2020高考数学一轮总复习第10章计数原理概率与统计第3节随机事件及其概率模拟创新题理
- 格式:doc
- 大小:42.50 KB
- 文档页数:5
教学资料范本2020高考数学一轮复习第10章概率、统计和统计案例章末总结分层演练文-精装版编辑:__________________时间:__________________【精选】20xx最新高考数学一轮复习第10章概率、统计和统计案例章末总结分层演练文章末总结知识点考纲展示随机事件的概率❶了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.❷了解两个互斥事件的概率加法公式.古典概型❶理解古典概型及其概率计算公式.❷会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.随机数与几何概型❶了解随机数的意义,能运用模拟方法估计概率.❷了解几何概型的意义.随机抽样❶理解随机抽样的必要性和重要性.❷会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样的方法.用样本估计总体❶了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.❷理解样本数据标准差的意义和作用,会计算数据标准差.❸能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.❹会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.❺会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.统计案例❶会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.❷了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.❸通过典型案例了解回归分析的思想、方法,并能初步应用回归分析的思想、方法解决一些简单的实际问题.❹通过典型案例了解独立性检验(只要求2×2列联表)的思想、方法,并能初步应用独立性检验的思想、方法解决一些简单的实际问题.一、点在纲上,源在本里考点考题考源样本估计总体的数字特征(20xx·高考全国卷Ⅰ,T2,5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,x n的平均数 B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值 D.x1,x2,…,x n的中位数必修3 P79练习T1用样本估计总计(20xx·高考全国卷Ⅰ,T19,12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得x-=116∑i=116xi=9.97,s=116∑i=116(xi-x-)2=116⎝⎛⎭⎪⎫∑i=116x2i-16x-2≈0.212, ∑i=116x(xi-x-)(i-8.5)=-2.78,其中x i为抽取的第i个零件的尺寸,i=1,2,…,16.必修3 P79练习T2(1)求(x i ,i )(i =1,2,…,16)的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r |<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(x --3s ,x -+3s )之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii)在(x --3s ,x -+3s )之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(x i ,y i )(i =1,2,…,n )的相关系数r =.0.008≈0.09.变量间的相关关系 (20xx·高考全国卷Ⅲ,T 18,12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1-7分别对应年份2008-20xx(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明;(2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:i =17t i y i =40.17,必修3 P 90例题、P 95B 组T 1=0.55,7≈2.646.参考公式:相关系数r=,回归方程y^=a^+b^t中斜率和截距的最小二乘估计公式分别为:b^=,a^=y--b^t-.考点考题考源样本估计总体与独立性检验思想(20xx·高考全国卷Ⅱ,T19,12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.附:P(K2≥k)0.0500.0100.001选修12P15练习k 3.8416.63510.828K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).二、根置教材,考在变中一、选择题1.(必修3 P64A组T5改编)某校高一、高二、高三学生共有1 290人,其中高一480人,高二比高三多30人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生96人,则该样本中的高三学生人数为( )A.84 B.78C.81 D.96解析:选B.因为高一480人,高二比高三多30人,所以设高三有x人,则x+x+30+480=1 290,解得x=390,故高二420人,高三390人,若在抽取的样本中有高一学生96人,则该样本中的高三学生人数为×390=78(人).2.(选修12 P6例2改编)一只红铃虫的产卵y和温度x有关,根据收集的数据散点分布在曲线y=c1ec2x的周围,若用线性回归模型建立回归关系,则应作下列哪个变换( )A.t=ln x B.t=x2C.t=ln y D.t=ey解析:选C.由y=c1ec2x得c2x=ln=ln y-ln c1,令t=ln y,得t=c2x+ln c1,故选C.3.(必修3 P70内文改编)如图茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )A .2,5B .5,5C .5,8D .8,8解析:选C .由于甲组数据的中位数为15=10+x , 所以x =5.又乙组数据的平均数为9+15+(10+y )+18+245=16.8,所以y =8.所以x ,y 的值分别为5,8.4.(必修3 P79练习T3改编)在一段时间内有2 000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如图所示.若该处高速公路规定正常行驶速度为90~120 km/h ,试估计这2 000辆车中,以正常速度通过该处的汽车有( )A .30辆B .300辆C .170辆D .1 700辆解析:选D .直方图中速度为90~120 km/h 的频率为0.03×10+0.035×10+0.02×10=0.85.用样本估计总体,可知2 000辆车中,以正常速度通过该处的汽车约有0.85×2 000=1 700(辆).故选D .二、填空题5.(必修3 P95B 组T1改编)某科研所对新研发的一种产品进行合理定价,该产品按事先拟定的价格试销得如下统计数据.单价x (元) 8 8.2 8.4 8.8 8.6 9 销量y (件)908483758068回归方程为=x +(其中已算出=-20);该产品的成本为4.5元/件,为使科研所获利最大,该产品的定价应为________元/件.解析:依题意:x -=(8+8.2+8.4+8.8+8.6+9)=8.5, y -=(90+84+83+75+80+68)=80.又=-20,所以=-=80+20×8.5=250, 所以回归直线方程为=-20x +250. 设科研所所得利润为W ,定价为x ,所以W =(x -4.5)(-20x +250)=-20x2+340x -1 125, 所以当x ==8.5时,Wmax =320.