高精度测量放线工法
- 格式:doc
- 大小:270.00 KB
- 文档页数:11
放线机械人三维扫描测量放线施工工法放线机械人三维扫描测量放线施工工法一、前言随着科技的发展和建筑工程的复杂化,传统的人工放线施工已经无法满足工程的需求。
为了提高施工效率和质量,放线机械人三维扫描测量放线施工工法应运而生。
该工法利用机器人进行扫描和测量,实现高精度的放线,大大提高了施工效率和准确性。
二、工法特点放线机械人三维扫描测量放线施工工法的特点主要有以下几个方面:1. 高精度:利用三维扫描和测量技术,实现高精度的放线,可以达到毫米级的误差控制。
2. 高效率:机械人可以自动进行扫描和测量,取代了传统的人工放线过程,大大缩短了施工周期。
3. 灵活性:机械人可以适应各种复杂的施工环境,包括曲线、倾斜和高空等,具有很高的灵活性。
4. 可追溯性:工法利用三维扫描和测量技术,可以对每一次放线过程进行记录和保存,提供了施工过程的可追溯性。
三、适应范围放线机械人三维扫描测量放线施工工法适用于各种建筑工程,特别是对于需要高精度放线的工程,如高层建筑、桥梁、隧道等。
该工法的灵活性和高效率使其适用于各种复杂的施工环境。
四、工艺原理放线机械人三维扫描测量放线施工工法的工艺原理基于以下几个方面:1. 数字建模:使用激光扫描仪对施工现场进行扫描,获取实际情况的三维数字模型。
2. 坐标系转换:将实际场景的三维坐标系与建筑设计模型进行匹配,建立起准确的转换关系。
3. 放线数据计算:根据设计模型和施工要求,通过计算得到放线数据,并进行优化和调整。
4. 机器人放线:利用机械人进行放线,根据放线数据指导机器人的运动,实现高精度的放线。
五、施工工艺放线机械人三维扫描测量放线施工工法的施工工艺主要包括以下几个阶段:1. 施工前准备:确定施工范围和施工要求,将建筑设计模型进行数字化处理。
2. 扫描与建模:使用激光扫描仪对施工现场进行扫描,获取实际情况的三维数字模型。
3. 坐标系匹配:将实际场景的三维坐标系与建筑设计模型进行匹配,建立起准确的转换关系。
rtk测量放线的操作流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!RTK 测量放线是一种高精度的测量技术,广泛应用于工程测量、地形测绘、地籍测量等领域。
建筑工程施工放线方法
施工放线是建筑施工过程中最为基础、最为重要的环节之一,
它不仅关系到工程整体进度,也关系到工程质量。
以下是几种常用
的建筑工程施工放线方法:
1. 传统放线法:该方法使用钢卷尺进行水平和竖直方向的测量,并据此在地面进行记号,最后通过拉线进行放线。
该方法操作简单,成本低,但必须考虑地面不平整和风的影响等因素。
2. 仪器放线法:该方法使用放线仪器进行测量,可获得高精度
的数据,并可直接输出数据进行放线。
该方法操作方便,效率高,
但成本较高。
常用的放线仪器有全站仪、经纬仪等,具体使用要根
据具体情况而定。
3. 三角测量法:该方法利用三角定理进行测量,可获得很高的
测量精度。
但该方法需要有较长的基线,对放线带来较大的约束,
适用于规模较大的工程。
4. 激光放线法:该方法利用激光测距仪进行测量,并依据采集的数据进行放线。
该方法操作简单、精度高、速度快,是目前最为先进的放线方法之一。
但激光测距仪的价格较高,需要一定的经济和技术基础。
以上是常用的建筑工程施工放线方法,建筑施工企业可以根据工程特点和实际需求选择合适的放线方法。
全站仪放线使用方法
全站仪是一种用来测量土地、建筑、道路等工程的高精度测量仪器。
下面是全站仪放线的一般使用方法:
1. 设置基准点:首先需要确定一个基准点,可以是已知的控制点或者通过GPS 进行测量得到的控制点。
将全站仪放置在基准点上,进行水平校准,使其水平仪示数为0,并进行垂直校准,使其自动平衡。
