白塞尔大地主题解算
- 格式:doc
- 大小:197.00 KB
- 文档页数:9
一、名词解释(每个2分,共10分)1、球面角超:球面四边形或三角形内角之和与平面四边形或三角形内角之差称为四边形球面角超或三角形球面角超。
2、总椭球体:总椭球体的中心与地球的质心重合,其短轴与地球的地轴重合,起始子午面与起始天文子午面重合,而且与地球体最佳密合的椭球体。
3、大地主题反算:已知椭球面上两点的大地经纬度求解两点间的大地线长度与正反方位角。
4、子午线收敛角:高斯投影面上任意点子午线的投影线的切线方向与该点坐标的正北方向的夹角。
5、水准标尺基辅差:精密水准标尺同一视线高度处的基本分划与辅助分划之差。
二、填空(每空1分,共30分)1、以___________作为基本参考点,由春分点___________运动确定的时间称为恒星时;以格林尼治子夜起算的___________称为世界时。
2、ITRF 是___________的具体实现,是通过IERS分布于全球的跟综站的_________和_________来维持并提供用户使用的。
3、高斯投影中,_____投影后长度不变,而投影后为直线的有_____,其它均为凹向_____的曲线。
4、重力位是--___________和___________之和,重力位的基本单位是___________。
5、大地线克莱劳方程决定了大地线在椭球面上的_______,某大地线穿越赤道时的大地方位角A= 60°,则能达到的最小平行圈半径为长半轴a的_____倍。
6、正常重力公式是用来计算______ 正常重力, 其中系数是称为___________。
高出椭球面H米高度处正常重力与椭球表面正常重力间的关系为____________。
7、在大地控制网优化设计中把__________、__________和__________作为三个主要质量控制标准。
8、地面水平观测值归算至椭球面上需要经过__________、___________、_____________改正。
⼤地测量学复习资料(考试必备)1.垂线同总地球椭球(或参考椭球)法线构成的⾓度称为绝对(或相对)垂线偏差2.以春分点作为基本参考点,由春分点周⽇视运动确定的时间,称为恒星时3.以真太阳作为基本参考点,由其周⽇视运动确定的时间,称为真太阳时。
⼀个真太阳⽇就是真太阳连续两次经过某地的上中天(上⼦午圈)所经历的时间。
4.以格林尼治平⼦夜为零时起算的平太阳时称为世界时5.原⼦时是⼀种以原⼦谐振信号周期为标准6.归算:就是把地⾯观测元素加⼊某些改正,使之成为椭球⾯上相应元素。
7.把以垂线为依据的地⾯观测的⽔平⽅向值归算到以法线为依据的⽅向值⽽加的改正定义为垂线偏差改正7.⼤地线椭球上两点间的最短程曲线。
8.设椭球⾯上P点的⼤地经度L,在此⼦午⾯上以椭圆中⼼O为原点建⽴地⼼纬度坐标系; 以椭球长半径a为半径作辅助圆,延长P2P与辅助圆相交P1点,则OP1与x 轴夹⾓称为P点的归化纬度u。
9.仪器加常数改正因测距仪、反光镜的安置中⼼与测距中⼼不⼀致⽽产⽣的距离改正,称仪器加常数改正,包括测距仪加常数和反光镜加常数。
10.因测距仪的基准频率等因素产⽣的尺度参数成为乘常数。
11.基本分划与辅助分划相差⼀个常数301.55cm,称为基辅差,⼜称尺常数12.控制⽹可靠性:控制⽹能够发现观测值中存在的粗差和抵抗残存粗差对平差的影响13.M是椭球⾯上⼀点,MN是过M的⼦午线,S为连接MP的⼤地线长,A为⼤地线在M点的⽅位⾓。
以M为极点;MN为极轴;P点极坐标为(S, A)⼀点定位,如果选择⼤地原点:则⼤地原点的坐标为:多点定位,采⽤⼴义弧度测量⽅程1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京,⽽在前苏联的普尔科沃。
相应的椭球为克拉索夫斯基椭球。
1954年北京坐标系的缺限:①椭球参数有较⼤误差。
②参考椭球⾯与我国⼤地⽔准⾯存在着⾃西向东明显的系统性的倾斜,在东部地区⼤地⽔准⾯差距最⼤达+68m。
地质学演化的三次大的论争 (2)汉白玉的来历 (4)水晶的传说 (5)我和一箱变质岩的故事 (7)太阳石精神 (8)沈括鉴定“竹笋”化石 (9)奇泉自有奥秘在 (10)旅游中的地学知识 (11)洞景之美 (12)明故宫的血迹石 (13)巾山的来历 (15)花果山上的洞天世界 (17)以矿找矿 (18)治病健身的泉水 (20)山水之美 (24)就化石找矿的故事 (26)沉睡亿万年的神山苏醒了 (27)地质学演化的三次大的论争第一次大的论争:水成论和火成论(维尔纳(德)) PK赫顿(苏格兰))18-19世纪各门科学大踏步的前进,地质学也迅速发展成为一门科学。