故当该产品定价为8.5元/件时,W 取得最大值. 答案:8.56.(选修12 P15练习改编)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男 女 总计 爱好4020 60 不爱好 20 30 50 总计6050110则有________以上的把握认为“爱好该项运动与性别有关”. 附:K2=,P (K 2≥k 0)0.0500.0100.001k 03.8416.63510.828解析:K2=≈7.8>6.635.可知我们在犯错误的概率不超过0.01的前提下,即有99%以上的把握认为“爱好该项运动与性别有关”.答案:99%三、解答题7.(必修3 P94A组T3改编)经调查得出,某型号的轿车使用年限x和所支出的维修保养费y(万元)的统计资料如下表(注:第一年该型号的轿车的维修保养费由商家负责,消费者不承担).x(年)2345 6y(万元)2.23.85.56.57.(1)求y关于x的线性回归方程,并说明该型号轿车维修保养费的变化情况;(2)若每年维修保养费超过10万元,该型号轿车就作报废处理,问该型号轿车最多使用年限为多少年?附:解:(1)列表如下于是==1.23.a^=-=5-1.23×4=0.08.所以线性回归方程为=x+=1.23x+0.08.由回归直线方程=1.23x+0.08知,回归直线的斜率=1.23>0,所以x与y是正相关,即轿车使用年限越多,维修保养费越多.(2)若每年维修保养费超过10万元,该型号轿车就作报废处理,则该型号轿车最多使用年限x应满足1.23x+0.08≤10,解得x≤8.07,故该型号轿车最多使用8年就应作报废处理.8.(必修3 P39练习T3、选修12 P19B组T2改编)某食品公司研发生产一种新的零售食品,从产品中抽取100件作为样本,测量这些产品的一项质量指标值,由测量结果得到如下频率分布直方图:(1)求直方图中a的值;(2)设生产成本为y,质量指标值为x,生产成本与质量指标值之间满足函数关系y=,假设同组中的每个数据用该组区间的右端点值代替,试计算生产该食品的平均成本.解:(1)由已知,得(0.002+0.009+0.022+a+0.024+0.008+0.002)×10=1,解得a=0.033.(2)由题设条件及食品的质量指标值的频率分布直方图,得食品生产成本分组与频率分布表如下:组号1234567分组[66,70](70,74](74,78](78,82](82,92](92,100](100,108]频率0.020.090.220.330.240.080.02 根据题意,生产该食品的平均成本为70×0.02+74×0.09+78×0.22+82×0.33+92×0.24+100×0.08+108×0.02=84.52.11 / 11。
第三节随机事件的概率、古典概型与几何概型[考纲传真] 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别。
2。
了解两个互斥事件的概率加法公式.3。
理解古典概型及其概率计算公式.4.会计算一些随机事件所包含的基本事件数及事件发生的概率。
5.了解随机数的意义,能运用随机模拟的方法估计概率.6。
了解几何概型的意义.1.频率与概率的关系在相同的条件下,大量重复进行同一试验时,随机事件A发生的频率f n(A)=错误!会在某个常数附近摆动,则把这个常数记作P(A),称为事件A的概率,简称为A的概率.2.事件的关系与运算名称定义符号表示包含关系如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)B⊇A(或A⊆B)相等事件若B⊇A,且A⊇B,则称事件A与事件B相等A=B并(和)事件若某事件发生当且仅当事件A或事件B发生,则称此事件为事件A与事件B的并事件(或和事件)A∪B(或A+B)交(积)事件若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)A∩B(或AB)互斥事件若A∩B为不可能事件,则称事件A与事件B互斥A∩B=∅对立事件若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件A∩B=∅且A∪B=U(U为全集)3(1)任何事件A的概率都在[0,1]内,即0≤P(A)≤1,不可能事件∅的概率为0,必然事件Ω的概率为1。
(2)如果事件A,B互斥,则P(A∪B)=P(A)+P(B).(3)事件A与它的对立事件错误!的概率满足P(A)+P(错误!)=1.4.古典概型与几何概型名称古典概型几何概型相同点基本事件发生的可能性相等不同点基本事件有有限个基本事件有无限个计算公式[常用结论]如果事件A1,A2,…,A n两两互斥,则称这n个事件互斥,其概率有如下公式:P(A1∪A2∪…∪A n)=P(A1)+P(A2)+…+P(A n).[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)随机模拟方法是以事件发生的频率估计概率.( )(2)在大量的重复实验中,概率是频率的稳定值.()(3)对立事件一定是互斥事件,互斥事件不一定是对立事件.( )(4)概率为0的事件一定为不可能事件.( )[答案](1)√(2)√(3)√(4)×2.某射手在同一条件下进行射击,结果如下:射击次数102050100200500击中靶心次数8194492178455A.0。
§10.5 事件的相互独立性与条件概率、全概率公式第十章 计数原理、概率、随机变量及其分布2024年高考数学一轮复习课件(新高考版)考试要求1.了解两个事件相互独立的含义.2.理解随机事件的独立性和条件概率的关系,会利用全概率公式计算概率.内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练第一部分1.相互独立事件(1)概念:对任意两个事件A 与B ,如果P (AB )=__________成立,则称事件A 与事件B 相互独立,简称为独立.P (A )·P (B)B2.条件概率(1)概念:一般地,设A,B为两个随机事件,且P(A)>0,我们称P(B|A)=______为在事件A发生的条件下,事件B发生的条件概率,简称条件概率.(2)两个公式①利用古典概型:P(B|A)=_______;P(A)P(B|A)②概率的乘法公式:P(AB)=___________.3.全概率公式一般地,设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i=1,2,…,n,则对任意的事件B⊆Ω,有P(B)=______________.常用结论1.如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2…A n)=P(A1)P(A2)…P(A n).2.贝叶斯公式:设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i=1,2,…,n,则对任意的事件判断下列结论是否正确(请在括号中打“√”或“×”)(1)对于任意两个事件,公式P (AB )=P (A )P (B )都成立.( )(2)若事件A ,B 相互独立,则P (B |A )=P (B ).( )(3)抛掷2枚质地均匀的硬币,设“第一枚正面朝上”为事件A ,“第2枚正面朝上”为事件B ,则A ,B 相互独立.( )(4)若事件A 1与A 2是对立事件,则对任意的事件B ⊆Ω,都有P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2).( )√×√√1.甲、乙两人独立地破解同一个谜题,破解出谜题的概率分别为则谜题没被破解出的概率为√设“甲独立地破解出谜题”为事件A,“乙独立地破解出谜题”为事件B,2.在8件同一型号的产品中,有3件次品,5件合格品,现不放回地从中依次抽取2件,在第一次抽到次品的条件下,第二次抽到次品的概率是√当第一次抽到次品后,还剩余2件次品,5件合格品,由题意得,居民甲第二天去A 食堂用餐的概率P =0.5×0.6+0.5×0.5=0.55.3.