2. 设定坐标系:根据工程的需要,确定一个适合的坐标系,并将其设定在全站仪上。
可以选择直角坐标系、极坐标系等不同的坐标系。
3. 放线测量:根据需要放线的线路或者点位,依次将全站仪放置在每个目标点上,并进行测量。
放置时需要保证全站仪放置稳固,并尽量避免人为震动对测量结果的影响。
4. 读取测量数据:每次测量完成后,全站仪会自动记录测量数据。
可以通过观测器上的显示屏,或者通过连接计算机进行数据传输,将测量数据读取出来。
5. 数据处理:将读取到的测量数据进行处理,可以通过计算机上的测量软件进行坐标计算、误差分析、图形绘制等操作,得到精确的测量结果。
6. 校正和调整:根据测量结果进行校正和调整,如果发现测量误差较大,可以
通过重新进行测量或者调整仪器,提高测量精度。
需要注意的是,在进行全站仪放线测量时,应注意操作的规范和准确性,避免误操作和对结果的影响。
另外,为了确保测量的准确性,还需注意全站仪的保养和校准工作。
建筑施工测量放线的方法建筑施工测量放线是指根据设计图纸和施工方案,在现场进行实际测量并标示出具体位置的过程。
放线是建筑施工的重要环节之一,准确的放线能够保证建筑施工的顺利进行,保证建筑物的准确度和稳定性。
下面将介绍几种常见的建筑施工测量放线的方法。
1.使用传统的尺度方法:这是最基本的测量放线方法之一,通过使用尺度或直尺来进行测量并标示出具体位置。
当需要测量直线距离时,可以使用直尺或尺度,确定起点和终点,通过绘制一条直线来确定具体位置。
当需要测量角度时,可以使用角度尺或转角尺,将其放置在需要测量的角度上,然后将角度标示出来。
尺度方法适用于简单的放线需求,但对于复杂的建筑布局,尺度方法的精度和准确度可能有所不足。
2.使用全站仪进行测量:全站仪是一种现代化的高精度测量仪器,它集合了测距、测角和测高的功能。
全站仪通过激光技术和电子仪表,能够精确地测量位置和角度,并将测量数据实时显示在仪器屏幕上。
使用全站仪进行测量放线可以大大提高精度和准确度,适用于复杂的建筑布局和大型工程项目。
使用全站仪进行测量放线的步骤如下:1)设置全站仪的工作模式,选择测距、测角和测地高的功能。
2)根据设计图纸和施工方案,确定需要测量的位置和角度。
3)使用全站仪进行测量,将测量数据实时显示在仪器屏幕上。
4)根据测量数据,在施工现场进行标示,确定具体位置。
3.使用三角测量法进行放线:三角测量法是一种经典的测量放线方法,主要用于测量不可直接测量的地方,如高层建筑的外墙等。
三角测量法利用三角形的性质,通过测量两个已知边长和夹角,计算出未知的边长和角度。
三角测量法的主要步骤包括测量两条已知边长、测量夹角和计算未知边长和角度。
三角测量法适用于无法使用尺度或全站仪进行测量的情况,但需要有一定的数学基础和测量经验。
4.使用导线放线法进行放线:导线放线法是一种基于直线和角度测量的放线方法,主要用于较长距离的测量放线。
导线放线法的主要步骤包括设置起点和终点,测量直线距离和测量角度。
工程定位测量及放线方案一、前言随着现代工程建设的日益复杂和精细,工程定位测量及放线成为工程测量的重要环节。
工程定位测量及放线作为保证工程建设质量的重要手段,其准确性直接影响着工程的施工质量和工程的整体效果,因此需要采用科学的方法和合理的方案进行实施。
本文将结合实际工程案例,从测量技术、放线手段、设备选择、施工流程等方面进行详细说明,以期为工程定位测量及放线提供合理可行的方案。
二、测量技术1.全站仪测量技术:全站仪是一种高精度的测量仪器,其高度测量精度和测量范围广泛的特点,使其成为工程定位测量中常用的仪器之一。
全站仪测量技术具有测量快速、精度高、误差小等优点,可以满足工程建设的测量需求。