在对地质状况特别是地层、化石的起因和形成的认识问题上,出现了“水成论”和“火成论”两个相对立学派的论争。
“水成论”的代表是德国地质学家维尔纳(Werner )。
水成派认为地质变化的原因是水的作用,所有的岩石都是水成岩。
而与维尔纳观点大相径庭的一个代表人物是苏格兰学者赫顿(J.Hutton),同时德斯马雷特被奉为火成论的鼻祖。
火成派认为地质变化的原因是火山的作用,所有的岩石都是火成岩。
讲水就排斥火,讲火就排斥水,水火之争,愈演愈烈。
虽然水成论盛极一时,但不到半个世纪便被火成论击败,形成“火胜水败”的格局。
第二次大的论争:灾变论与渐变论(均变论)(居维叶(法) PK莱伊尔(英)) 19世纪初多数科学家都已认识到地壳是逐渐形成的,生物也是不断变化的,但是这种变化是突然发生的,还是逐渐发生的,看法不一,因此形成灾变论和渐变论两种学派。
灾变论的代表人物是居维叶(Georges Cuvier,1769年8月23日-1832年5月13日)法国动物学家,比较解剖学和古生物学的奠基人。
居维叶根据各大地质时代与生物各发展阶段之间的“间断”现象,提出了“灾变论”。
认为是自然界的全球性的大变革,造成生物类群的“大绝灭”,而残存的部分经过发展与传播又形成了以后各个阶段的生物类群。
《地图学》试题集一、判断题(对的打“√”,错的打“×”)1.比例尺、地图投影、各种坐标系统就构成了地图的数学法则。
2.地图容纳和储存了数量巨大的信息,而作为信息的载体,只能是传统概念上的纸质地图。
3.地图的数学要素主要包括地图投影、坐标系统、比例尺、控制点、图例等。
4.实测成图法一直是测制大比例尺地图最基本的方法。
5.磁坐偏角指磁子午线与坐标纵线之间的夹角。
以坐标纵线为准,磁子午线东偏为负,西偏为正。
)6. 一般情况下真方位角(A)、磁偏角(δ)、磁方位角(Am)三者之间的关系是A=Am+δ。
7.大规模的三角测量和地形图测绘,其成为近代地图学的主流。
8.城市规划、居民地布局、地籍管理等需要以小比例尺的平面地图作为基础图件。
9.实地图即为“心象地图”,虚地图即为“数字地图”。
10.方位角是由标准方向线北端或者南端开始顺时针方向到某一直线的夹角。
11.地球体的数学表面,也是对地球形体的二级逼近,用于测量计算的基准面。
12.在地图学中,以大地经纬度定义地理坐标。
13.在地理学研究及地图学的小比例尺制图中,通常将椭球体当成正球体看,采用地心经纬度。
14.1987年国家测绘局公布:启用《1985国家高程基准》取代《黄海平均海水面》,其比《黄海平均海水面》下降29毫米。
15.球面是个不可展的曲面,要把球面直接展成平面,必然要发生断裂或褶皱。
16.长度比是一个常量,它既不随着点的位置不同而变化,也不随着方向的变化而变化。
17.长度变形没有正负之分,长度变形恒为正。
18. 面积变形有正有负,面积变形为零,表示投影后面积无变形,面积变形为正,表示投影后面积增加;面积变形为负,表示投影后面积缩小。
19.制1:100万地图,首先将地球缩小100万倍,而后将其投影到平面上,那么1:100万就是地图的主比例尺。
20.在等积圆锥投影上中央经线上纬线间隔自投影中心向外逐渐增大。
21. 无论是正轴方位投影还是横轴方位投影或是斜轴方位投影,他们的误差分布规律是一致的。
高斯平均引数大地主题解算程序设计田桂娥;谢露;马广涛【摘要】介绍了大地主题解算基本方法,以Visual Studio 2010作为开发平台,采用C#语言编写,设计实现了一套基于高斯平均引数的大地主题解算实用程序,指出该程序功能强大,实现了单点和批量大地主题解算,能方便的将计算结果保存在文本,且精度满足大地测量及相应工程的需求.【期刊名称】《山西建筑》【年(卷),期】2016(042)027【总页数】2页(P192-193)【关键词】大地主题解算;高斯平均引数法;Visual Studio 2010;批量解算【作者】田桂娥;谢露;马广涛【作者单位】华北理工大学,河北唐山063000;中铁十一局集团第一工程有限公司,湖北襄阳441104;河北省制图院,河北石家庄050000【正文语种】中文【中图分类】TU198在天文大地测量中,为了获得点的大地坐标,需要在椭球面上进行控制点间的坐标解算。
椭球面上两点间的大地坐标(大地经度、大地纬度)、大地线、大地方位角称为大地元素,已知一些大地元素,推求另一些大地元素,通常称为大地主题解算。
