平面向量与复数
- 格式:docx
- 大小:178.04 KB
- 文档页数:4
平面向量与复数的关系在数学中,平面向量和复数之间有着紧密的关联。
通过将平面向量用复数表示,我们能够更加直观地理解和计算向量的性质和运算。
本文将探讨平面向量与复数的关系,并阐述它们之间的转换和应用。
一、平面向量的表示与性质平面向量是指在平面上具有大小和方向的量。
一般来说,我们可以用坐标系中的两个有序数对来表示一个平面向量。
比如,对于平面上的点A(x1, y1)和点B(x2, y2),我们可以定义AB为一个平面向量,记作AB = (x2 - x1, y2 - y1)。
平面向量有以下重要的性质:1. 零向量:零向量是指模为0的向量,表示为0。
它的所有分量都为0,方向没有明确的定义。
2. 平行向量:如果两个向量的方向相同或相反,即它们的方向角相等或相差180度,则称它们为平行向量。
3. 向量的模:一个向量的模表示向量的长度,记作|AB|或∥AB∥,计算公式为∥AB∥ = √((x2 - x1)^2 + (y2 - y1)^2)。
4. 单位向量:如果一个向量的模为1,则称其为单位向量。
5. 向量的加法:向量的加法满足平行四边形法则,即将向量的起点放到另一个向量的终点上,连接两个向量的起点和终点,得到一个新的向量作为它们的和。
6. 数乘:将一个向量的每个分量都乘以一个实数,得到一个新的向量。
二、复数的定义与性质复数是由一个实部和一个虚部组成的数,形式为a + bi,其中a和b 是实数,i是虚数单位,满足i^2 = -1。
复数可用于表示在复平面上的点,其中实部表示实轴上的坐标,虚部表示虚轴上的坐标。
复数具有以下重要的性质:1. 共轭复数:对于一个复数a + bi,它的共轭复数定义为a - bi。
即共轭复数的实部相等,虚部的符号相反。
2. 模:一个复数的模表示复数到原点的距离,记作|z|或∥z∥,计算公式为∥z∥ = √(a^2 + b^2)。
3. 乘法:两个复数相乘的结果是一个复数。
如果两个复数分别为a + bi和c + di,则它们的乘积为(ac - bd) + (ad + bc)i。
复数与平面向量的应用知识点总结复数与平面向量在数学和物理等领域中有着广泛的应用,本文将对这两个知识点进行总结和概述。
一、复数的应用知识点复数是由实部和虚部组成的数,可以表示为 a + bi 的形式,其中 a 和 b 分别为实部和虚部。
复数的应用包括以下几个方面:1. 复数的四则运算:包括加法、减法、乘法和除法。
通过复数的四则运算,可以解决一些复杂的数学问题,例如求解方程、计算多项式的根等。
2. 复数的共轭:复数的共轭表示实部不变,虚部取负的复数,即 a + bi 的共轭为 a - bi。
共轭复数在求解方程、计算模长等问题中起到重要的作用。
3. 复数的模长和辐角:复数的模长表示复数到原点的距离,可以通过勾股定理计算。
复数的辐角可以通过计算反三角函数得到,常见的辐角有 [-π, π) 范围内的角度表示。
4. 欧拉公式:欧拉公式指出e^(iθ) = cosθ + isinθ,其中 e 是自然对数的底,i 是虚数单位。
欧拉公式将复数与三角函数联系起来,简化了一些复杂的运算。
二、平面向量的应用知识点平面向量是具有大小和方向的量,可以表示为有序对 (a, b),也可以表示为以起点和终点表示的箭头。
平面向量的应用包括以下几个方面:1. 平面向量的加法和减法:平面向量的加法满足平行四边形法则,即将两个向量的起点相连,然后以连接线段为对角线构建平行四边形,那么连接线段的终点即为两个向量相加的结果。
减法类似,只需将一个向量取相反向量再进行加法。
2. 平面向量的数量积和夹角:平面向量的数量积可以用来计算两个向量的夹角的余弦值。
数量积满足交换律和分配律,可以通过向量的坐标进行计算。
3. 平面向量的模长:平面向量的模长表示向量的长度,可以通过勾股定理计算,即模长为√(a^2 + b^2)。
4. 单位向量:单位向量是模长为 1 的向量,可以通过将向量除以其模长得到。
单位向量有很多重要的应用,例如在求解向量的投影、计算向量的夹角等问题中。
第06讲-平面向量与复数(解析版)第06讲-平面向量与复数(解析版)平面向量与复数是数学中的两个重要概念,它们在解析几何和复数运算中起着重要的作用。
平面向量用来描述平面上的位移和方向,而复数则是由实部和虚部构成的数,可以表示平面上的点与向量。
平面向量的定义与性质平面向量可以理解为带有方向的位移量,它由两个点确定,可以用向量箭头表示。
一个平面向量可以表示为AB(向量上面带有箭头),其中A和B为向量的起点和终点,也可以使用向量的分量形式表示为向量的横坐标和纵坐标。
平面向量有一些重要的性质,首先,向量的大小用向量的模表示,表示为|AB|,即向量的长度。
其次,向量可以进行加法和乘法运算,向量的加法是指向量与向量相加的运算,向量的乘法是指向量与标量相乘的运算。
向量的加法满足交换律和结合律,即A + B = B + A,(A + B) + C = A + (B + C)。
向量的乘法也满足一些性质,标量与向量相乘,可以改变向量的大小和方向,但是不改变其方向。
平面向量可以表示为有向线段,即从起点指向终点的线段。
向量的方向可以用角度来表示,称为向量的方向角。
向量的方向角可以通过三角函数来计算,其中正弦和余弦分别表示向量的纵坐标和横坐标与向量模的比值。
复数的定义与性质复数是由实部和虚部构成的数,可以表示为a + bi的形式,其中a 为实部,b为虚部,i为虚数单位,满足i^2 = -1。
复数在解析几何和电路等领域有广泛应用。
复数有一些重要的性质,首先,复数可以进行加法和乘法运算。
复数的加法满足交换律和结合律,即a + bi + c + di = (a + c) + (b + d)i。
复数的乘法满足交换律、结合律和分配律,即(a + bi)(c + di) = ac + adi + bci + bdi^2。
复数可以表示为平面上的点,其中实部对应点的横坐标,虚部对应点的纵坐标。
复数的大小用模表示,表示为|a + bi|,即复数的距离原点的距离。
平面向量与复数的联系与应用一、引言平面向量和复数是高中数学中常见的概念,它们在几何学和代数学中有着密切的联系与应用。
本文将探讨平面向量和复数之间的联系,以及它们在数学和物理中的应用。
二、平面向量与复数的定义和表示方法1. 平面向量的定义和表示方法平面向量是具有大小和方向的量,可以用有向线段来表示。
通常用字母加上一个箭头来表示向量,如A B⃗,其中A和B表示向量的起点和终点。
平面向量也可以用坐标表示,如A B⃗= (x,y),其中(x,y)为向量的坐标。
2. 复数的定义和表示方法复数是由实数部分和虚数部分组成的数,通常表示为a+bi,其中a 和b为实数,i为虚数单位。
