数字电路设计课件第六讲状态机设计
- 格式:ppt
- 大小:1.22 MB
- 文档页数:68
如何设计最优化的状态机前言:数字电路通常分为组合逻辑电路和时序电路,组合逻辑电路outputs = F(current inputs)时序电路outputs = F(current inputs,past inputs)有限状态机就是时序电路的数学抽象,一个有限状态机系统包括inputs ,outputs, states .状态机分为同步状态机(synchronous)和异步状态机(asynchronous),异步状态机由于输出信号不稳定,所以不详细讨论,对绝大多数设计来说,用的最广泛的是同步状态机。
下面主要讨论了同步状态机的设计。
一.状态机的基础知识1.1. moore状态机和mealy状态机的区别:2.1.1moore状态机输出只依赖于及其的当前状态,与输入信号无关。
这是moore状态机的优点。
下面是moore状态机的模型:moore状态机比较容易用数学的方式来分析,因此被更广泛的用在代数状态机理论中(algebraic FSM theory)。
Mealy状态机输出依赖于机器现在的状态和输入的值,如果输入改变,输出可以在一个时钟周期中将发生了改变。
其模型如下:图的说明:state memory :保存现在的状态(current state s(t) )state transistion function :根据现态和输入x(t),s(t+1)来决定下一个状态。
Output function :根据s(t)和x(t)来决定最后的输出。
Mealy 状态机通常可以有更少的状态变量,因此在工程领域有更为广阔的应用,状态变量越少,则所需的存储单元就越少。
下面用简单的实例来具体说明两者编程的区别,和综合出来的结果的不同:Mealy状态机的简单例子:1.源程序:demo_process:process(clk,reset)beginif(reset = '1')thenstate <= s0;out1 <= (others=>'0');elsif rising_edge(clk) thencase state iswhen s0 => if(in1 = '1')thenstate <= s1;out1 <= "1000";end if;when s1 => if(in1 = '0')thenstate <= s2;out1 <= "1001";end if;when s2 => if(in1 = '1')thenstate <= s3;out1 <= "1100";end if;when s3 => if(in1 = '0')thenstate <= s0;out1 <= "1111";end if;when others =>null;end case;end if;end process;modelsim仿真结果:synplify综合结果:1.模块表示图:在这张综合图上可以明显得看出红线即input所参与决定的是状态的产生和输出。
数字电路状态机设计数字电路状态机是一种在特定输入条件下,产生特定输出逻辑电路的设计。
它通常用于处理控制信号和顺序逻辑的应用中。
本文将介绍数字电路状态机的基本概念、设计流程以及应用实例。
一、数字电路状态机的概念数字电路状态机是一种使用状态和状态转移来描述电路行为的模型。
它由状态寄存器、组合逻辑和组合逻辑控制电路组成。
状态寄存器用于存储当前状态,组合逻辑决定下一个状态和输出的逻辑条件。
二、数字电路状态机的设计流程1. 确定状态和输入信号:首先确定设计中所需要的状态数量和输入信号的种类和数量。
状态可以是离散的值,如0、1等,也可以是更复杂的状态。
2. 绘制状态转移图:根据状态数量和输入信号的种类和数量,绘制状态转移图。
状态转移图是一种有向图,用于描述状态之间的转移条件和动作。
3. 设计状态表:根据状态转移图,设计状态表。
状态表列出了每个状态的转移条件、动作和输出。
4. 实现状态转移表:将状态表转化为逻辑电路,实现状态转移逻辑和输出逻辑。
5. 验证和测试:对设计进行验证和测试,确保状态机在各种输入条件下都能正确地工作。
三、数字电路状态机的应用实例数字电路状态机广泛应用于各种控制和顺序逻辑的场景,下面是一个以闹钟为例的应用实例。
假设我们需要设计一个简单的闹钟电路,具有以下要求:1. 闹钟有两种状态:开和关。
2. 闹钟有两个输入:按钮A(表示设置时间)和按钮B(表示开关闹钟)。
3. 当闹钟处于关闭状态下,按下按钮B时,闹钟进入开启状态,并发出响铃信号。
4. 当闹钟处于开启状态下,按下按钮B时,闹钟进入关闭状态,停止响铃。
通过状态机设计流程,我们可以得到以下结果:1. 状态:开(S1)和关(S0)。
2. 输入信号:按钮A(I1)和按钮B(I0)。
3. 输出信号:响铃(O)。
根据设计要求,我们绘制状态转移图,如下所示:```S0───┐┌──────┐┌──────┐││ I1=1 ││ I1=0 │S1───┘└──────┘└──────┘ I0=1 I0=1```根据状态转移图,设计状态表如下:```当前状态输入下一个状态输出 S0 0 S0 0S0 1 S1 0S1 0 S0 1S1 1 S1 0```根据状态表,实现状态转移表如下:```当前状态输入下一个状态输出 S0 00 S0 0S0 01 S1 0S1 11 S1 0```最后,根据状态转移表实现逻辑电路并进行验证和测试。
数字电路设计中的时序逻辑与状态机设计时序逻辑与状态机设计是数字电路设计中的重要概念。
在数字电路中,时序逻辑指的是电路的输出是根据输入信号的时序关系而变化的,而状态机则是通过状态转换来实现特定功能的电路。