大地主题解算包含大地主题正算和大地主题反算两种,已知椭球面上一点P1的大地坐标(L1,B1),P1到P2点的大地线长度S及其大地方位角A12,计算P2点的大地坐标(L2,B2)和大地线长度S在P2点的反方位角A21,称为大地主题正解;反之,已知P1和P2点的大地坐标(L1,B1)和(L2,B2),计算P1至P2的大地线长度S及其正反方位角A12和A21,称为大地主题反解。
由于椭球计算的复杂性,带来大地主题解算的复杂性,有的需要进行迭代计算逐步趋近,给人工计算带来极大困难。
随着计算机技术的飞速发展,计算机在大地主题解算上的应用也得到了快速的发展,迭代计算已经不再是难题,而且,可以根据精度的需要而自行确定迭代次数,极大的提高了计算效率。
同时,随着大地主题解算在空间技术领域的广泛运用,大地主题解算已经成为一项重要的研究工作。
大地测量学基础2024下期末重点问题整理(教材:大地测量学基础武汉大学出版)1.了解大地测量学是哪三个分支?P4.几何大地测量学、物理大地测量学、空间大地测量学2.P4,大地测量学的基本内容(选择题),一共6点,其中最重要的是第一点:地球的形状,后面几点作为了解。
P4①确定地球形状及外部重力场及其随时问的变化,建立统一的大地测量坐标系,研究地壳形变(包括地壳垂直升降及水平位移), 测定极移以及海洋水面地形及其变化等。
②研究月球及太阳系行星的形状及重力场。
③建立和维持具有高科技水平的国家和全球的天文大地水平控制网和精密水准网以及海洋大地控制,以满足国民经济发展和国防建设的需要。
④研究为获得高精度测量成果的仪器和方法等。
⑤研究地球表面向椭球面或平面的投影数学变换及相关的大地测量计算。
⑥研究大规模、高精度和多类别的地面网、空间网及其联合网的数据处理和理论方法, 测量数据库建立及应用等。
3.大地测量同其他学科的关系看一下大致p5作为大地测量学的理论基础学科:数学、计算机科学、物理学4.地轴方向相对于惯性空间的变化:岁差、章动。
P19①岁差:地球绕地轴旋转,可以看着巨大的陀螺旋转,由于日、月等天体影响,类似于陀螺旋转在重力场中的进动,地球的旋转轴在空间围绕黄极发生缓慢旋转,形成一个倒圆锥体,其锥角等于黄赤交角23.5度,其旋转周期为26000年。
②章动:章动是指地球自转轴在岁差的基础上叠加的短期圆周运动,振幅为9.21秒。
5.地轴相对于地球本体内部结构的相对位置变化:极移。
P20极移:地球体自身内部结构的相对位置变化,从而导致极点在地球表面上的位置随时间变化。
6.P22,时间系统,了解恒星时、世界时、历书时、力学时、原子时、协调世界时的概念重点掌握,几个时间的对比(EG.恒星时和世界时是以什么参考自传?什么运动参照地球自传P26);各自的区别重点掌握。
①恒星时:以春分点作为基本参考点,由春分点周日视运动确定的时间。
一、解释下列术语(每个2分,共10分)大地水准面球面角超底点纬度高程异常水准标尺零点差二、填空(1-15小题每空1分;16题4分,共36分)1、在地球自转中,地轴方向相对于空间的变化有______和_____。
2、时间的度量单位有______和______两种形式。
3、重力位是______和_____之和,重力位的公式表达式为_______。
4、椭球的形状和大小一般用_______来表示。
5、在大地控制网优化设计中把_____、______和_____作为三个主要质量控制标准。
6、测距精度表达式中,的单位是______,表示的意义是_____;的单位是______,表示的意义是_____。
7、利用测段往返不符值计算的用来衡量水准测量外业观测的精度指标用_____来表示,其意义是______。
8、利用闭合环闭合差计算的用来衡量水准测量外业观测的精度指标用_____来表示,其意义是______。
9、某点在高斯投影3°带的坐标表示为XA=3347256m, YA=37476543m,则该点在6°带第19带的实际坐标为xA=___________________,yA=___________________。
10、精密水准测量中每个测段设置______个测站可消除水准标尺______零点差的影响。
11、点P从B=0°变化到B=90°时,其卯酉圈曲率半径从______变化到_____。
12、某点P的大地纬度B=30°,则该点法线与短轴的交点离开椭球中心的距离为_____。
13、高斯投影中,_____投影后长度不变,而投影后为直线的有_____,其它均为凹向_____的曲线。