复数可以用平面上的点表示,其中实数部分对应横坐标,虚数部分对应纵坐标。
三、平面向量与复数的联系平面向量和复数之间有着密切的联系,具体体现在以下几个方面。
1. 向量的加法与复数的加法向量的加法满足平行四边形法则,即A B⃗ +B C⃗ =A C⃗。
复数的加法满足实部相加,虚部相加的规则,即(a+bi)+(c+di)=(a+c)+(b+d)i。
2. 向量的数量积与复数的乘法向量的数量积满足A B⃗·B C⃗=|A B⃗||B C⃗|cosθ,其中θ为两向量夹角。
复数的乘法满足(a+bi)(c+di)=(ac-bd)+(ad+bc)i。
3. 平面向量与复数的相互转换对于平面上的向量A B⃗,可以与点B对应的复数表示形式相互转换。
即向量A B⃗对应的复数表示为z=x+yi,其中x和y分别为向量的分量。
四、平面向量与复数的应用平面向量和复数在数学和物理中有广泛的应用。
1. 平面向量的应用平面向量常用于解决几何学中的问题,如直线的判定、线段的长度和夹角的计算等。
此外,在力学和电磁学中,平面向量也被广泛应用于力的合成、力矩的计算等物理问题的求解。
2. 复数的应用复数在代数学的求解中有重要的应用。
它可以用于解决各类代数方程,如一元二次方程、三角方程等。
复数的应用平面向量复数的应用——平面向量复数是数学中的一个重要分支,它在平面向量的研究中起到了关键作用。
平面向量是指在平面内具有大小和方向的量,它可以用复数来表示。
本文将介绍复数在平面向量中的应用。
一、复数的定义与基本运算复数是由实数和虚数构成的数,形式可表示为a+bi,其中a为实数部分,b为虚数部分,i为虚数单位。
复数的加减法与实数的加减法相似,乘法与实数的乘法也遵循相同的规律。
二、复数表示平面向量复数可以表示平面向量的长度和方向。
对于平面上的向量AB,可以用复数表示为a+bi,其中a和b分别为向量的水平分量和竖直分量。
复数的模表示向量的长度,辐角表示向量的方向。
三、复数的加法平面向量的加法可以转化成复数的加法。
设有两个向量A和B,分别表示为a+bi和c+di,则其相加的结果为(a+c)+(b+d)i,即两个复数实部相加得到新复数的实部,虚部相加得到新复数的虚部。
四、复数的乘法平面向量的乘法可以通过复数的乘法运算来实现。
设有两个向量A和B,分别表示为a+bi和c+di,则其相乘的结果为(ac-bd)+(ad+bc)i,即两个复数的实部和虚部按照一定规律相乘。
五、复数的共轭与模的平方复数的共轭指将复数的虚部取相反数,记作z*。
对于复数z=a+bi,其共轭为z*=a-bi。
复数的模表示复数到原点的距离,可以通过复数的实部和虚部计算得到,即|z|=√(a²+b²)。
复数的模的平方可以表示为|z|²=a²+b²。
六、复数表示向量的旋转复数的辐角可以表示向量的旋转角度。
将平面上的向量表示为复数z=a+bi,其辐角θ可以通过计算得到,即θ=arctan(b/a)。
同时,可以通过构造模为1的复数来表示旋转角度θ的向量,即z=cosθ+isinθ。
七、复数的应用举例1. 平面向量的加减法可通过复数的加法和减法来实现,简化了运算过程。
2. 复数的乘法可以用于向量的缩放和旋转操作,方便了平面向量的变换。
2024年高考数学总复习第五章《平面向量与复数》§5.2平面向量基本定理及坐标表示最新考纲 1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及其坐标表示.3.会用坐标表示平面向量的加、减与数乘运算.4.理解用坐标表示的平面向量共线的条件.1.平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模设a=(x1,y1),b=(x2,y2),则a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),|a|=x21+y21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A(x1,y1),B(x2,y2),则AB→=(x2-x1,y2-y1),|AB→|=(x2-x1)2+(y2-y1)2.3.平面向量共线的坐标表示设a=(x1,y1),b=(x2,y2),其中b≠0.a,b共线⇔x1y2-x2y1=0.概念方法微思考1.若两个向量存在夹角,则向量的夹角与直线的夹角一样吗?为什么?提示不一样.因为向量有方向,而直线不考虑方向.当向量的夹角为直角或锐角时,与直线的夹角相同.当向量的夹角为钝角或平角时,与直线的夹角不一样.2.平面内的任一向量可以用任意两个非零向量表示吗?提示不一定.当两个向量共线时,这两个向量就不能表示,即两向量只有不共线时,才能作为一组基底表示平面内的任一向量.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内的任意两个向量都可以作为一组基底.(×)(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.(√)(3)在等边三角形ABC 中,向量AB →与BC →的夹角为60°.(×)(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.(×)(5)平面向量不论经过怎样的平移变换之后其坐标不变.(√)(6)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.(√)题组二教材改编2.已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________.答案(1,5)解析设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),=5-x ,=6-y ,=1,=5.3.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则mn =________.答案-12解析由向量a =(2,3),b =(-1,2),得m a +n b =(2m -n,3m +2n ),a -2b =(4,-1).由m a +n b 与a -2b 共线,得2m -n 4=3m +2n -1,所以m n =-12.题组三易错自纠4.设e 1,e 2是平面内一组基底,若λ1e 1+λ2e 2=0,则λ1+λ2=________.答案5.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=________.答案(-7,-4)解析根据题意得AB →=(3,1),∴BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4).6.