2.DGPS测量技术:差分全球定位系统(DGPS)是一种高精度的定位测量技术,其利用多个GPS基站进行数据处理,实现高精度的定位测量。
DGPS测量技术在工程定位测量中可以满足高精度、长距离、复杂环境的测量需求。
3.激光测距仪测量技术:激光测距仪是一种测距精度高、测量速度快的测量仪器,其广泛应用于工程定位测量中。
激光测距仪测量技术适用于短距离、室内外等多种环境下的测量需求。
以上测量技术可以根据工程实际需求进行灵活选择,结合现代化测量技术和仪器设备,可以保证工程定位测量的准确性和可靠性。
三、放线手段1.地面放线:地面放线是一种常用的放线手段,其通过在地面上进行临时标记、划线等方式,实现放线的目的。
地面放线的优点是操作简单、成本低廉、适用范围广泛,是工程定位测量中常用的放线手段之一。
2.激光放线:激光放线是一种高精度、快速、自动化的放线手段,其通过激光测距仪、激光标记仪等设备实现放线的目的。
激光放线可以适用于长距离、复杂环境等工程定位测量中的放线需求。
3.GPS放线:全球定位系统(GPS)是一种高精度的定位系统,其通过卫星信号进行定位测量,实现放线的目的。
GPS放线适用于大范围、长距离的工程定位测量,具有快速、精度高的特点。
工程施工中测量放线步骤工程施工中的测量放线工作是非常重要的一项工作,它直接影响到整个工程的质量和进度。
在工程施工过程中,测量放线工作是必不可少的一项工作,它直接影响到整个工程的质量和进度。
本文将重点介绍工程施工中测量放线的步骤和注意事项,以便工程施工人员能够正确、快速、准确地完成测量放线工作。
一、前期准备1.了解工程图纸:在进行测量放线工作之前,工程施工人员必须对工程图纸有一定的了解,熟悉和掌握图纸的图例、比例尺、坐标体系等内容,以便顺利进行测量放线工作。
2.准备测量工具:进行测量放线工作需要使用一系列的测量工具,包括测量尺、划线墨线、铅锤、放线器、测距仪等工具。
3.确定测量放线起点:在进行测量放线工作之前,必须确定测量放线起点,通常情况下,起点选择在工程的主要控制点上,如转角点、立柱、基桩等处。
二、测量放线的步骤1.确定放线方向:确定放线方向是测量放线工作的第一步,通常情况下,放线方向选择在工程图纸上的主要控制线上,如建筑物的外墙线、主要隔墙线等。
2.确定放线的长度:根据工程图纸上的尺寸和比例尺,确定放线的长度,使用测量尺或测距仪进行测量。
3.放线工具的使用:使用放线器和划线墨线进行放线,首先在起点处确定放线的方向和长度,然后在目标点处用铅锤和划线墨线进行标记。
4.检查放线的准确性:在进行放线工作之后,必须对放线进行检查,确保放线的准确性,包括放线的方向、长度和位置是否符合工程图纸要求。
5.调整放线位置:如果发现放线的位置有偏差,必须及时进行调整,使用放线器和划线墨线重新进行放线工作。
6.做好放线记录:在进行放线工作之后,必须做好放线记录,记录放线的位置、方向、长度等信息,并在工程图纸上进行标注。
7.测量放线的安全注意事项:在进行测量放线工作时,必须注意安全,必须穿戴好安全帽、安全鞋等防护用具,确保自己的安全。
三、测量放线的注意事项1.严格按照工程图纸要求进行测量放线工作,确保放线的准确性。
2.在进行放线工作时,必须严格遵守安全操作规程,保证工作人员的人身安全。
工地老师傅的放线放样技巧总结放线放样是建筑工程中非常重要的一环,它直接关系到建筑物的平整度、垂直度和准确性。
作为工地上的老师傅,熟练掌握放线放样技巧对于保证施工质量具有重要意义。
本文将从准备工作、基本放线放样步骤、注意事项等方面,对工地老师傅的放线放样技巧进行总结。
一、准备工作在进行放线放样之前,准备工作是十分关键的。
首先,要熟悉施工图纸,了解平面布置及空间尺寸;其次,需要检查放线放样所需的仪器工具是否齐全,并保证其准确度;另外,还要对施工现场进行勘测,确定放线放样的具体位置和要求。