14、大地线克莱劳方程决定了大地线在椭球面上的_______;在椭球面上某大地线所能达到的最大纬度为60°,则该大地线穿越赤道时的大地方位角表达式为_____(不用计算出数值)。
《控制测量学》试题参考答案一、名词解释:1、子午圈:过椭球面上一点的子午面同椭球面相截形成的闭合圈。
2、卯酉圈:过椭球面上一点的一个与该点子午面相垂直的法截面同椭球面相截形成的闭合的圈。
3、椭圆偏心率:第一偏心率a ba e2 2-=第二偏心率b ba e2 2-='4、大地坐标系:以大地经度、大地纬度和大地高来表示点的位置的坐标系。
P36、法截线:过椭球面上一点的法线所作的法截面与椭球面相截形成圈。
P97、相对法截线:设在椭球面上任意取两点A和B,过A点的法线所作通过B点的法截线和过B点的法线所作通过A点的法截线,称为AB两点的相对法截线。
P158、大地线:椭球面上两点之间的最短线。
9、垂线偏差改正:将以垂线为依据的地面观测的水平方向观测值归算到以法线为依据的方向值应加的改正。
P1810、标高差改正:由于照准点高度而引起的方向偏差改正。
P1911、截面差改正:将法截弧方向化为大地线方向所加的改正。
P2012、起始方位角的归算:将天文方位角以测站垂线为依据归算到椭球面以法线为依据的大地方位角。
P2213、14、大地元素:椭球面上点的大地经度、大地纬度,两点之间的大地线长度及其正、反大地方位角。
P2815、大地主题解算:如果知道某些大地元素推求另外一些大地元素,这样的计算称为大地主题解算。
P2816、大地主题正算:已知P1点的大地坐标,P1至P2的大地线长及其大地方位角,计算P2点的大地坐标和大地线在P2点的反方位角。
17、大地主题反算:如果已知两点的大地坐标,计算期间的大地线长度及其正反方位角。
18、地图投影: 将椭球面上各个元素(包括坐标、方向和长度)按一定的数学法则投影到平面上。
P3819、高斯投影:横轴椭圆柱等角投影(假象有一个椭圆柱横套在地球椭球体外,并与某一条子午线相切,椭球柱的中心轴通过椭球体中心,然后用一定投影方法,将中央子午线两侧各一定范围内的地区投影到椭圆柱上,再将此柱面展开成投影面)。
武汉大学2003年攻读硕士学位研究生入学考试试题一.大地测量学基础名词解释(每小题4.5分)1.大地线克莱劳定理2.垂线偏差改正3.正常重力位4.正常高5.底点纬度6.投影长度比7.周期误差8.大地原地9.参心空间直角坐标系10.基辅差二.画图(15分)试分别画出1980年国家大地坐标系和WGS-84世界大地坐标系的示意图,并说明各轴的指向。
三.计算(18分)二等水准测量中,AB点间共设了4个测站点,A点的高程为h A=10.0000m,现用N3水准仪进行返测,前三站的高差和为5.0000m,第四站的观测数据如下(按观测顺序排列):1825 1385 16032 17427 1962 1523 47582 46188试计算该测站的视距长度和B点的高程h B。
四.证明题(18分)已知椭球面上一点的大地纬度为B、归化纬度为U、地心纬度为Φ,试证明:B>U>Φ五.问答题(本题共3小题,共54分)1.试述高斯投影的三个条件极其推导高斯投影坐标正算公式中的作用。
2.已知A点的大地坐标和B点的高斯平面坐标,试述下面问题的解题思路:(1)如何求得椭球面上A、B两点的大地线长?(2)如何求得A点至B点的平面坐标方位角?3.简述大地测量学的定义极其作用。
武汉大学2004年攻读硕士学位研究生入学考试试题大地测量学基础一.名词解释(每小题4分)1.大地水准面2.高斯投影正算3.大地高4.垂线偏差5.大地主题反算6.参考椭球定位7.找准目标的相位差8.波道曲率改正9.静力法重力测量10.恒星时二.填空(每小题3分)1.我国1954年北京坐标系是采用球参数。
2.已知P点的大地坐标为B=30°22',L=114°20',则P点位于6°投影带的号带。
3.当大地纬度B= 时,子午曲率半径M等于平均曲率半径。
4.水平角观测时,必须用盘左、盘右取平均值作为最后观测值,这样可以消除和误差的影响。
白塞尔大地主题解算方向:学号:姓名:一.基本思路:基本思想:将椭球面上的大地元素按照白塞尔投影条件投影到辅助球面上,继而在球面上进行大地主题解算,最后在将球面上的计算结果换算到椭球面上。
其关键问题是找出椭球面上的大地元素与球面上相应元素之间的关系式,同时解决在球面上进行大地主题解算的方法。