已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________.答案-6解析因为a ∥b ,所以(-2)×m -4×3=0,解得m =-6.题型一平面向量基本定理的应用例1如图,已知△OCB 中,A 是CB 的中点,D 是将OB →分成2∶1的一个内分点,DC 和OA 交于点E ,设OA →=a ,OB →=b.(1)用a 和b 表示向量OC →,DC →;(2)若OE →=λOA →,求实数λ的值.解(1)由题意知,A 是BC 的中点,且OD →=23OB →,由平行四边形法则,得OB →+OC →=2OA →,所以OC →=2OA →-OB →=2a -b ,DC →=OC →-OD →=(2a -b )-23b =2a -53b .(2)由题意知,EC →∥DC →,故设EC →=xDC →.因为EC →=OC →-OE →=(2a -b )-λa =(2-λ)a -b ,DC →=2a -53b .所以(2-λ)a -b =2a -53b.因为a 与b 不共线,由平面向量基本定理,2-λ=2x ,-1=-53x ,x =35,λ=45.故λ=45.思维升华应用平面向量基本定理的注意事项(1)选定基底后,通过向量的加、减、数乘以及向量平行的充要条件,把相关向量用这一组基底表示出来.(2)强调几何性质在向量运算中的作用,用基底表示未知向量,常借助图形的几何性质,如平行、相似等.(3)强化共线向量定理的应用.跟踪训练1在△ABC 中,点P 是AB 上一点,且CP →=23CA →+13CB →,Q 是BC 的中点,AQ 与CP 的交点为M ,又CM →=tCP →,则t 的值为________.答案34解析∵CP →=23CA →+13CB →,∴3CP →=2CA →+CB →,即2CP →-2CA →=CB →-CP →,∴2AP →=PB →,即P 为AB的一个三等分点,如图所示.∵A ,M ,Q 三点共线,∴CM →=xCQ →+(1-x )CA →=x 2CB →+(x -1)AC →,而CB →=AB →-AC →,∴CM →=x 2AB →.又CP →=CA →-PA →=-AC →+13AB →,由已知CM →=tCP →,可得x 2AB →=AC →+13AB 又AB →,AC →不共线,=t 3,1=-t,解得t =34.题型二平面向量的坐标运算例2(1)已知点M (5,-6)和向量a =(1,-2),若MN →=-3a ,则点N 的坐标为()A .(2,0)B .(-3,6)C .(6,2)D .(-2,0)答案A解析设N (x ,y ),则(x -5,y +6)=(-3,6),∴x =2,y =0.(2)已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,a =m b +n c (m ,n ∈R ),则m +n =________.答案-2解析由已知得a =(5,-5),b =(-6,-3),c =(1,8).∵m b +n c =(-6m +n ,-3m +8n ),-6m +n =5,-3m +8n =-5,m =-1,n =-1.∴m +n =-2.思维升华平面向量坐标运算的技巧(1)利用向量加、减、数乘运算的法则来进行求解,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用“向量相等,则坐标相同”这一结论,由此可列方程(组)进行求解.跟踪训练2线段AB 的端点为A (x,5),B (-2,y ),直线AB 上的点C (1,1),使|AC →|=2|BC →|,则x +y =________.答案-2或6解析由已知得AC →=(1-x ,-4),2BC →=2(3,1-y ).由|AC →|=2|BC →|,可得AC →=±2BC →,则当AC →=2BC →1-x =6,-4=2-2y ,x =-5,y =3,此时x +y =-2;当AC →=-2BC →1-x =-6,-4=-2+2y ,x =7,y =-1,此时x +y =6.综上可知,x +y =-2或6.题型三向量共线的坐标表示命题点1利用向量共线求向量或点的坐标例3已知O 为坐标原点,点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为________.答案(3,3)解析方法一由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ).又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0,解得λ=34,所以OP →=34OB →=(3,3),所以点P 的坐标为(3,3).方法二设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线,所以(x -4)×6-y ×(-2)=0,解得x =y =3,所以点P 的坐标为(3,3).命题点2利用向量共线求参数例4(2018·洛阳模拟)已知平面向量a =(2,-1),b =(1,1),c =(-5,1),若(a +k b )∥c ,则实数k 的值为()A .-114 B.12C .2D.114答案B解析因为a =(2,-1),b =(1,1),所以a +k b =(2+k ,-1+k ),又c =(-5,1),由(a +k b )∥c得(2+k )×1=-5×(k -1),解得k =12,故选B.思维升华平面向量共线的坐标表示问题的解题策略(1)如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”.(2)在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ).跟踪训练3(1)(2018·济南模拟)已知向量a =(1,1),b =(2,x ),若a +b 与3a -b 平行,则实数x 的值是__________________.答案2解析∵a =(1,1),b =(2,x ),∴a +b =(3,x +1),3a -b =(1,3-x ),∵a +b 与3a -b 平行,∴3(3-x )-(x +1)=0,解得x =2.(2)已知向量OA →=(k,12),OB →=(4,5),OC →=(-k,10),且A ,B ,C 三点共线,则实数k 的值是________.答案-23解析AB →=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(-2k ,-2).∵A ,B ,C 三点共线,∴AB →,AC →共线,∴-2×(4-k )=-7×(-2k ),解得k =-23.1.