智能化的社区食堂悄然出现,某社区有智能食堂A ,人工食堂B,居民甲第一天随机地选择一食堂用餐,如果第一天去A 食堂,那么第二天去A 食堂的概率为0.6;如果第一天去B 食堂,那么第二天去A 食堂的概率为0.5,则居民甲第二天去A 食堂用餐的概率为_____.0.55第二部分例1 (1)(2021·新高考全国Ⅰ)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则√A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立事件甲与事件丙同时发生的概率为0,P(甲丙)≠P(甲)P(丙),故A错误;事件丙与事件丁是互斥事件,不是相互独立事件,故D错误.(2)(2023·临沂模拟)“11分制”乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,若甲先发球,两人又打了2个球后该局比赛结束的概率为______;若乙先发球,两人又打了4个球后该局比赛结束,则甲获胜的概率为 _____.0.50.1记两人又打了X个球后结束比赛,设双方10∶10平后的第k个球甲获胜为事件A k(k=1,2,3…),=0.5×0.4+0.5×0.6=0.5.思维升华求相互独立事件同时发生的概率的方法(1)相互独立事件同时发生的概率等于他们各自发生的概率之积.(2)当正面计算较复杂或难以入手时,可从其对立事件入手计算.跟踪训练1 小王某天乘火车从重庆到上海,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列火车正点到达的概率;由题意得A,B,C之间相互独立,所以恰好有两列火车正点到达的概率为=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.(2)这三列火车恰好有一列火车正点到达的概率;恰好有一列火车正点到达的概率为=0.8×0.3×0.1+0.2×0.7×0.1+0.2×0.3×0.9=0.092.(3)这三列火车至少有一列火车正点到达的概率.三列火车至少有一列火车正点到达的概率为=1-0.2×0.3×0.1=0.994.例2 (1)(2022·哈尔滨模拟)七巧板是中国民间流传的智力玩具.据清代陆以湉《冷庐杂识》记载,七巧板是由宋代黄伯思设计的宴几图演变而来的,原为文人的一种室内游戏,后在民间逐步演变为拼图版玩具.到明代,七巧板已基本定型为由如图所示的七块板组成:五块等腰直角三角形(其中两块小型三角形、一块中型三角形和两块大型三角形)、一块正方形和一块平行四边形,可以拼成人物、动物、植物、房亭、楼阁等1 600种以上图案.现从七巧板中取出两块,已知取出的是三角形,则两块板恰好是全等三角形的概率为√设事件A为“从七巧板中取出两块,取出的是三角形”,事件B为“两块板恰好是全等三角形”,(2)逢年过节走亲访友,成年人喝酒是经常的事,但是饮酒过度会影响健康,某调查机构进行了针对性的调查研究.据统计,一次性饮酒4.8两,诱发某种疾病的频率为0.04,一次性饮酒7.2两,诱发这种疾病的频率为0.16.将频率视为概率,已知某人一次性饮酒4.8两未诱发这种疾病,则他还能继续饮酒2.4两,不诱发这种疾病的概率为√记事件A:这人一次性饮酒4.8两未诱发这种疾病,事件B:这人一次性饮酒7.2两未诱发这种疾病,则事件B|A:这人一次性饮酒4.8两未诱发这种疾病,继续饮酒2.4两不诱发这种疾病,则B⊆A,AB=A∩B=B,P(A)=1-0.04=0.96,P(B)=1-0.16=0.84,思维升华求条件概率的常用方法(3)缩样法:去掉第一次抽到的情况,只研究剩下的情况,用古典概型求解.跟踪训练2 (1)(2023·六盘山模拟)已知5道试题中有3道代数题和2道几何题,每次从中抽取一道题,抽出的题不再放回.在第1次抽到代数题的条件下,第2次抽到几何题的概率为√设事件A=“第1次抽到代数题”,事件B=“第2次抽到几何题”,由题意知,第一次击中与否对第二次没有影响,②在仅击中一次的条件下,第二次击中的概率是_____.例3 (1)一份新高考数学试卷中有8道单选题,小胡对其中5道题有思路,3道题完全没有思路.有思路的题做对的概率是0.9,没有思路的题只能猜一个答案,猜对答案的概率为0.25,则小胡从这8道题目中随机抽取1道做对的概率为√设事件A表示“小胡答对”,事件B表示“小胡选到有思路的题”.则小胡从这8道题目中随机抽取1道做对的概率(2)在数字通信中,信号是由数字0和1组成的序列.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.已知当发送信号0时,被接收为0和1的概率分别为0.93和0.07;当发送信号1时,被接收为1和0的概率分别为0.95和0.05.假设发送信号0和1是等可能的,则接收的信号为1的概率为√A.0.48B.0.49C.0.52D.0.51设事件A=“发送的信号为0”,事件B=“接收的信号为1”,思维升华利用全概率公式解题的思路(1)按照确定的标准,将一个复杂事件分解为若干个互斥事件A i(i=1,2,…,n).(2)求P(A i)和所求事件B在各个互斥事件A i发生条件下的概率P(A i)P(B|A i).(3)代入全概率公式计算.跟踪训练3 (1)设甲乘汽车、动车前往某目的地的概率分别为0.4,0.6,汽车和动车正点到达目的地的概率分别为0.7,0.9,则甲正点到达目的地的概率为√A.0.78B.0.8C.0.82D.0.84设事件A表示“甲正点到达目的地”,事件B表示“甲乘动车到达目的地”,事件C表示“甲乘汽车到达目的地”,由题意知P(B)=0.6,P(C)=0.4,P(A|B)=0.9,P(A|C)=0.7.由全概率公式得P(A)=P(B)P(A|B)+P(C)P(A|C)=0.6×0.9+0.4×0.7=0.54+0.28=0.82.(2)(2022·郑州模拟)第24届冬奥会于2022年2月4日至20日在北京和张家口举行,中国邮政陆续发行了多款纪念邮票,其图案包括“冬梦”“冰墩墩”和“雪容融”等.小王有3张“冬梦”、2张“冰墩墩”和2张“雪容融”邮票;小李有“冬梦”“冰墩墩”和“雪容融”邮票各1张.小王现随机取出一张邮票送给小李,分别以A1,A2,A3表示小王取出的是“冬梦”“冰墩墩”和“雪容融”的事件;小李再随机取出一张邮票,以B表示他取出的邮票是“冰墩墩”的事件,则P(B|A2)=_____,P(B)=_____.第三部分A.事件A与B互斥B.事件A与B对立√C.事件A与B相互独立D.事件A与B既互斥又相互独立∴P(AB)=P(A)P(B)≠0,∴事件A与B相互独立,事件A与B不互斥也不对立.4个都不能正常照明的概率为(1-0.8)4=0.001 6,只有1个能正常照明的概率为4×0.8×(1-0.8)3=0.025 6,所以至少有两个能正常照明的概率是1-0.001 6-0.025 6=0.972 8.2.(2023·开封模拟)某盏吊灯上并联着4个灯泡,如果在某段时间内每个灯泡能正常照明的概率都是0.8,那么在这段时间内该吊灯上的灯泡至少有两个能正常照明的概率是A.0.819 2B.0.972 8C.0.974 4D.0.998 4√3.根据历年的气象数据可知,某市5月份发生中度雾霾的概率为0.25,刮四级以上大风的概率为0.4,既发生中度雾霾又刮四级以上大风的概率为0.2.则在发生中度雾霾的情况下,刮四级以上大风的概率为√A.0.8B.0.625C.0.5D.0.1设“发生中度雾霾”为事件A,“刮四级以上大风”为事件B,所以P(A)=0.25,P(B)=0.4,P(AB)=0.2,4.(2022·青岛模拟)甲、乙两名选手进行象棋比赛,已知每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4,若采用三局二胜制,则甲最终获胜的概率为√A.0.36B.0.352C.0.288D.0.648由题意可得甲最终获胜有两种情况:一是前两局甲获胜,概率为0.6×0.6=0.36,二是前两局甲一胜一负,第三局甲胜,概率为×0.6×0.4×0.6=0.288,这两种情况互斥,∴甲最终获胜的概率P=0.36+0.288=0.648.记事件A 为“该考生答对题目”,事件B 1为“该考生知道正确答案”,事件B 2为“该考生不知道正确答案”,则P (A )=P (A |B 1)·P (B 1)+P (A |B 2)·P (B 2)=1×0.5+0.25×0.5=0.625.5.某考生回答一道四选一的考题,假设他知道正确答案的概率为0.5,知道正确答案时,答对的概率为100%,而不知道正确答案时猜对的概率为25%,那么他答对题目的概率为A.0.625B.0.75C.0.5D.0.25√6.将甲、乙、丙、丁4名医生随机派往①,②,③三个村庄进行义诊活动,每个村庄至少派1名医生,A表示事件“医生甲派往①村庄”; B表示事件“医生乙派往①村庄”; C表示事件“医生乙派往②村庄”,则A.事件A与B相互独立B.事件A与C相互独立√。