只有在准备工作做足的情况下,才能有条不紊地进行放线放样。
二、基本放线放样步骤放线放样的基本步骤包括三个环节,即基础放线、立面放线和斜坡放线。
1.基础放线基础放线是确保建筑物基础平整度的重要步骤。
首先,要根据施工图纸确定基础位置和尺寸。
然后,通过挖坑、铺垫层等作业,将基础线完整、准确地放到位。
在放置基础线时,要使用专业的匹配工具进行辅助,确保放线准确度。
2.立面放线立面放线是保证建筑物墙体垂直度的关键步骤。
在立面放线时,要根据施工图纸中的标高数据,确定墙体标高。
然后,通过使用放线钉和放线线,将墙体外围线条清晰地勾画出来。
在放置放线钉时,要十分注意钉的位置和方向,保证放线的垂直度。
3.斜坡放线斜坡放线主要用于路面、坡道等场合,保证斜坡的坡度和平整度。
在斜坡放线时,可以采用两种方法,一种是使用放线仪器进行测量放线;另一种是使用水平仪和标尺等工具进行手工操作。
在放置斜坡线时,要根据斜坡要求确定坡度和高程信息,并保证放线的准确性和连续性。
三、注意事项1.仪器的使用和保养放线放样离不开各种测量仪器的使用,因此,老师傅需要熟悉并掌握各类仪器的操作方法。
在使用仪器过程中,要注意保护仪器,防止受到损坏或丢失。
同时,要定期对仪器进行检查和保养,确保其准确度和灵敏度。
2.勘测工作的严谨性在放线放样前,要进行现场勘测工作,以确定放线的位置和要求。
混凝土结构工程测量放线施工方案1. 背景混凝土结构工程是建筑工程中常见的一种工程类型。
为确保其施工质量和准确性,测量放线工作的实施具有重要意义。
本文档旨在提供混凝土结构工程测量放线施工方案。
2. 目的本方案的目的是为了确保混凝土结构工程的准确放线,以满足施工要求,提高工程质量,保证工程安全。
3. 测量放线方法混凝土结构工程的测量放线可采用以下方法:- 三角测量法:通过建立基准点和测量点的三角形关系,确定放线位置和方向。
- 内插法:利用已知测量点的坐标和距离,根据比例关系确定放线点的位置。
- 使用全站仪:全站仪具有高精度和自动化功能,可用于测量放线工作。
4. 测量放线步骤下面是混凝土结构工程测量放线的基本步骤:1. 了解施工图纸:仔细研究混凝土结构工程的施工图纸,理解各个构件的尺寸和定位要求。
2. 定义基准点:根据施工图纸,确定基准点的位置,并在现场进行测量标记。
3. 测量建立基准线:使用三角测量法或全站仪,测量基准点之间的距离和方向,建立起基准线。
4. 测量放线点:根据施工图纸上的尺寸和定位要求,使用内插法或全站仪,确定各个放线点的位置。
5. 校准放线点:通过交叉测量和比较与施工图纸的符合度,对放线点进行校准和调整。
6. 进行放线:在每个放线点上进行放线工作,使用标尺、放线绳或全站仪等工具,确保放线准确。
7. 检查和验证:在放线完成后,对各个放线点进行检查和验证,确保其准确性。
8. 记录和报告:将放线结果记录并报告给相关人员,以备后续工作使用。
5. 注意事项在混凝土结构工程测量放线的过程中,需注意以下事项:- 操作人员必须熟悉测量仪器的使用和操作方法,确保准确性。
- 在测量放线前,需对测量仪器进行校准,确保其准确度。
- 施工现场必须保持清洁,以避免误差或干扰。
- 操作人员必须严格按照施工图纸和放线方案执行,确保放线准确。
6. 总结混凝土结构工程测量放线是确保工程施工质量和准确性的重要环节。
本文档提供了测量放线的方法、步骤和注意事项,以供相关人员参考和实施。
工程测量放线施工方案
《工程测量放线施工方案》
随着建筑工程的不断发展,工程测量放线施工成为了建筑工程中不可或缺的部分。
它是保证工程准确、高效进行的重要环节,也是建筑工程质量的保证。
在工程测量放线施工中,首先需要根据设计图纸确定放线的位置和方向。