已知M (3,-2),N (-5,-1),且MP →=12MN →,则P 点的坐标为()A .(-8,1)1D .(8,-1)答案B解析设P (x ,y ),则MP →=(x -3,y +2).而12MN →=12(-8,1)4-3=-4,+2=12,=-1,=-32,∴1故选B.2.(2019·山西榆社中学诊断)若向量AB →=DC →=(2,0),AD →=(1,1),则AC →+BC →等于()A .(3,1)B .(4,2)C .(5,3)D .(4,3)答案B解析AC →=AD →+DC →=(3,1),又BD →=AD →-AB →=(-1,1),则BC →=BD →+DC →=(1,1),所以AC →+BC →=(4,2).故选B.3.(2018·海南联考)设向量a =(x ,-4),b =(1,-x ),若向量a 与b 同向,则x 等于()A .-2B .2C .±2D .0答案B解析由向量a 与b 共线得-x 2=-4,所以x =±2.又向量a 与b 同向,所以x =2.故选B.4.已知平面直角坐标系内的两个向量a =(1,2),b =(m ,3m -2),且平面内的任一向量c 都可以唯一的表示成c =λa +μb (λ,μ为实数),则实数m 的取值范围是()A .(-∞,2)B .(2,+∞)C .(-∞,+∞)D .(-∞,2)∪(2,+∞)答案D解析由题意知向量a ,b 不共线,故2m ≠3m -2,即m ≠2.5.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限内一点,∠AOC =π4,且|OC |=2,若OC →=λOA →+μOB →,则λ+μ等于()A .22 B.2C .2D .42答案A解析因为|OC |=2,∠AOC =π4,所以C (2,2),又OC →=λOA →+μOB →,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=2,λ+μ=2 2.6.(2019·蚌埠期中)已知向量m A n =(3,sin A +3cos A )共线,其中A 是△ABC 的内角,则角A 的大小为()A.π6B.π4C.π3D.π2答案C 解析∵m ∥n ,∴sin A (sin A +3cos A )-32=0,∴2sin 2A +23sin A cos A =3,∴1-cos 2A +3sin 2A =3,∴A 1,∵A ∈(0,π),∴2A -π6∈-π6,因此2A -π6=π2,解得A =π3,故选C.7.若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________.答案-54解析AB →=(a -1,3),AC →=(-3,4),根据题意知AB →∥AC →,∴4(a -1)=3×(-3),即4a =-5,∴a =-54.8.设向量a ,b 满足|a |=25,b =(2,1),且a 与b 的方向相反,则a 的坐标为________.答案(-4,-2)解析∵b =(2,1),且a 与b 的方向相反,∴设a =(2λ,λ)(λ<0).∵|a |=25,∴4λ2+λ2=20,λ2=4,λ=-2.∴a =(-4,-2).9.(2018·全国Ⅲ)已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=________.答案12解析由题意得2a +b =(4,2),因为c ∥(2a +b ),所以4λ=2,得λ=12.10.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.答案k ≠1解析若点A ,B ,C 能构成三角形,则向量AB →,AC →不共线.∵AB →=OB →-OA →=(2,-1)-(1,-3)=(1,2),AC →=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1),∴1×(k+1)-2k≠0,解得k≠1.11.已知a=(1,0),b=(2,1),(1)当k为何值时,k a-b与a+2b共线;(2)若AB→=2a+3b,BC→=a+m b且A,B,C三点共线,求m的值.解(1)k a-b=k(1,0)-(2,1)=(k-2,-1),a+2b=(1,0)+2(2,1)=(5,2).∵k a-b与a+2b共线,∴2(k-2)-(-1)×5=0,即2k-4+5=0,得k=-1 2 .(2)方法一∵A,B,C三点共线,∴AB→=λBC→,即2a+3b=λ(a+m b),=λ,=mλ,解得m=32.方法二AB→=2a+3b=2(1,0)+3(2,1)=(8,3),BC→=a+m b=(1,0)+m(2,1)=(2m+1,m),∵A,B,C三点共线,∴AB→∥BC→,∴8m-3(2m+1)=0,即2m-3=0,∴m=32.12.如图,已知平面内有三个向量OA→,OB→,OC→,其中OA→与OB→的夹角为120°,OA→与OC→的夹角为30°,且|OA→|=|OB→|=1,|OC→|=23.若OC→=λOA→+μOB→(λ,μ∈R),求λ+μ的值.解方法一如图,作平行四边形OB1CA1,则OC→=OB1→+OA1→,因为OA→与OB→的夹角为120°,OA→与OC→的夹角为30°,所以∠B1OC=90°.在Rt△OB1C中,∠OCB1=30°,|OC→|=23,所以|OB1→|=2,|B1C→|=4,所以|OA1→|=|B1C→|=4,所以OC →=4OA →+2OB →,所以λ=4,μ=2,所以λ+μ=6.方法二以O为原点,建立如图所示的平面直角坐标系,则A (1,0),-12,C (3,3).由OC →=λOA →+μOB →,λ-12μ,=32μ,=4,=2.所以λ+μ=6.13.如图,四边形ABCD 是正方形,延长CD 至E ,使得DE =CD ,若点P 为CD 的中点,且AP →=λAB →+μAE →,则λ+μ等于()A .3B.52C .2D .1答案B 解析由题意,设正方形的边长为1,建立平面直角坐标系如图,则B (1,0),E (-1,1),∴AB →=(1,0),AE →=(-1,1),∵AP →=λAB →+μAE →=(λ-μ,μ),又∵P 为CD 的中点,∴AP →-μ=12,=1,∴λ=32,μ=1,∴λ+μ=52.14.(2017·全国Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为()A .3B .22 C.5D.2答案A 解析建立如图所示的平面直角坐标系,则C 点坐标为(2,1).设BD 与圆C 切于点E ,连接CE ,则CE ⊥BD .∵CD =1,BC =2,∴BD =12+22=5,EC =BC ·CD BD =25=255,即圆C 的半径为255,∴P 点的轨迹方程为(x -2)2+(y -1)2=45.