10.4 随机事件的概率[知识梳理] 1.事件的分类2.频率和概率(1)在相同的条件S 下重复n 次实验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n A n为事件A 出现的频率.(2)对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A )稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率,简称为A 的概率.3.事件的关系与运算4.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)概率的加法公式如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).(5)对立事件的概率若事件A与事件B互为对立事件,则P(A)=1-P(B).[诊断自测]1.概念思辨(1)若事件A ,B ,C 两两互斥,则P (A )+P (B )+P (C )=1.( ) (2)在大量重复试验中,概率是频率的稳定值.( )(3)由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.( )(4)事件A 的对立事件A -所含的结果组成的集合,是全集中由事件A 所含结果组成集合的补集.( )答案 (1)× (2)√ (3)√ (4)√2.教材衍化(1)(必修A3P 113T 1)下列事件中不可能事件的个数为( )①如果a >b ,c >d ,则a -d >b -c ;②对某中学的毕业生进行一次体检,每个学生的身高都超过2 m ;③某电视剧收视率为40%;④从10个玻璃杯(其中8个正品,2个次品)中,任取2个,2个都是次品;⑤在不受外力作用的条件下,做匀速直线运动的物体改变其匀速直线运动状态.A .1B .2C .3D .4 答案 B解析 ①是必然事件;②⑤是不可能事件;③④是随机事件.故选B.(2)(必修A3P 124A 组T 6)一袋中装有100个除颜色不同外其余均相同的红球、白球、黑球,从中任取一球,摸出红球、白球的概率分别为0.40和0.35,那么黑球共有________个.答案 25解析 设红球、白球各有x 个和y 个,则⎩⎪⎨⎪⎧x100=0.40,y100=0.35,解得⎩⎪⎨⎪⎧x =40,y =35,所以黑球的个数为100-40-35=25.3.小题热身(1)(2015·广东高考)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A .0.4B .0.6C .0.8D .1 答案 B解析 记3件合格品分别为A 1,A 2,A 3,2件次品分别为B 1,B 2,从5件产品中任取2件,有(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2),共10种可能.其中恰有一件次品有6种可能,由古典概型概率公式得所求事件概率为610=0.6.故选B.(2)(2017·浙江瑞安中学高三月考)一颗正方体骰子,其六个面上的点数分别为1,2,3,4,5,6,现将这颗骰子抛掷三次,观察向上的点数,则三次点数之和等于15的概率为________.答案5108解析 将这颗骰子抛掷三次,共63=216(种)情况.而三次点数之和等于15的有10个(555共1个,456共6个,366共3个).所以三次点数之和等于15的概率P =10216=5108.题型1 随机事件典例 某县城有甲、乙两种报纸供居民订阅,记事件A 为“只订甲报”,事件B 为“至少订一种报纸”,事件C 为“至多订一种报纸”,事件D 为“不订甲报”,事件E 为“一种报纸也不订”.判断下列事件是不是互斥事件;如果是,再判断它们是不是对立事件:(1)A 与C ;(2)B 与E ;(3)B 与C ;(4)C 与E .用集合的观点分析.A ∩B =∅为互斥事件,A ∩B =∅且A ∪B =U 为对立事件.解 (1)由于事件C “至多订一种报纸”中包括“只订甲报”,即事件A 与事件C 有可能同时发生,故A 与C 不是互斥事件.(2)事件B “至少订一种报纸”与事件E “一种报纸也不订”是不可能同时发生的,故事件B 与E 是互斥事件;由于事件B 发生会导致事件E 一定不发生,且事件E 发生会导致事件B 一定不发生,故B 与E 还是对立事件.(3)事件B “至少订一种报纸”中有这些可能:“只订甲报纸”“只订乙报纸”“订甲、乙两种报纸”,事件C “至多订一种报纸”中有这些可能:“一种报纸也不订”“只订甲报纸”“只订乙报纸”,由于这两个事件可能同时发生,故B 与C 不是互斥事件.(4)由(3)的分析,事件E “一种报纸也不订”是事件C 的一种可能,即事件C 与事件E 有可能同时发生,故C 与E 不是互斥事件.方法技巧1.准确把握互斥事件与对立事件的概念(1)互斥事件是不可能同时发生的事件,但可以同时不发生.(2)对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.见典例.2.判别互斥、对立事件的方法判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件.见典例.冲关针对训练口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A =“取出的2球同色”,B =“取出的2球中至少有1个黄球”,C =“取出的2球至少有1个白球”,D =“取出的2球不同色”,E =“取出的2球中至多有1个白球”.下列判断中正确的序号为________.①A 与D 为对立事件;②B 与C 是互斥事件;③C 与E 是对立事件;④P (C ∪E )=1;⑤P (B )=P (C ).答案 ①解析 当取出的2个球中一黄一白时,B 与C 都发生,②不正确.当取出的2个球中恰有一个白球时,事件C 与E 都发生,则③不正确.显然A 与D 是对立事件,①正确;C ∪E 不一定为必然事件,P (C ∪E )≤1,④不正确.由于P (B )=45,P (C )=35,所以⑤不正确.题型2 随机事件的频率与概率典例 (2016·全国卷Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出 险次数 0 12 3 4 ≥5保费0.85aa1.25a 1.5a1.75a2a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数 0 1 2 3 4 ≥5频数60503030201(1)记A 为事件:“一续保人本年度的保费不高于基本保费”.求P (A )的估计值; (2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P (B )的估计值;(3)求续保人本年度平均保费的估计值.采用公式法f n (A )=nA n.解 (1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P (A )的估计值为0.55.(2)事件B 发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P (B )的估计值为0.3.(3)由所给数据得调查的200名续保人的平均保费为0.85a ×0.30+a ×0.25+1.25a ×0.15+1.5a ×0.15+1.75a ×0.10+2a ×0.05=1.1925a .