本文将详细介绍时序逻辑与状态机设计的原理、方法和实践经验。
一、时序逻辑设计的基础原理时序逻辑设计是指在数字电路中,通过引入时钟信号来控制电路的行为。
时钟信号可以被理解为一个周期性的信号,它将整个电路的工作分为不同的阶段。
在每个时钟周期内,时序逻辑根据输入信号的状态进行计算,并且在下一个时钟边沿产生输出信号。
时序逻辑设计的基础原理包括以下几个关键要点:1. 时钟信号:时钟信号的频率决定了电路的最大工作速度,而时钟边沿决定了电路的状态更新时机。
2. 触发器:触发器是实现时序逻辑的基本元件,它可以存储和传递信息,并在时钟边沿触发状态更新。
常见的触发器有D触发器、JK触发器和T触发器等。
3. 时序逻辑电路的设计方法:时序逻辑电路的设计方法包括状态转移图、状态转移方程和状态表等。
这些设计方法可以帮助设计师理清输入、输出和状态之间的关系,便于电路功能的实现。
二、状态机设计的基本概念与方法状态机是一种抽象的数学模型,常用于描述具有确定性行为的系统。
在数字电路设计中,状态机通常用于实现序列逻辑电路的控制部分,如计数器、序列检测器等。
状态机设计的基本概念与方法包括以下几个关键要点:1. 状态:状态是指系统在某个时刻的特定条件。
在状态机设计中,状态通常用离散的值来表示,比如二进制编码。
2. 状态转换:状态转换表示系统从一个状态切换到另一个状态的过程。
状态转换可以通过组合逻辑电路来实现,也可以通过时序逻辑电路实现。
3. 输出函数:输出函数定义了每个状态下的输出值。
它可以通过组合逻辑电路来实现,也可以通过状态寄存器的输出来实现。
4. 状态机设计流程:状态机设计的一般流程包括确定系统的输入、输出和状态集合,绘制状态转移图,推导状态转移方程,实现状态转移电路等。
状态机电路设计状态机(STATE MACHINE)可以说是一个广义时序电路,触发器,计数器,移位寄存器都算是它的特殊功能的一种.在电子设计自动化应用当中,状态机经常是担任CPU的功能,从某种意义上讲状态机的应用让系统具有了智能化的功能,业界为状态机和CPU的功能一直争论不休,不过事实是更多人倾向于状态机,认为状态机的功能比CPU 强大.下面将带领大家认识一下状态机的基本设计思想.传统的逻辑电路设计在描述状态机的表示上,以状态图(STATE DIAGRAM)方式最为清晰且容易理解.根据输入,输出及状态关系,状态图可以分为:1.输入&状态&输出(输出仅与状态有关)以下面图形为例,若目前状态机处于状态S0时,输入为0则状态机将维持状态S0不变,若输入改为1则下个状态改成状态S1,但不论输入是什么,此时输出均为0.这种输出与状态有关,而与输入无关的状态机类型,称为More状态机.编程实现其功能如下:--***********************状态机*********************重点提示整个状态机的电路描述分成两个PROCESS命令语句完成.第一个PROCESS:负责感测时钟脉冲信号CP在上升沿变化之际,作目前状态(PresentState)切换至下个状态(NextState)的动作.第二个PROCESS:负责感测输入(DIN)值,目前状态(PresentState)值,由CASE-WHEN语句决定输出(OP)和下个状态(NextState)值.--*********************************************************LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_ARITH.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;--*********************************************************ENTITY CH6_5_1 ISPORT(CP :IN STD_LOGIC; --CLOCKDIN:IN STD_LOGIC; --I/P SignalOP :OUT STD_LOGIC --O/P Signal);END CH6_5_1;--*********************************************************ARCHITECTURE A OF CH6_5_1 ISTYPE STATE IS (S0,S1,S2,S3); --State Type DeclareSIGNAL PRESENTSTATE :STATE; --Present StateSIGNAL NEXTSTATE :STATE; --Next StateBEGINSWITCHTONEXTSTATE:PROCESS(CP)BEGINIF CP'EVENT AND CP='1' THENPRESENTSTATE<=NEXTSTATE;END IF;END PROCESS SWITCHTONEXTSTATE;CHANGESTATEMODE:PROCESS(DIN,PRESENTSTATE)BEGINCASE PRESENTSTATE ISWHEN S0=> --STATE S0IF DIN='0' THEN --INPUT=0NEXTSTATE<=S0;ELSENEXTSTATE<=S1;END IF;OP<='0'; --OUTPUTWHEN S1=> --STATE S1IF DIN='1' THEN --INPUT=1NEXTSTATE<=S1;ELSENEXTSTATE<=S2;END IF;OP<='0'; --OUTPUTWHEN S2=> --STATE S2IF DIN='1' THEN --INPUT=1NEXTSTATE<=S2;ELSENEXTSTATE<=S3;END IF;OP<='0'; --OUTPUTWHEN S3=> --STATE S3IF DIN='1' THEN --INPUT=1NEXTSTATE<=S0;ELSENEXTSTATE<=S1;END IF;OP<='0'; --OUTPUTWHEN OTHERS=> --Initial StateNEXTSTATE<=S0;OP<='0'; --OUTPUTEND CASE;END PROCESS CHANGESTATEMODE;END A;--*********************************************************程序说明:(1)上述的状态编码方式,使用默认的Binary编码.