设P (x 0,y 0)0=2+255cos θ,0=1+255sin θ(θ为参数),而AP →=(x 0,y 0),AB →=(0,1),AD →=(2,0).∵AP →=λAB →+μAD →=λ(0,1)+μ(2,0)=(2μ,λ),∴μ=12x 0=1+55cos θ,λ=y 0=1+255sin θ.两式相加,得λ+μ=1+255sin θ+1+55cos θ=2+sin(θ+φ)≤sin φ=55,cos φ当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.故选A.15.在直角梯形ABCD 中,AB ⊥AD ,DC ∥AB ,AD =DC =2,AB =4,E ,F 分别为AB ,BC的中点,以A 为圆心,AD 为半径的圆弧DE 的中点为P (如图所示),若AP →=λED →+μAF →,则2λ-μ的值是________.答案0解析建立如图所示的平面直角坐标系,则A (0,0),B (4,0),C (2,2),D (0,2),E (2,0),F (3,1),所以ED →=(-2,2),AF →=(3,1),则AP →=λED →+μAF →=(-2λ+3μ,2λ+μ),又因为以A 为圆心,AD 为半径的圆弧DE 的中点为P ,所以点P 的坐标为(2,2),AP →=(2,2),所以-2λ+3μ=2,2λ+μ=2,所以λ=24,μ=22,所以2λ-μ=0.16.如图,在同一个平面内,三个单位向量OA →,OB →,OC →满足条件:OA →与OC →的夹角为α,且tan α=7,OB →与OC →的夹角为45°.若OC →=mOA →+nOB →(m ,n ∈R ),求m +n 的值.解建立如图所示的平面直角坐标系,由tan α=7知α为锐角,且sin α=7210,cos α=210,故cos(α+45°)=-35,sin(α+45°)=45.∴点B ,C -35,∴OB →-35,OC →又OC →=mOA →+nOB →,m (1,0)+-35,-35n =210,=7210,=528,=728,∴m +n =528+728=322.。
第06讲-平面向量与复数一、高考热点牢记概念公式,避免卡壳1.复数z =a +b i(a ,b ∈R )概念(1)分类:当b =0时,z ∈R ;当b ≠0时,z 为虚数;当a =0,b ≠0时,z 为纯虚数.(2)z 的共轭复数z -=a -b i.(3)z 的模|z |=a 2+b 2.2.复数的四则运算法则(a +b i)±(c +d i)=(a ±c )+(b ±d )i ;(a +b i)(c +d i)=(ac -bd )+(bc +ad )i ;(a +b i)÷(c +d i)=ac +bdc 2+d 2+bc -adc 2+d 2i(a ,b ,c ,d ∈R ,c +d i ≠0).3.平面向量的有关运算(1)两个非零向量平行(共线)的充要条件:a ∥b ⇔a =λb .两个非零向量垂直的充要条件:a ⊥b ⇔a ·b =0⇔|a +b |=|a -b |.(2)若a =(x ,y ),则|a |=a ·a =x 2+y 2.(3)若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 2-x 1)2+(y 2-y 1)2.(4)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.活用结论规律,快速抢分1.复数的几个常用结论(1)(1±i)2=±2i ;(2)1+i 1-i =i ,1-i1+i =-i ;(3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i.2.复数加减法可按向量的三角形、平行四边形法则进行运算.3.z ·z -=|z |2=|z -|2.4.三点共线的判定三个点A ,B ,C 共线⇔AB→,AC →共线; 向量P A →,PB →,PC →中三终点A ,B ,C 共线⇔存在实数α,β使得P A →=αPB→+βPC →,且α+β=1. 5.向量的几个常用结论(1)在△ABC 中,P A →+PB →+PC →=0⇔P 为△ABC 的重心.(2)在△ABC 中,P A →·PB →=PB →·PC →=PC →·P A →⇔P 为△ABC 的垂心.(3)在△ABC 中,向量λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|(λ≠0)所在直线过△ABC 的内心.(4)在△ABC 中,|P A →|=|PB →|=|PC →|⇔P 为△ABC 的外心.二、真题再现1.设3i12i z -=+,则z =A .2BCD .1【答案】C【解析】【分析】先由复数的除法运算(分母实数化),求得z ,再求z .【详解】因为312iz i -=+,所以(3)(12)17(12)(12)55i i z i i i --==-+-,所以z ==C .【点睛】本题主要考查复数的乘法运算,复数模的计算.本题也可以运用复数模的运算性质直接求解.2.设z=i(2+i),则z =A .1+2iB .–1+2iC .1–2iD .–1–2i【答案】D【解析】【分析】本题根据复数的乘法运算法则先求得z ,然后根据共轭复数的概念,写出z .【详解】2i(2i)2i i 12i z =+=+=-+, 所以12z i =--,选D .【点睛】本题主要考查复数的运算及共轭复数,容易题,注重了基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.3.设z=-3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】【分析】先求出共轭复数再判断结果.【详解】由32,z i =-+得32,z i =--则32,z i =--对应点(-3,-2)位于第三象限.故选C .【点睛】本题考点为共轭复数,为基础题目.4.若(1i)2i z +=,则z =( )A .1i --B .1+i -C .1i -D .1+i【答案】D【解析】【分析】根据复数运算法则求解即可.【详解】()(2i2i 1i 1i 1i 1i 1i )()z -===+++-.故选D .【点睛】本题考查复数的商的运算,渗透了数学运算素养.采取运算法则法,利用方程思想解题.5.已知非零向量a b r r ,满足2a b r r =,且ba b ⊥r r r (–),则a r 与b r 的夹角为 A .π6 B .