正算流程:1.计算起点的归化纬度2.计算辅助函数值,解球面三角形3.按公式计算相关系数A,B,C 以及α,β4.计算球面长度5.计算纬度差改正数6.计算终点大地坐标及大地方位角011122S B C A{sin (cos )}σσσ=-+10101022222sin ()sin sin cos cos σσσσσσ+=+10101022222cos ()cos cos sin sin σσσσσσ+=-001101522B C A[cos ()]sin ()σσσσσσ=++++010122L A sin [(sin ()sin )]λδασβσσσ-==++-2111u u u A sin sin cos cos cos sin σσ=+2222222222222222222222111111111e u B u B W W u e B u u B B arctan e u e u sin sin cos cos tan tan sin sin tan cos -cos ⎧-==⎪⎪⎨⎪=-⎪⎩⎡⎤⎢⎥==--⎢⎥-⎣⎦1111A arctan u u A sin sin []cos cos sin sin cos σλσσ=-21L L λδ=+-112111u A A arctan u A u cos sin cos cos cos sin sin σσ⎡⎤=⎢⎥-⎣⎦反算流程:1.辅助计算2.用逐次趋近法同时计算起点大地方位角、球面长度及经差,第一次趋近时,取δ=0。
计算下式,重复上述计算过程2.3.计算大地线长度S4.计算反方位角二.已知数据序号B1(DD.MMSS)L1 (DD.MMSS)A12(DD.MMSS)S12(m)1 41.01356874 130.10122676 1.4943 8000L λδ=+211212u pA u u u u qsin cos tan cos sin sin cos cos λλ==-2121p p u q b b A arctanqsin cos cos λλ==-=11p A q A sin cos tan cos σσ+=11p A q A sin sin cos σ=+12a a cos cos σλ=+arctan sin cos σσσ⎛⎫=⎪⎝⎭011A u A sin cos sin =111u A tan tan sec σ=21+σσσ=02122L A sin [(sin sin )]λδασβσσ-==+-L λδ=+11222222S A B C B C sin (cos )sin (cos )σσσσσ=++-+1212u A b b cos sin arctan cos λλ⎡⎤=⎢⎥-⎣⎦三.源代码:#include <stdio.h>#include <math.h>#define e 0.081813334016931499 //克拉索夫斯基椭球体第一偏心率void main(){int k,B10,B11,L10,L11,A10,A11,B20,B21,L20,L21,A20,A21;double B12,L12,A12,B22,L22,A22;double B1,L1,A1,S,B2,L2,A2,L,pi;double A,B,C,afa,beta;double a1,a2,b1,b2,p,q,x,y;doubleW1,W2,sinu1,sinu2,cosu1,cosu2,sinA0,cotsigma1,sin2sigma1,cos2sigma1,sigma0,sin2,cos2,sigm a,sins,coss,delta0,delta,lamda;pi=4*atan(1);printf("白塞尔大地主题正算请输入1\n白塞尔大地主题反算请输入2\n");scanf("%d",&k);if(k==1){printf("请输入大地线起点纬度B经度L,大地方位角A及大地线长度S:\n");scanf("%d%d%lf%d%d%lf%d%d%lf%lf",&B10,&B11,&B12,&L10,&L11,&L12,&A10,&A 