因此,续保人本年度平均保费的估计值为1.1925a .[结论探究1] 若本例条件不变,结论变为“试求一续保人本年度的保费高于基本保费的估计值”.解 1-60+50200=0.45或30+30+20+10200=0.45.[结论探究2] 若本例条件不变,结论变为“试求一续保人本年度的保费不低于基本保费的估计值”.解 1-60200=0.7或50+30+30+20+10200=0.7.方法技巧1.计算简单随机事件频率或概率的解题思路 (1)计算出所求随机事件出现的频数及总事件的频数. (2)由频率与概率的关系得所求.2.求解以统计图表为背景的随机事件的频率或概率问题的关键点求解该类问题的关键,由所给频率分布表,频率分布直方图或茎叶图等图表,计算出所求随机事件出现的频数,进而利用频率与概率的关系得所求.冲关针对训练(2018·福建基地综合测试)某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.(1)若商店一天购进该商品10件,求日利润y (单位:元)关于日需求量n (单位:件,n ∈N )的函数解析式;(2)商店记录了50天该商品的日需求量n (单位:件),整理得下表:15①假设该店在这50天内每天购进10件该商品,求这50天的日利润(单位:元)的平均数;②若该店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求日利润在区间[400,550]内的概率.解 (1)当日需求量n ≥10时,日利润为y =50×10+(n -10)×30=30n +200, 当日需求量n <10时,利润y =50×n -(10-n )×10=60n -100. 所以日利润y 与日需求量n 的函数解析式为y =⎩⎪⎨⎪⎧30n +200,n ≥10,n ∈N ,60n -100,n <10,n ∈N .(2)50天内有9天获得的日利润为380元,有11天获得的日利润为440元,有15天获得日利润为500元,有10天获得的日利润为530元,有5天获得的日利润为560元.所以①这50天的日利润(单位:元)的平均数为 380×9+440×11+500×15+530×10+560×550=477.2.②日利润(单位:元)在区间[400,550]内的概率为 P =11+15+1050=1825.题型3 互斥事件与对立事件的概率典例 (2014·陕西高考)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.解 (1)设A 表示事件“赔付金额为3000元”,B 表示事件“赔付金额为4000元”,以频率估计概率得P (A )=1501000=0.15,P (B )=1201000=0.12. 由于投保金额为2800元,赔付金额大于投保金额对应的情形是3000元和4000元,所以其概率为P (A )+P (B )=0.15+0.12=0.27.(2)设C 表示事件“投保车辆中新司机获赔4000元”,由已知,知样本车辆中车主为新司机的有0.1×1000=100辆,而赔付金额为4000元的车辆中,车主为新司机的有0.2×120=24辆,所以样本车辆中新司机车主获赔金额为4000元的频率为24100=0.24,由频率估计概率得P (C )=0.24.方法技巧求复杂的互斥事件的概率的两种方法1.直接求解法:将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率求和公式计算.2.间接求法:先求此事件的对立事件的概率,再用公式P (A )=1-P (A -),即运用逆向思维(正难则反),特别是“至多”“至少”型题目,用间接求法就显得较简便.提醒:间接法体现了“正难则反”的思想方法.冲关针对训练经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:求:(1)至多2人排队等候的概率; (2)至少3人排队等候的概率.解 记“无人排队等候”为事件A ,“1人排队等候”为事件B ,“2人排队等候”为事件C ,“3人排队等候”为事件D ,“4人排队等候”为事件E ,“5人及5人以上排队等候”为事件F ,则事件A ,B ,C ,D ,E ,F 彼此互斥.(1)记“至多2人排队等候”为事件G , 则G =A +B +C ,所以P (G )=P (A +B +C ) =P (A )+P (B )+P (C )=0.1+0.16+0.3=0.56. (2)解法一:记“至少3人排队等候”为事件H ,则H =D +E +F ,所以P (H )=P (D +E +F )=P (D )+P (E )+P (F )=0.3+0.1+0.04=0.44.解法二:记“至少3人排队等候”为事件H ,则其对立事件为事件G ,所以P (H )=1-P (G )=0.44.1.(2016·天津高考)甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为( )A.56B.25C.16D.13 答案 A解析 设“两人下成和棋”为事件A ,“甲获胜”为事件B .事件A 与B 是互斥事件,所以甲不输的概率P =P (A +B )=P (A )+P (B )=12+13=56,故选A.2.(2018·湖南衡阳八中模拟)从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1,则事件“抽到的产品不是一等品”的概率为( )A .0.7B .0.65C .0.35D .0.3 答案 C解析 ∵事件A ={抽到一等品},且P (A )=0.65,∴事件“抽到的产品不是一等品”的概率P =1-P (A )=1-0.65=0.35.故选C.3.(2014·全国卷Ⅰ)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.答案 23解析 设2本不同的数学书为a 1,a 2,1本语文书为b ,在书架上的排法有a 1a 2b ,a 1ba 2,a 2a 1b ,a 2ba 1,ba 1a 2,ba 2a 1,共6种,其中2本数学书相邻的有a 1a 2b ,a 2a 1b ,ba 1a 2,ba 2a 1,共4种,因此2本数学书相邻的概率P =46=23.4.(2017·安徽池州模拟)小明忘记了微信登录密码的后两位,只记得最后一位是字母A ,a ,B ,b 中的一个,另一位是数字4,5,6中的一个,则小明输入一次密码能够成功登陆的概率是________.答案112解析 小明输入密码后两位的所有情况为(4,A ),(4,a ),(4,B ),(4,b ),(5,A ),(5,a ),(5,B ),(5,b ),(6,A ),(6,a ),(6,B ),(6,b ),共12种,而能成功登陆的密码只有一种,故小明输入一次密码能够成功登陆的概率是112.[基础送分 提速狂刷练]一、选择题1.(2017·湖南十三校二模)同学聚会上,某同学从《爱你一万年》《十年》《父亲》《单身情歌》四首歌中选出两首歌进行表演,则《爱你一万年》未被选取的概率为( )A.13B.12C.23D.56 答案 B解析 分别记《爱你一万年》《十年》《父亲》《单身情歌》为A 1,A 2,A 3,A 4,从这四首歌中选出两首歌进行表演的所有可能结果为A 1A 2,A 1A 3,A 1A 4,A 2A 3,A 2A 4,A 3A 4,共6个,其中A 1未被选取的结果有3个,所以所求概率P =36=12.故选B.2.(2018·广东中山模拟)从1,2,3,4,5这5个数中任取两个,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数,上述事件中,是对立事件的是( )A .①B .②④C .③D .①③ 答案 C解析 从1,2,3,4,5这5个数中任取两个,有三种情况:一奇一偶,两个奇数,两个偶数.其中至少有一个是奇数包含一奇一偶,两个奇数这两种情况,它与两个都是偶数是对立事件,而①②④中的事件可能同时发生,不是对立事件,故选C.3.