π3 C .2π3 D .5π6【答案】B【解析】【分析】本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由()a b b -⊥r r r 得出向量,a b r r 的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.【详解】因为()a b b -⊥r r r ,所以2()a b b a b b -⋅=⋅-r r r r r r =0,所以2a b b ⋅=r r r ,所以cos θ=22||122||a b b b a b ⋅==⋅r r r r r r ,所以a r 与b r 的夹角为3π,故选B . 【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π. 6.已知向量()()2332a b ==r r ,,,,则|–|a b =r rAB .2C .D .50【答案】A【解析】【分析】 本题先计算a b -r r ,再根据模的概念求出||a b -r r .【详解】由已知,(2,3)(3,2)(1,1)a b -=-=-r r ,所以||a b -==r r故选A【点睛】本题主要考查平面向量模长的计算,容易题,注重了基础知识、基本计算能力的考查.由于对平面向量的坐标运算存在理解错误,从而导致计算有误;也有可能在计算模的过程中出错.7.已知AB u u u v =(2,3),AC u u u v =(3,t),BC u u u v =1,则AB BC ⋅u u u v u u u v =A .-3B .-2C .2D .3【答案】C【解析】【分析】根据向量三角形法则求出t ,再求出向量的数量积.【详解】由(1,3)BC AC AB t =-=-u u u r u u u r u u u r,1BC ==u u u r ,得3t =,则(1,0)BC =u u u r ,(2,3)(1,0)21302AB BC ==⨯+⨯=u u u r u u u r g g .故选C .【点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.8.已知向量(2,2),(8,6)a b ==-v v ,则cos ,a b =v v ___________.【答案】10-【解析】【分析】根据向量夹角公式可求出结果.【详解】2826cos ,10a b a b a b ⨯-+⨯<>===-r rr r g r r g .【点睛】本题考查了向量夹角的运算,牢记平面向量的夹角公式是破解问题的关键.9.已知向量a v =(-4,3),b v =(6,m ),且a b ⊥v v ,则m=__________.【答案】8.【分析】利用a b ⊥r r 转化得到0a b •=r r 加以计算,得到m .【详解】向量4,36,a b m a b =-=⊥r r r r (),(),,则•046308a b m m =-⨯+==r r,,.【点睛】本题考查平面向量的坐标运算、平面向量的数量积、平面向量的垂直以及转化与化归思想的应用.属于容易题. 10.已知,a b r r 为单位向量,且a b ⋅r r =0,若2c a =r r ,则cos ,a c <>=r r ___________. 【答案】23. 【解析】【分析】根据2||c v 结合向量夹角公式求出||c v,进一步求出结果.【详解】因为2c a =v v ,0a b ⋅=v v ,所以22a c a b vv v v ⋅=⋅2=,222||4||5||9c a b b =-⋅+=v v v v ,所以||3c =r ,所以cos ,a c <>=r r 22133a c a c ⋅==⨯⋅v v v v . 【点睛】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.三、名校精选1.复数421i z i -=+的虚部为( ) A .1- B .3- C .1 D .2【解析】【分析】利用复数的商的运算进行化简,然后由虚部的概念可得答案.【详解】()()()()42142426131112i i i iz i i i i -----====-++-,则复数z 的虚部为-3,故选B【点睛】本题考查复数的商的运算及有关概念,需要注意a+bi 的虚部为b ,不要误写为bi.2.设i 是虚数单位,若复数1z i =+,则2z z +=( )A .1+iB .1i -C .1i --D .1i -+【答案】A【解析】【分析】由1z i =+可求出1z i =-,22(1)2z i i =+=代入原式计算即可.【详解】Q 复数1z i =+,∴1z i =-,22(1)2z i i =+=,则2121z z i i i +=-+=+.故选A .【点睛】本题主要考查复数的基本运算,难度容易.3.在复平面内,复数z 满足(1)4z i -=,则复数z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】【分析】对条件中的式子进行计算化简,得到复数z ,从而得到其在复平面对应的点的坐标,得到答案.【详解】由(1)4z i -=,得4221z i i ==+-所以z 在复平面对应的点为()2,2,所以对应的点在第一象限.故选A 项.【点睛】本题考查复数的计算,复平面的相关概念,属于简单题.4.已知i 是虚数单位,若32i az i +=+是纯虚数,则实数a =( )A .1B .12 C .12- D .2-【答案】B【解析】【分析】利用复数的乘法和除法运算,化简z ,再令实部为0,即得解.【详解】 由于3()(2)(21)(2)22(2)(2)5i a a i a i i a aiz i i i i +-----+====+++- 若为纯虚数,则12102a a -=∴=故选:B【点睛】本题考查了复数的基本概念和四则运算,考查了学生概念理解,数学运算的能力,属于基础题.5.设i 为虚数单位,复数z 满足(1)2z i i -=,则||(z = )A .1BC .2D .【答案】B【解析】【分析】利用复数代数形式的乘除运算,再由复数的模的计算公式求解即可.【详解】由(1)2z i i -=,得22(1)2211(1)(1)2i i i i z i i i i +-====-+--+, ||2z ∴=,故选B .【点睛】本题主要考查复数代数形式的乘除运算以及复数的模的计算.6.如图,在ABC ∆中,12AN AC P =u u u v u u u v ,是BN 的中点,若14AP mAB AC =+u u u v u u u v u u u v ,则实数m 的值是( )A .14 B .1 C .12 D .32 【答案】C【解析】【分析】以,AB AC u u u v u u u v 作为基底表示出AP u u u v ,利用平面向量基本定理,即可求出.