测单桩负摩阻力问题的最常用的方法。
80年代,有工程运用瑞士生产的滑动侧微计(SlidingMicrometer---ISETH)来测定。
普遍的方法都是测定桩体轴力,从而推算桩侧摩阻力。
四、影响负摩阻力大小的主要因素
桩周土的特性当然是首当其冲的,其次桩端土特性也不可忽视(因为其之间影响着中性点的位置问题)、桩体的形状、桩土模量比等都有影响。
五、负摩阻力的防治措施
打桩前,先预压地基土,从根本上消除负摩阻力的产生;在产生负摩阻的桩段安装套筒或者把桩身与周围土体隔离,这种方法会使施工难度加大;在桩身涂滑动薄膜如涂沥青],目前这种方法应用比较普遍,效果也不错;通过降低桩上部荷载,储备一定承载力;在地基和上部结构允许有相对较大沉降的情况下,采用摩擦桩;采用一定的装置消除负摩阻力。
下面介绍一种消除负摩阻力的装置:它由设置在桩体外周的卸荷套及卸荷套与桩体之间的润滑隔离层构成。
卸荷套使桩体与周围土层完全隔开并由桩体带动在打桩时与之同步下沉,而当桩周土层沉陷时,卸荷套依靠隔离层内润滑材料的作用,可随土层相对桩体自由下沉而不将下拽力传给桩体,从而有效地消除了负摩阻力的作用。
可广泛用于各种软基地层拟用桩基础的工程中。
六、负摩阻力的群桩效应研究大多数是单桩,实践中基本是群桩
这个跟我们的研究方法有关系,目前我们的现场实践方面的研究方法都是针对单一桩体的。
另外,群桩方面的研究,运用数值分析方法也有不少研究。
群桩的现场研究很值得期待呀。
七、端承桩产生负摩阻的可能性大于摩擦桩
(1)对于摩擦型桩基,当出现负摩阻力对基桩施加下拉荷载时,由于持力层压缩性较大,
随之引起沉降。
桩基沉降一出现,土对桩的相对位移便减小,负摩阻力便降低,直至转化为零。