(2)在第二个PROCESS内的CASE-WHEN语句里,最后一个WHEN OTHERS 作用在电路起始状态,亦即--将状态初始设定为S0.2.输入&状态&输出(输出与状态,输入背景有关)下面图形的动作和上图相似,但是输出是会随输入不同而有所改变,例如目前状态是S3,若输入是0则输出为0且下个状态更换成S1,而输入为1则输出为1且下个状态更换成S0.这种输出与状态及输入皆有关系者,称为Mealy状态机.程序实现功能如下:--***************************************************************************** LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_ARITH.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;--***************************************************************************** ENTITY CH6_5_2 IS--CLOCKSTD_LOGIC;:INPORT(CPDIN:INSignal--I/PSTD_LOGIC;:OUTSTD_LOGICOP);END CH6_5_2;--***************************************************************************** ARCHITECTURE A OF CH6_5_2 ISTYPE STATE IS (S0,S1,S2,S3); --State Type Declare--PRESENT:STATE;STATEPRESENTSTATESIGNAL--NEXTSTATE:STATE;NEXTSTATESIGNALBEGINSWITCHTONEXTSTATE:PROCESS(CP) --PRESENTSTATE->NEXTSTATEBEGINIFCP='1'THENCP'EVENTANDPRESENTSTATE<=NEXTSTATE;ENDIF;END PROCESS SWITCHTONEXTSTATE;CHANGESTATEMODE:PROCESS(DIN,PRESENTSTATE)BEGINCASE PRESENTSTATE ISWHEN S0=> --STATE S0--INPUT=0THENIFDIN='0'NEXTSTATE<=S0;OP<='0'; --OUTPUTELSENEXTSTATE<=S1;OP<='1'; --OUTPUTEND IF;WHEN S1=> --STATE S1THEN--INPUT=1IFDIN='1'NEXTSTATE<=S1;OP<='1'; --OUTPUTELSENEXTSTATE<=S2;OP<='0'; --OUTPUTEND IF;WHEN S2=> --STATE S2--INPUT=1THENIFDIN='1'NEXTSTATE<=S2;OP<='0'; --OUTPUTELSENEXTSTATE<=S3;OP<='1'; --OUTPUTEND IF;WHEN S3=> --STATE S3--INPUT=1THENDIN='1'IFNEXTSTATE<=S0;OP<='1'; --OUTPUTELSENEXTSTATE<=S1;OP<='0'; --OUTPUTEND IF;StateWHENOTHERS=> --InitialNEXTSTATE<=S0;OP<='0'; --OUTPUTCASE;ENDEND PROCESS CHANGESTATEMODE;END A;程序说明:程序写法是与CH6_5_!相似,不过在处理输出OP部分,需按照输入的信号情况,作判断输出,这部分可程序的注释部分看出.。
状态机电路设计
状态机电路是一种电路设计,用于控制电子设备的状态和行为。
它有多个状态和转换规则,可以自动控制设备的不同状态和行为。
状态机电路设计步骤:
1. 确定状态和转换:根据实际应用需求,确定电路的不同状态和状态之间的转换规则。
2. 状态转换图:将状态和转换规则绘制成状态转换图,明确各状态之间的转换和条件。
3. 状态机设计:根据状态转换图设计状态机电路,选择适合的芯片和元件,编写控制程序和状态转换代码。
4. 状态机测试:进行状态机电路测试,验证状态机电路的正确性和稳定性。
5. 优化设计:根据测试结果和用户反馈,不断优化和改进状态机电路设计,提高设备性能和可靠性。
状态机电路设计应用:
1. 自动控制系统:状态机电路可以用于自动控制系统,如智能家居、机器人等。
2. 数据通信:状态机电路可以用于数据通信,如协议处理、数据校验等。
3. 电源管理:状态机电路可以用于电源管理,如电池充电、断电保护等。
4. 工业控制:状态机电路可以用于工业自动化控制,如流水线控制、机器操作等。
总之,状态机电路设计可以应用于各种领域,实现自动化、智能化和高效化。