11,&A12,&S);B1=(B10+(float)B11/60+B12/3600)*pi/180;L1=(L10+(float)L11/60+L12/3600)*pi/180;A1=(A10+(float)A11/60+A12/3600)*pi/180;W1=sqrt(1-e*e*sin(B1)*sin(B1)); //计算起点规划纬度sinu1=sin(B1)*sqrt(1-e*e)/W1; //计算起点规划纬度cosu1=cos(B1)/W1; //计算起点规划纬度sinA0=cosu1*sin(A1); //计算辅助函数值cotsigma1=cosu1*cos(A1)/sinu1; //计算辅助函数值sin2sigma1=2*cotsigma1/(cotsigma1*cotsigma1+1); //计算辅助函数值cos2sigma1=(cotsigma1*cotsigma1-1)/(cotsigma1*cotsigma1+1); //计算辅助函数值A=6356863.020+(10708.949-13.474*(1-sinA0*sinA0))*(1-sinA0*sinA0);B=(5354.469-8.798*(1-sinA0*sinA0))*(1-sinA0*sinA0);C=(2.238*(1-sinA0*sinA0))*(1-sinA0*sinA0)+0.006;afa=691.46768-(0.58143-0.00144*(1-sinA0*sinA0))*(1-sinA0*sinA0);beta=(0.2907-1.0E-3*(1-sinA0*sinA0))*(1-sinA0*sinA0);sigma0=(S-(B+C*cos2sigma1)*sin2sigma1)/A;sin2=sin2sigma1*cos(2*sigma0)+cos2sigma1*sin(2*sigma0);cos2=cos2sigma1*cos(2*sigma0)-sin2sigma1*sin(2*sigma0);sigma=sigma0+(B+5*C*cos2)*sin2/A;delta=(afa*sigma+beta*(sin2-sin2sigma1))*sinA0; //计算经度差改正数delta=delta/3600*pi/180;sinu2=sinu1*cos(sigma)+cosu1*cos(A1)*sin(sigma);B2=atan(sinu2/(sqrt(1-e*e)*sqrt(1-sinu2*sinu2)));lamda=atan(sin(A1)*sin(sigma)/(cosu1*cos(sigma)-sinu1*sin(sigma)*cos(A1))); if(sin(A1)>0){if(tan(lamda)>0)lamda=fabs(lamda);elselamda=pi-fabs(lamda);}else{if(tan(lamda)>0)lamda=fabs(lamda)-pi;elselamda=-1*fabs(lamda);}L2=L1+lamda-delta;A2=atan(cosu1*sin(A1)/(cosu1*cos(sigma)*cos(A1)-sinu1*sin(sigma)));if(sin(A1)>0){if(tan(A2)>0)A2=pi+fabs(A2);elseA2=2*pi-fabs(A2);}else{if(tan(A2)>0)A2=fabs(A2);elseA2=pi-fabs(A2);}B2=B2*180*3600/pi;L2=L2*180*3600/pi;A2=A2*180*3600/pi;B20=(int)B2/3600;B21=(int)B2/60-B20*60;B22=B2-B20*3600-B21*60;L20=(int)L2/3600;L21=(int)L2/60-L20*60;L22=L2-L20*3600-L21*60;A20=(int)A2/3600;A21=(int)A2/60-A20*60;A22=A2-A20*3600-A21*60;printf("正算得到的终点大地经度和大地纬度及A2:\n%d %d %lf\n%d %d %lf\n%d %d %lf\n",B20,B21,B22,L20,L21,L22,A20,A21,A22);}else{printf("请输入大地线起点和终点的坐标BL\n");scanf("%d%d%lf%d%d%lf%d%d%lf%d%d%lf",&B10,&B11,&B12,&L10,&L11,&L12,&B 