【详解】∵P N ,分别是BN AC ,的中点,∴()111222AP AB BP AB BN AB AN AB AB =+=+=+-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u v 111224AN AB AC +=+u u u r u u u r u u u r.又14AP mAB AC =+u u u r u u u r u uu r,∴12m =.故选C.【点睛】本题主要考查平面向量基本定理以及向量的线性运算,意在考查学生的逻辑推理能力.7.已知向量a r ,b r 满足||1a =r ,||2b =r ,()23a b +=r r ,则||a b -=r r ( )A 3B 7C .3D .7【答案】B【解析】【分析】由()222()2()a b a a b b +=+⋅+r r r r r r ,求解a b ⋅r r ,再根据22||()2()a b a a b b -=-⋅+r r r r r r .【详解】由于()222()2()3a b a a b b +=+⋅+=r r r r r r1a b ⋅∴-=r r||a b ∴-===r r 故选:B【点睛】本题考查了向量数量积在模长求解中的应用,考查了学生转化划归,数学运算的能力,属于中档题. 8.已知平面向量()()2,1,2,4a b ==v v ,则向量a v 与b v 的夹角的余弦值为( )A .35B .45C .35- D .45- 【答案】B【解析】【分析】 由向量的模的坐标计算公式求出,a b r r ,利用数量积的坐标表示求出a b ⋅r r ,再根据向量的夹角公式即可求出.【详解】由()()2,1,2,4a b ==r r ,得a b ==r r 设向量a r 与b r 的夹角为θ,则84105cos θ===. 故选:B .【点睛】本题主要考查向量的夹角公式,向量的模的坐标计算公式,以及数量积的坐标表示的应用,意在考查学生的数学运算能力,属于基础题.9.已知向量()()1,,,2,a k b k ==r r 若a r 与b r 方向相同,则k 等于( )A .1B .C . D【答案】D【解析】【分析】依题a r //b r ,且a r 与b r 符号相同,运用坐标运算即可得到答案.【详解】因为a r 与b r 方向相同,则存在实数λ使(0)a b λλ=>r r, 因为()()1,,,2a k b k ==r r ,所以(,2)b k λλλ=r ,所以12k kλλ=⎧⎨=⎩,解之得22k =,因为0λ>,所以0k >, 所以2k =. 故答案选:D 【点睛】本题考查共线向量的基本坐标运算,属基础题.10.如图,在ABC ∆中,3BAC π∠=,2AD DB =u u u v u u u v ,P 为CD 上一点,且满足12AP mAC AB =+u u u v u u u v u u u v ,若ABC ∆的面积为23,则AP u u u v 的最小值为( )A 2B .43 C .3 D 3【答案】D【解析】【分析】 运用平面向量基本定理,得到m 的值,结合向量模长计算方法,建立等式,计算最值,即可.【详解】()AP AC CP AC kCD AC k AD AC =+=+=+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 23AC k AB AC ⎛⎫=+- ⎪⎝⎭u u u v u u u v u u u v ()21132k AB k AC mAC AB =+-=+u u u v u u u v u u u v u u u v ,得到211,32k k m -==,所以14m =,结合 ABC ∆的面积为231332AC AB u u u v u u u v ⋅=得到8AC AB ⋅=u u u v u u u v ,所以AP ==≥u u u v D . 【点睛】考查了平面向量基本定理,考查了基本不等式的运用,难度偏难.11.已知向量(1,2)m =-v ,(1,)n λ=v .若m n ⊥u v v ,则2m n +v v 与m u v 的夹角为_________. 【答案】4π 【解析】【分析】根据平面向量数量积的坐标表示公式,结合m n ⊥u r r ,可以求出λ的值,再根据平面向量夹角公式求出2m n +u r r 与m u r的夹角.【详解】 因为m n ⊥u r r ,所以1011202m n λλ⋅=⇒-⨯+=⇒=u r r ,即(12)1,n =r , 因此2(1,3)m n +=u r r ,设2m n +u r r 与m u r 的夹角为θ,因此有(2)cos 22m m n m m n θ+⋅===+⋅u r r u u r r r u r ,因为[0,]θπ∈,所以4πθ=. 【点睛】本题考查了平面向量夹角公式,考查了平面向量数量积的坐标表示公式,考查了平面向量垂直的性质,考查了数学运算能力.12.已知1e r ,2e r 是夹角为120°的两个单位向量,则122a e e =+r r r 和212b e e =-r r r 的夹角的余弦值为_________.【答案】7【解析】【分析】 首先利用数量积公式求得3a b ⋅=r r,a =r b =r 利用夹角公式代入即可.【详解】设a r 与b r的夹角为θ,因为()()221221122243a b e e e e e e ⋅=+⋅-=-+=u u r u u r r r u r u u r u u r u r ,a ===rb ==r ,所以cos a b a b θ⋅===r r .故答案为:. 【点睛】 本题考查单位向量的概念,向量数量积的计算公式及运算,向量的数乘运算.较易.13.已知a v 、b v 为单位向量,,3a b π=v v ,则2a b +=v v____________. 【解析】【分析】利用平面向量数量积的运算律和定义计算2a b +=r r .【详解】 由于a r 、b r 为单位向量,,3a b π<>=r r ,则1a b ==r r ,且1cos ,2a b a b a b ⋅=⋅<>=r r r r r r , 因此,2a b +====r r ,【点睛】本题考查利用平面向量的数量积计算向量的模,在计算向量的模时,一般将向量的模进行平方,结合平面向量数量积的运算律和定义来进行计算,考查计算能力,属于中等题.s 14.已知向量()4,2a =v ,(),1b λ=v ,若2a b +v v 与a b -v v 的夹角是锐角,则实数λ的取值范围为______.【答案】()(12,1+U【解析】【分析】先求出2a b +r r 与a b -r r 的坐标,再根据2a b +r r 与a b -rr 夹角是锐角,则它们的数量积为正值,且它们不共线,求出实数λ的取值范围,.