(2017·安徽“江南十校”联考)从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是( )A.45B.35C.25D.15 答案 D解析 令选取的a ,b 组成实数对(a ,b ),则有C 13C 15=15种情况,其中b >a 的有(1,2),(1,3),(2,3)3种情况,所以b >a 的概率为315=15.故选D.4.把一颗骰子投掷两次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,向量m =(a ,b ),n =(1,2),则向量m 与向量n 不共线的概率是( )A.16B.1112C.112D.118 答案 B解析 若m 与n 共线,则2a -b =0.而(a ,b )的可能性情况为6×6=36个.符合2a =b 的有(1,2),(2,4),(3,6)共三个.故共线的概率是336=112,从而不共线的概率是1-112=1112.故选B.5.一个袋子里装有编号为1,2,…,12的12个相同大小的小球,其中1到6号球是红色球,其余为黑色球.若从中任意摸出一个球,记录它的颜色和号码后再放回袋子里,然后再摸出一个球,记录它的颜色和号码,则两次摸出的球都是红球,且至少有一个球的号码是偶数的概率是( )A.116B.316C.14D.716答案 B解析 据题意由于是有放回地抽取,故共有12×12=144种取法,其中两次取到红球且至少有一次号码是偶数的情况共有6×6-3×3=27种可能,故其概率为27144=316.故选B. 6.(2018·湖南常德模拟)现有一枚质地均匀且表面分别标有1,2,3,4,5,6的正方体骰子,将这枚骰子先后抛掷两次,这两次出现的点数之和大于点数之积的概率为( )A.13B.12C.23D.1136答案 D解析 将这枚骰子先后抛掷两次的基本事件总数为6×6=36(个),这两次出现的点数之和大于点数之积包含的基本事件有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1),共11个.∴这两次出现的点数之和大于点数之积的概率P =1136.故选D. 7.(2018·安徽黄山模拟)从1,2,3,4,5这5个数中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )A.310B.15C.12D.35答案 A 解析 从1,2,3,4,5这5个数中任取3个不同的数的基本事件有C 35=10个,取出的3个数可作为三角形的三边边长的基本事件有(2,3,4),(2,4,5),(3,4,5),共3个,故所求概率P =310.故选A. 8.(2018·河南开封月考)有5张卡片,上面分别写有数字1,2,3,4,5.从这5张卡片中随机抽取2张,那么取出的2张卡片上的数字之积为偶数的概率为( )A.13B.23C.710D.310答案 C解析 从5张卡片中随机抽取2张共有C 25=10种等可能情况;2张卡片上的数字之积为偶数的为1奇1偶和2偶,共有C 13C 12+C 22=7种等可能情况,故所求概率为P =710.故选C. 9.(2018·广东海珠综合测试)某食品厂为了促销,制作了3种不同的精美卡片,每袋食品中随机装入一张卡片,集齐3种卡片可获奖,现购买该食品4袋,能获奖的概率为( )A.427B.827C.49D.89 答案 C解析 因为3种不同的精美卡片随机放进4袋食品中,根据分步乘法计数原理可知共有34=81种不同放法,4袋食品中共有3种不同的卡片的放法有3×C 24×A 22=36种,根据等可能事件的概率公式得能获奖的概率为3681=49,故选C. 10.(2017·湖南郴州三模)从集合A ={-2,-1,2}中随机抽取一个数记为a ,从集合B ={-1,1,3}中随机抽取一个数记为b ,则直线ax -y +b =0不经过第四象限的概率为( )A.29B.13C.49D.14答案 A解析 (a ,b )所有可能的结果为C 13C 13=9种.由ax -y +b =0得y =ax +b ,当⎩⎪⎨⎪⎧ a ≥0,b ≥0时,直线不经过第四象限,符合条件的(a ,b )的结果为(2,1),(2,3),共2种,∴直线ax -y +b =0不经过第四象限的概率P =29,故选A.二、填空题11.(2017·陕西模拟)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为________.答案 35解析 如图,从A ,B ,C ,D ,O 这5个点中任取2个,共有C 25=10种取法,满足两点间的距离不小于正方形边长的取法有(A ,B ),(A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,D )共6种,因此所求概率P =610=35. 12.(2017·云南昆明质检)中国乒乓球队中的甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为37,乙夺得冠军的概率为14,那么中国队夺得女子乒乓球单打冠军的概率为________.答案 1928解析 由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军的概率为37+14=1928.13.一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率为715,取得两个绿球的概率为115,则取得两个同颜色的球的概率为________;至少取得一个红球的概率为________.答案 815 1415解析 (1)由于“取得两个红球”与“取得两个绿球”是互斥事件,因此事件C “取得两个同色球”,只需两互斥事件有一个发生即可,因而取得两个同色球的概率为P (C )=715+115=815. (2)由于事件A “至少取得一个红球”与事件B “取得两个绿球”是对立事件,则至少取得一个红球的概率为P (A )=1-P (B )=1-115=1415. 14.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为________.答案 0.25解析 20组随机数中表示三次投篮恰好有两次命中的是191,271,932,812,393,其频率为520=0.25,以此估计该运动员三次投篮恰有两次命中的概率为0.25. 三、解答题15.(2018·扬州模拟)某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)解 (1)由已知得25+y +10=55,x +30=45,所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为 1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟). (2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P (A 1)=20100=15,P (A 2)=10100=110. P (A )=1-P (A 1)-P (A 2)=1-15-110=710.故一位顾客一次购物的结算时间不超过2分钟的概率为710. 16.(2015·北京高考)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解 (1)从统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001000=0.2. (2)从统计表可以看出,在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001000=0.3. (3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001000=0.6,顾客同时购买甲和丁的概率可以估计为1001000=0.1. 所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.。