20,&B21,&B22,&L20,&L21,&L22);B1=(B10+(double)B11/60+B12/3600)*pi/180;L1=(L10+(double)L11/60+L12/3600)*pi/180;B2=(B20+(double)B21/60+B22/3600)*pi/180;L2=(L20+(double)L21/60+L22/3600)*pi/180;W1=sqrt(1-e*e*sin(B1)*sin(B1));W2=sqrt(1-e*e*sin(B2)*sin(B2));sinu1=sin(B1)*sqrt(1-e*e)/W1;sinu2=sin(B2)*sqrt(1-e*e)/W2;cosu1=cos(B1)/W1;cosu2=cos(B2)/W2;L=L2-L1;a1=sinu1*sinu2;a2=cosu1*cosu2;b1=cosu1*sinu2;b2=sinu1*cosu2;delta0=0;lamda=L+delta0;p=cosu2*sin(lamda);q=b1-b2*cos(lamda);A1=atan(p/q);if(p>0){if(q>0)A1=fabs(A1);elseA1=pi-fabs(A1);}else{if(q>0)A1=2*pi-fabs(A1);elseA1=pi+fabs(A1);}sins=p*sin(A1)+q*cos(A1); //计算sigma的正弦值coss=a1+a2*cos(lamda); //计算sigma的余弦值sigma=atan(sins/coss);if(coss>0)sigma=fabs(sigma);elsesigma=pi-fabs(sigma);sinA0=cosu1*sin(A1);x=2*a1-(1-sinA0*sinA0)*cos(sigma);afa=(33523299-(28189-70*(1-sinA0*sinA0))*(1-sinA0*sinA0))*1.0e-10; beta=(28189-94*(1-sinA0*sinA0))*1.0e-10;delta=(afa*sigma-beta*x*sin(sigma))*sinA0;lamda=L+delta;while(fabs(delta-delta0)>4.8e-10){delta0=delta;p=cosu2*sin(lamda);q=b1-b2*cos(lamda);A1=atan(p/q);if(p>0){if(q>0)A1=fabs(A1);elseA1=pi-fabs(A1);}else{if(q>0)A1=2*pi-fabs(A1);elseA1=pi+fabs(A1);}sins=p*sin(A1)+q*cos(A1); //计算sigma的正弦值coss=a1+a2*cos(lamda); //计算sigma的余弦值sigma=atan(sins/coss);if(coss>0)sigma=fabs(sigma);elsesigma=pi-fabs(sigma);sinA0=cosu1*sin(A1);x=2*a1-(1-sinA0*sinA0)*cos(sigma);afa=(33523299-(28189-70*(1-sinA0*sinA0))*(1-sinA0*sinA0))*1.0e-10;beta=(28189-94*(1-sinA0*sinA0))*1.0e-10;delta=(afa*sigma-beta*x*sin(sigma))*sinA0;lamda=L+delta;}A=6356863.020+(10708.949-13.474*(1-sinA0*sinA0))*(1-sinA0*sinA0);B=10708.938-17.956*(1-sinA0*sinA0);C=4.487;y=((1-sinA0*sinA0)*(1-sinA0*sinA0)-2*x*x)*cos(sigma);S=A*sigma+(B*x+C*y)*sin(sigma);A2=atan((cosu1*sin(lamda))/(b1*cos(lamda)-b2));if(sin(A1)>0){if(tan(A2)>0)A2=pi+fabs(A2);elseA2=2*pi-fabs(A2);}else{if(tan(A2)>0)A2=fabs(A2);elseA2=pi-fabs(A2);}A1=A1*3600*180/pi;A2=A2*3600*180/pi;A10=(int)A1/3600;A11=(int)A1/60-A10*60;A12=A1-A10*3600-A11*60;A20=(int)A2/3600;A21=(int)A2/60-A20*60;A22=A2-A20*3600-A21*60;printf("反算得到的方位角A1A2及大地线长S:\n%d %d %lf\n%d %d %lf\n%lf\n",A10,A11,A12,A20,A21,A22,S);}}四.程序执行结果:。