然后,进行地面标志、测点设置等工作,确保施工的准确性。
在实际施工过程中,可以结合GPS定位、激光测
距仪等现代化测量工具,提高放线的精确度和效率。
同时,工程测量放线施工还需要考虑到现场环境的复杂性和不确定性。
这就需要测量师要具备丰富的实践经验和灵活的应变能力,能够根据实际情况做出及时的调整和决策。
在实际操作中,还需严格遵守相关的施工规范和安全操作要求,确保测量过程中的安全和质量。
综上所述,《工程测量放线施工方案》是建筑工程中一项重要的工作,并且需要严谨、细致地进行。
只有通过科学规范的放线施工,才能确保建筑工程的质量和进度。
高精度测量放线工法目录前言 (2)1、主要技术特点 (2)2、适用范围 (2)3、施工准备 (2)4、工艺流程及操作特点 (2)5、主要使用材料 (9)6、机具设备 (9)7、劳动组织 (9)8、质量要求 (10)9、效益分析 (10)10、工程实例 (11)前言随着科学技术的发展,工业设备安装工程中设备安装精度要求越来越高,尤其是大跨度、长距离、高速运转的自动化生产线的设备安装,如造纸生产线设备的安装,其水平度及垂直度的允许偏差均为0.3mm。
设备安装的精度取决于地脚螺栓的预埋精度,而在较大范围内的地脚螺栓预埋精度则由测量放线的精确度所决定。
因此掌握整套的高精度测量放线技术是保证设备安装精度的基础。
苏州公司在几个类似工程实践的基础上,由马锦红同志总结编制了这套高度测量放线施工工法。
该施工方法已在多项工程施工中,得到外方专家的认可和好评。
1、主要技术特点1.1使用本工法,建立基准线网络,各基准线之间的平等度、垂直度均能达到很高的精度要求。
1.2 网格基准线贯穿于整个厂房,无论是整条生产线,还是单体设备均能借助该基准线,利用精密仪器保证其安装精度。
1.3 利用网格基线来控制设备地脚螺栓的预埋偏差,减少误差传播量,从而保证设备安装精度。
1.4 利用网格基准线上基准点(线)的永久保存性,更方便于将来生产运行过程中的设备维修。
2、适用范围本工法适用于安装精度要求较高、大跨度、长距离、高速度运转的自动生产线设备安装。
例如造纸机生产线安装,厂区钢结构管架安装等。
3、施工准备利用厂房原始的纵、横向的控制点,借助精密测量仪器(如T2经纬仪、GTS-311全站仪等)测设出厂房内设备的成条中心线,以及平等和垂直此中心线的纵、横辅助中心线,并在其纵向辅助中心线上设立各控制点,从而建立一基准线网格。
4、工艺流程及操作特点4.1工艺流程制作控制点基准标板→确定底层纵、横中心线→确定底层纵向辅助中心线→确定底层纵向辅助中心线上各距离控制点的起点→确定底层纵向辅助中心线上各距离控制点→其他层基准线网格投测(方法与底层测设方法相同)。
4.2 操作要点:4.2.1 控制点基准标板的制作、预埋为使控制点可长期保存,我们可用δ=10mm的不锈钢板制作100*100mm见方的基准标板,下部焊铆筋,上部加盖板,并用螺栓将盖板与标板相连接,以加强对基准点保护(参见图1)。
标板亦可采用Ф=25mm,L=150mm的铜棒制作,顶部车成凹槽形并攻丝,下部加工成工字形,上部加盖板(带螺纹),参见图2 所示。
基准标板制作好后,在底层地坪及各楼层浇注时,将各标板精确定位并预埋(见附图3)。
养护期间应定期逐个进行检查、复测,确保基准标板的牢固、稳定。
4.2.2 底层纵、横中心线的投测在本工法的实施过程中,两点间距离、垂直度、直线性等精度要求均为小于0.5mm。
(1)复检土建施工轴线底层纵、横中心线是以土建施工轴线为基准进行投测的。
纵、横中心线是其余各基准线的投测起点,因此,保证该两线的垂直度至关重要。
在纵向中心线投测之前,我们利用T2经纬仪架设于X2、Y2点,测出土建纵、横轴线的交点O,并用冲头在基准标板上标出该点。