【详解】Q 向量(4,2)a =r ,(,1)b λ=r ,∴2(42,4)a b λ+=+r r ,(4,1)a b λ-=-r r ,若2a b +r r 与a b -r r 的夹角是锐角,则2a b +r r 与a b -r r 不共线,且它们乘积为正值, 即42441λλ+≠-,且()()2(42,4)(4,1)a b a b λλ+⋅-=+⋅-r r r r 220420λλ=+->,求得11λ<<2λ≠.【点睛】本题主要考查利用向量的数量积解决向量夹角有关的问题,以及数量积的坐标表示,向量平行的条件等.条件的等价转化是解题的关键.15.在等腰ABC ∆中,已知底边2BC =,点D 为边AC 的中点,点E 为边AB 上一点且满足2EB AE =,若12BD AC ⋅=-u u u r u u u r ,则EC AB ⋅=u u u r u u u r _____. 【答案】43【解析】【分析】根据已知条件求出BA BC ⋅u u u r u u u r 和BA u u u r 的值,然后以BC uuu r 、BA u u u r 为基底表示向量EC uuu r ,利用平面向量数量积的运算律可计算出EC AB ⋅u u u r u u u r 的值.【详解】D Q 为AC 的中点,()()111222BD BA AD BA AC BA BC BA BA BC ∴=+=+=+-=+u u u r u u u r u u u r u u u u u u u r u u u r u u u u r u u r u u u r r u ur , AC BC BA =-u u u r u u u r u u u r ,()()()22111222BD AC BC BA BC BA BC BA ∴⋅=+⋅-=-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 即2221BA -=-u u u r,可得BA =u u u r , ()22222AC BC BA BC BA BC BA =-=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r u u u r Q ,2122BA BC BC ∴⋅==u u u r u u u r u u u r , ()22224523333EC AB BC BE AB BA BC BA BA BC BA ⎛⎫∴⋅=-⋅=-⋅=-⋅=⨯-= ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 故答案为:43.【点睛】本题考查了向量的线性运算、数量积运算,解题的关键就是选择合适的基底来表示向量,考查计算能力,属于中档题.。
2020年普通高等学校招生全国统一考试数学分类解析
平面向量与复数
一.平面向量
1.(山东卷7)已知P 为边长为2的正六边形ABCDEF 内的一点,则AB AP ⋅ 的取值范围是
A .),62(-
B .),26(-
C .),42(-
D .),64(-
答案:A
2. (全国Ⅰ卷理14)设b a ,为单位向量,且︱b a +︱=1,则︱b a -︱= 答案:3
3. (浙江卷17)设1e ,2e 为单位向量,满足122e e -≤12a e e =+,123b e e =+,
设,a b 的夹角为θ,则2cos θ的最小值为
.
答案:29
28
4. (全国Ⅱ卷文5)已知单位向量b a ,的夹角为60°,则在下列向量中,与b 垂 直的是
A .b a 2+
B .b a +2
C .b a 2-
D .b a -2 答案:D
5. (全国Ⅱ卷理13)已知单位向量b a ,的夹角为45°,k b a -与a 垂直,则k =_____.
答案:
2
2
6. (全国Ⅲ卷理6)已知向量b a ,满足5a =,6b =,·6a b =-,则cos(,)a a b += A. 3135-
B. 1935-
C. 1735
D. 19
35
答案:D
7. (全国Ⅰ卷文14)设向量)42,1(),1,1(-+=-=m m b a ,若b a ⊥,则m =______. 答案:5
8.(北京卷13)已知正方形ABCD 的边长为2,点P 满足1
()2
AP AB AC =+,则PD =_________;PB PD ⋅=_________. 答案:5; 1-
9.(天津卷15)如图,在四边形ABCD 中,60,3B AB ∠=︒=,6BC =,且
3
,
2
AD BC AD AB λ=⋅=-,则实数λ的值为_________,若,M N 是线段BC 上的
动点,且||1MN =,则DM DN ⋅的最小值为_________. 答案:61;2
13
10.(海南卷3)在ABC ∆中,D 为边AB 上的中点,则=CB A. CA
CD +2
B. CA
CD 2-
C. CA
CD -2
D. CA CD 2+
答案:C
二.复数
1.(北京卷2)在复平面内,复数z 对应的点的坐标是(1,2),则=⋅z i
A. i 21+
B. i +-2
C. i 21-
D. i --2 答案:B
2.(山东卷2)
=+-i
i
212 A .1 B .1- C .i D .i - 答案:D
3.(天津卷10)i 是虚数单位,复数=+-i
i
28_________. 答案:i 23-
4.(江苏卷2)已知i 是虚数单位,则复数)2)(1(i i z -+=的实部是 答案:3
5.(上海卷3)已知复数z 满足i z 21-=(i 是虚数单位),则=z 答案:5
6.(全国Ⅰ卷理1)若i z +=1,则22z z -= A. 0 B. 1 C. 2 D. 2
答案:D
7. (全国Ⅲ卷文2)若i i z -=+1)1(,则z =
A. i -1
B. i +1
C. i -
D. i 答案:D
8. (浙江卷2)已知a R ∈,若()12a a i -+-(i 为虚数单位)是实数,则a = A.1 B.-1 C.2 D.-2 答案:C
9. (全国Ⅱ卷文2)=-4
)1(i
A. 4-
B. 4
C.i 4-
D.i 4 答案:A
10. (全国Ⅱ卷理15)设复数1z ,2z 满足122z z ==,则12z z i +=, 则12z z -=____ 答案:32
11. (全国Ⅲ卷理2)复数1
13i
-的虚部是 A. 310- B. 1
10-
C. 110
D. 310
答案:D
12. (全国Ⅰ卷文2)若312z i i =++,则z =
A.0
B.1 D. 2 答案:C
13. (海南卷2)=++)2)(21(i i
A. i 54+
B. i 5
C. i 5-
D. i 32+ 答案:B。