第三节随机事件的概率突破点一随机事件的频率与概率.事件的分类.频率和概率()在相同的条件下重复次试验,观察某一事件是否出现,称次试验中事件出现的为次数事件出现的频数,称事件出现的比例()=为事件出现的频率.对于给定的随机事件,如果随着试验次数的增加,事件发生的()()频率稳定在某个常数上,把这个常数记作(),称为事件的概率,简称为的概率.一、判断题(对的打“√”,错的打“×”)()“下周六会下雨”是随机事件.( )()事件发生的频率与概率是相同的.( )()随机事件和随机试验是一回事.( )()在大量重复试验中,概率是频率的稳定值.( )答案:()√()×()×()√二、填空题.在投掷一枚硬币的试验中,共投掷了次,“正面朝上”的频数为,则“正面朝上”的频率为.答案:.某人进行打靶练习,共射击次,其中有次中环,有次中环,有次中环,有次未中靶.假设此人射击次,则其中靶的概率约为;中环的概率约为.答案:.给出下列三个说法,其中正确的有个.①有一大批产品,已知次品率为,从中任取件,必有件是次品;②做次抛硬币的试验,结果次出现正面,因此正面出现的概率是;③随机事件发生的频率就是这个随机事件发生的概率.解析:①错,不一定是件次品;②错,是频率而非概率;③错,频率不等于概率,这是两个不同的概念.答案:[典例] (·北京高考)电影公司随机收集了电影的有关数据,经分类整理得到下表:()从电影公司收集的电影中随机选取部,求这部电影是获得好评的第四类电影的概率;()随机选取部电影,估计这部电影没有获得好评的概率;()电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加,哪类电影的好评率减少,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)[解] ()由题意知,样本中电影的总部数是+++++=,获得好评的第四类电影的部数是×=,故所求概率为)=.()由题意知,样本中获得好评的电影部数是×+×+×+×+×+×=+++++=,故所求概率估计为-)=.()增加第五类电影的好评率,减少第二类电影的好评率..计算简单随机事件频率或概率的解题思路()计算所求随机事件出现的频数及总事件的频数.()由频率公式得所求,由频率估计概率..求解以统计图表为背景的随机事件的频率或概率问题的关键点求解该类问题的关键是由所给频率分布表、频率分布直方图或茎叶图等图表,计算出所求随机事件出现的频数.[针对训练].从某校高二年级的所有学生中,随机抽取人,测得他们的身高(单位:)分别为:,.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一人,估计该生的身高在~之间的概率约为( )解析:选从已知数据可以看出,在随机抽取的这位学生中,身高在~之间的学生有人,频率为,故可估计在该校高二年级的所有学生中任抽一人,其身高在~之间的概率约为..(·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶元,售价每瓶元,未售出的酸奶降价处理,以每瓶元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于,需求量为瓶;如果最高气温位于区间[),需求量为瓶;如果最高气温低于,需求量为瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率.()估计六月份这种酸奶一天的需求量不超过瓶的概率;()设六月份一天销售这种酸奶的利润为(单位:元).当六月份这种酸奶一天的进货量为瓶时,写出的所有可能值,并估计大于零的概率.解:()这种酸奶一天的需求量不超过瓶,当且仅当最高气温低于,由表格数据知,最高气温低于的频率为=,所以这种酸奶一天的需求量不超过瓶的概率的估计值为.()当这种酸奶一天的进货量为瓶时,若最高气温不低于,则=×-×=;若最高气温位于区间[),则=×+(-)-×=;若最高气温低于,则=×+(-)-×=-.所以的所有可能值为,-.大于零当且仅当最高气温不低于,由表格数据知,最高气温不低于的频率为=,因此大于零的概率的估计值为.突破点二互斥事件与对立事件.概率的基本性质概率的取值范围:()≤()≤.()必然事件的概率:()=.不可能事件的概率:()=..互斥事件和对立事件一、判断题(对的打“√”,错的打“×”)()若随机事件发生的概率为(),则≤()≤.()()两个事件的和事件是指两个事件同时发生.( )()对立事件一定是互斥事件,互斥事件不一定是对立事件.( )()“方程++=有两个实根”是不可能事件.( )答案:()×()×()√()√二、填空题.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是.答案:两次都不中靶.设事件,,已知()=,()=,(∪)=,则,之间的关系一定为事件.答案:互斥考法一事件关系的判断[例] ()从中有放回地依次取出两个数,则下列各对事件是互斥而不是对立事件的是( ).恰有个是奇数和全是奇数.恰有个是偶数和至少有个是偶数.至少有个是奇数和全是奇数.至少有个是偶数和全是偶数()已知件产品中有件次品,从这件产品中任意取出件,设表示事件“件产品全不是次品”,表示事件“件产品全是次品”,表示事件“件产品中至少有件是次品”,则下列结论正确的是( ).与互斥.与互斥但不对立.,,任意两个事件均互斥.与对立[解析] ()从中有放回地依次取出两个数,共有三种情况:={两个奇数},={一个奇数一个偶数},={两个偶数},且两两互斥,:是互斥事件;:不互斥;:不互斥;:不互斥.故选. ()由题意得事件与事件不可能同时发生,是互斥事件;事件与事件不可能同时发生,是互斥事件;当事件发生时,事件一定发生,所以事件与事件不是互斥事件,故、错.事件与事件中必有一个发生,所以事件与事件对立,所以错误,正确.[答案] () ()[方法技巧] 判断互斥、对立事件的种方法[例] 某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的位顾客的相关数据,如下表所示.已知这位顾客中一次购物量超过件的顾客占.()求一位顾客一次购物的结算时间不超过分钟的概率.(将频率视为概率)[解] ()由已知得++=,+=,所以=,=.该超市所有顾客一次购物的结算时间组成一个总体,所收集的位顾客一次购物的结算时间可视为总体的一个容量为的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为=分钟.()记为事件“一位顾客一次购物的结算时间不超过分钟”,,,分别表示事件“该顾客一次购物的结算时间为分钟”“该顾客一次购物的结算时间为分钟”“该顾客一次购物的结算时间为分钟”,将频率视为概率得()==,()==,()==.因为=∪∪,且,,是互斥事件,所以()=(∪∪)=()+()+()=++=.故一位顾客一次购物的结算时间不超过分钟的概率为.[方法技巧] 求复杂互斥事件概率的种方法如果事件与是互斥事件,则( ).∪是必然事件与一定是互斥事件与一定不是互斥事件∪是必然事件解析:选事件与互斥即∩为不可能事件,所以∪=∩是必然事件,故选项正确;在抛掷骰子试验中,表示向上的数字为,表示向上的数字为,∪不是必然事件,选项错误;与不一定是互斥事件,选项错误;表示向上的数字为奇数,表示向上的数字为偶数,与是互斥事件,选项错误.故选. (·全国卷Ⅲ)若某群体中的成员只用现金支付的概率为,既用现金支付也用非现金支付的概率为,则不用现金支付的概率为( )....解析:选由题意可知不用现金支付的概率为--=.故选.某河流上的一座水力发电站,每年六月份的发电量(单位:万千瓦时)与该河上游在六月份的降雨量(单位:毫米)有关.据统计,当=时,=;每增加,增加.已知近年的值为.()完成如下的频率分布表:近年六月份降雨量频率分布表()求今年六月份该水力发电站的发电量低于(万千瓦时)或超过(万千瓦时)的概率.解:()在所给数据中,降雨量为毫米的有个,为毫米的有个,为毫米的有个,故近年六月份降雨量频率分布表为故(“发电量低于万千瓦时或超过万千瓦时”)=(<或>)=(<或>)=(=)+(=)+(=)=++=.。
【2019最新】精选高考数学一轮总复习第10章计数原理概率与统计第3
节随机事件及其概率模拟创新题理
一、选择题
1.(2016·豫南九校联考)在1,2,3,4,5,6,7,8这组数据中,随机取出五个不同的数,则数字5是取出的五个不同数的中位数的概率为( )