然后,架设T2经纬仪于O 点,利用正倒镜现两侧回法,校核土建纵、横轴线的垂直度,并对其方向控制点进行调整,使土建两轴线的垂直度满足其精度要求。
(2)底层纵向中心线投测底层纵向中心线是其余各基准线的投测起点,保证该线的投测精度至并重要。
分别架设T2经纬仪于X1、X2点,采用正倒镜两侧回法,用划针在基准标板Os、Oe上划出垂直于土建纵向中心线的垂直线,然后根据土建纵向中心线与底层纵向中心线的相对距离a,将GTS311全站仪架于X1、X2点,分别测出距离X10s X2Oe 等于距离a。
并用钢盘尺和弹簧秤复检此距离,然后用冲头标出该两点,通过此两点的直线OsOe即为纵向中心线,如图3所示。
(3)底层横向中心线的确定按照底层纵向中心线的投测方法,采用T2经纬仪,借助于划针在基准标板T10,D10上划出垂直于土建横向中心线的垂直线,再根据土建横向中心线与底层横向中心线的相对距离b,利用GTS300全站仪测出距离Y1T10 、Y2D10 为b,并用钢盘尺和弹簧秤复检此距离。
用冲头在标板上标出T10、D10点,通过T10、D10点的直线即为底层横向中心线。
在底层纵、横中心线投测之后,我们应利用T2经纬仪或GTS311全站仪按照复检土建施工轴线的方法,定出其纵、横中心线的交点Oo,将GTS311全站仪或T2经纬仪架设于Oo点,对纵、横向中心线的垂直度进行检验,并进行调整,直至其垂直度满足精度要求。
在标定O点及Oo点时,我们采用正倒镜两侧回取中法,以消除仪器本身角度偏差而造成的偏差,确保O 点及Oo点精确度,采用该方法即考虑人工做点误差亦可满足其相对于纵、横中心线的直线性误差(小于0.5mm)4.2.3 底层纵向辅助线的确度在测定底层纵向辅助线时,我们分以下两步骤进行,以保证其与纵向中心线的平行性。
(1)纵向中心线的垂直线DsTs,DeTe线的确定影响DsTs,DeTe线相对于纵向中心线垂直度误差的因素有两项,以Ds为例分析如下:我们使用的T2经纬仪或GTS311全站可使角度偏差小于5〃,本工法中,│OsDs│为8m,则有:△d=(5〃/206265)*8000mm=0.19mm(206265为角度弧度换算常数)(1.2)仪器偏差导致的误差△d'(1.2)仪器偏差导致的误差△d'在施工中利用仪器对点时,其两点间的距离一般都大于50m,人工做点误差能保证在0.5mm以内,则有:△d=(8000*50000)*△dmax=(8000/50000)*0.5mm=0.08mm。
根据误差传播定律,以上两项对Ds的影响为0.2mm,满足0.5mm精度要求。
(2)纵向辅助方向点的确定在测定纵向辅助的方向点时,我们采取测小角的方法间接测定,这种方法的应用,可使距离误差小于0.5mm。
以Ds点为例分析如下:在距离OsDs线约5d (本工法中取d=8m)处设一测站,利用GTS-311全站仪测距离d1、d2,用T2经纬仪测定α角,通过余弦定理d2=d12+d22-2d1d2cosα可计算出d值,经过多次测定,对Ds点进行逐步修正,使Dsos=8m,从而定位Ds点。
利用同样方法即可定们De、Te、Ts三控制点。
以满足纵向辅助线(DsDe、TsTe)与纵向中心线OsOe的平行性要求。
误差分析:根据下图所示,我们假设d1=d2=b,则有:sinα=2sinα/2cosα/2=2*4*40/1616=0.1982由余弦定理:d=d1+d2-2d1d2cosα,积分得:2d△d=2 d1△d1+ 2d2△d2-2d1△d1 cosα+2d1d2sinα(△αρ)设△d=m,化简得:m=(d1 - d2 cosα)△d1 /d+(d1d2sinα(△α/dρ)上式中:m——距离d的误差,△d1 距离d1 误差(取1mm)△d2 ——距离d2 的误差(取1mm),d——测定距离(取8m)ρ——角度弧度换算常数(取206265)d1——如上图所示(取40.2m)d2——如上图所示(取40.2m)△α——仪器角度偏差(取2)则上式可化简为:m=2b(1-cosα)/d+2bsinα/dρ=2-40.2*0.02/8+2*1616*0.198/8*206265=0.2mm,满足0.5mm的精度要求。
如须使用方便,还可以根据m的计算式,设d的值,b的值的若干变量,编制的简单的计算程序,进行电算,可从结果根据 d 值筛选出,m趋向于很小b的最佳值,附程序。
10 LET B=120 LET A=130 LET M=0.04b/d+0.396b2/206265d40 PRINT ―b=‖ ; B50PRINT ―α‖;A60 PRINT ―m=‖ M70 LET A=A+180 IF A<101 THEN 3090 LET D=D+1100 IF D<21 THEN 20110 END4.2.4 底层纵向辅助线上各距离控制点的测定在4.2.2中,我们已确定了横向中心线上定出Do、To点,此两点即为纵向辅助线上各距离控制点的起点,其与纵向中心线距离的偏差根据4.2.3中的发析可知,满足0.5mm的精度要求。
4.2.5 底层纵向辅助线上各距离控制点的测定确定了纵向辅助线上各距离控制点的起点后,我们采用距离差取平均测距法可测出各距离控制点,在此方法运用中,对其误差影响较大的有以下两项。
(1)加权常数误差的影响加权常数误差是指仪器中心、反光棱镜等效反射面、待测距离标志中心不一致所造成的误差,其特点是随测设距离的改变,该误差的对所测距离的影响在一定时间内大小不变、符合相同。
因此在此工法应用中,可不考虑该误差对距离的影响。
(2)周期误差的影响由于仪器内部电路的影响,而造成的测设结果随距离长短而做周期性的变化。
该变化范围即为周期误差,计算公式如下:ε=Acos[2πD/(λ/2)+ψo]上式中:A—周期误差的振幅D——距离λ—测距光波长ψ——初相位为消除此项影响,我们采用距离差取平均测距法,即可消除上述两项误差的影响,以D1为例:]-Acos[2απ* Y1D1 /(λ/2)+ψ0]利用GTS311全站仪,测出距离Y2Do、Y2D1则Y1D1+ Y1Y2 = DoD1 +( Y1Do + Y1Y2 ),即有:ε(Y1D1 + Y1Y2)=ε’ DoD1 +ε( Y1Do +Y1Y2 ),则ε’ DoD1=ε(Y1D1 + Y1Y2 )-ε(Y1Do + Y1Y2 )=Acos[2π*( Y1Do + Y1Y2 )/( λ/2)+ψ0] 比较(1),(2)两式,要取两次结果的平均值,则应使εDoD1 +ε’ DoD1 =0即:Acos[2π* Y1D1 /( λ/2)+ψ0]- Acos[2π* Y1Do ( λ/2)+ψ0] = Acos[2π*( Y1Do + Y1Y2 )/( λ/2)+ψ0]- Acos[2π* ( Y1D1 + Y1Y2 )/( λ/2)+ψ0]2πY1D1 /( λ/2)= Acos[2π*( Y1D1 + Y1Y2 )/( λ/2)-π2πY1Do /( λ/2)=2π( Y1Do + Y1Y2 )/( λ/2)-π解之得:Y1Y2 =λ/4因此,只须在测定时取定Y1Y2 为测距波长的1/4,即可消除周期误差及加权常数误差的影响,提高测距精度,光波长度可根据使用仪器的不同查阅相关的使用说明书而得。
本工法中GTS311全站仪的测距光波长度为20米。
4.3 测设过程中其他注意事项前面所述的测设方法仅在理论上对误差加以控制,在实际操作中,我们还对其它一些会对控制点测量精度造成一定影响的方面加以注意,如光学对点器的对中误差,气象因素等,还应在划线和做点的过程中特别小心,最好使划线的线条宽度不超过0.2mm,点的直径小于0.5mm,以缩小人为因素造成的误差。