A. B.
C. D.5
9
解析分析可知,要满足题意,则抽取的除5以外的四个数字中,有两个比5小,有两个比5大,故所求概率P=·C,C)=.
答案B
2.(2016·陕西西安一模)周老师上数学课时,给班里同学出了两道选择题,她预估计做对第一道题的概率为0.80,做对两道题的概率为0.60,则预估计做对第二道题的概率为( )
A.0.80
B.0.75
C.0.60
D.0.48
解析设事件Ai(i=1,2)表示“做对第i道题”,A1,A2相互独立,
由已知得P(A1)=0.8,P(A1A2)=0.6,
∴P(A1A2)=P(A1)P(A2)=0.8·P(A2)=0.6,
解得P(A2)==0.75.故选B.
答案B
3.(2015·广州调考)从存放号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:
则取到号码为奇数的频率是( )
A.0.53
B.0.5
C.0.47
D.0.37
解析取到卡片的号码为奇数的次数为:13+5+6+18+11=53,则所求的频率为=0.53,故选A.
答案A
二、填空题
4.(2016·云南师大附中适应性测试四)两所学校分别有2名、3名学生获奖,这5名学生要排成一排合影,则同校学生排在一起的概率是________.
解析由题意知,所求概率P=·A·A,A)=.
答案1
5
5.(2015·温州五校模拟)现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为________.
解析记取到语文、数学、英语、物理、化学书分别为事件A、B、C、D、E,则A、B、C、D、E互斥,取到理科书的概率为事件B、D、E概率的和.
∴P(B∪D∪E)=P(B)+P(D)+P(E)=++=.
答案3
5
6.(2014·成都模拟)某产品分甲、乙、丙三级,其中乙、丙两级均属次品.若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对成品抽查一件抽得正品的概率为________.
解析记“生产中出现甲级品、乙级品、丙级品”分别为事件A,B,C.则A,B,C 彼此互斥,由题意可得P(B)=0.03,P(C)=0.01,所以P(A)=1-P(B+C)=1-P(B)-P(C)=1-0.03-0.01=0.96.
答案0.96
创新导向题
互斥事件概率求解问题
7.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回的每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为( ) A. B.
C. D.3
64
解析从8个球中有放回地取2次(每次取一个球),所取两球的编号共有8×8=64种,其中两编号和不小于15的有3种:(7,8),(8,7),(8,8).则所求概率P=,故选D.
答案D
专项提升测试
模拟精选题
一、选择题
8.(2015·江西八校联考)甲袋中有3个白球5个黑球,乙袋中有4个白球6个黑球,现从甲袋中随机取出一个球放入乙袋中,充分混合后再从乙袋中随机取出一个球放回甲袋,则甲袋中白球没有减少的概率为( )
A. B.
C. D.5
44
解析若先从甲袋中取出的是白球,则满足题意的概率为P1=×=;若先从甲袋中取出的是黑球,则满足题意的概率为P2=,易知这两种情况不可能同时发生,故所求概率为P=P1+P2=+=.
答案A
二、填空题
9.(2016·陕西质检)从一副混合后的扑克牌(52张)中,随机抽取1张.事件A为“抽得红桃K”,事件B为“抽得黑桃”,则概率P(A∪B)=________(结果用最简分数表示).
解析∵P(A)=,P(B)=,∴P(A∪B)=P(A)+P(B)=+==.
答案7
26
三、解答题
10.(2014·广州综合测试)将一枚骰子先后抛掷两次,观察向上的点数.
(1)求点数之和是5的概率;
(2)设a,b分别是将一枚骰子先后抛掷两次向上的点数,求式子2a-b=1成立的概率.
解将一枚骰子先后抛掷两次,向上的点数共有36种不同的结果.
(1)将一枚骰子先后抛掷两次,向上的点数分别记为a,b,点数之和是5时对应以下4种情况:
因此,点数之和是5的概率为P1==.
(2)由2a-b=1得2a-b=20,
∴a-b=0,∴a=b.
而将一枚骰子先后抛掷两次向上的点数相等对应以下6种情况:
因此,式子2a-b=1成立的概率为P2==.
创新导向题
利用分类计数原理求随机事件概率
11.安排甲、乙、丙、丁四人参加周一至周六的公益活动,每天只需一人参加,其中甲参加三天活动,乙、丙、丁每人参加一天,那么甲连续三天参加活动的概率为( )
A. B.
C. D.1
2
解析由题意分析可得,甲连续三天参加活动的所有情况为:第1~3天,第2~4天,第3~5天,第4~6天,共四种,∴所求概率P=,C·A)=.
答案B
随机事件概率与统计的综合问题
12.某网站针对“2016年法定节假日调休安排”展开的问卷调查,提出了A,B,C三
种放假方案,调查结果如下:
(1)A方案”的人中抽取了6人,求n的值;
(2)在“支持B方案”的人中,用分层抽样的方法抽取5人看作一个总体,从这5人中任意选取2人,求恰好有1人在35岁以上(含35岁)的概率.
解(1)根据分层抽样按比例抽取,
所以=,
解得n=40.
(2)35岁以下:×400=4(人);
35岁以上(含35岁):×100=1(人).
将35岁以下的4人标记为1,2,3,4,35岁以上(含35岁)1标记为a.
所有基本事件为(1,2),(1,3),(1,4),(1,a),(2,3),(2,4),(2,a),(3,4),(3,a),(4,a),共10种.
其中满足条件的有(1,a),(2,a),(3,a),(4,a),共4种.故P==.
答:恰好有1人在35岁以上(含35岁)的概率为.。