7-泵与风机-泵的汽蚀解析
- 格式:ppt
- 大小:1.92 MB
- 文档页数:30
水泵的汽蚀现象及其防治措施姓名:XXX部门:XXX日期:XXX水泵的汽蚀现象及其防治措施1.水泵汽蚀的概念水泵运行过程中,如果泵内液体局部位置的压力降低到水的饱和蒸汽压力(液化压力)时,水就开始汽化生成大量的汽泡,汽泡随水流向前运动,流入压力较高的部位时,迅速凝结,溃灭。
泵内水流中汽泡的生成,溃灭过程涉及许多物理,化学现象,并产生噪音,振动和对过流部件材料的侵蚀作用。
这些现象统称为水泵的汽蚀现象。
1.1水泵汽蚀的类型:1)叶面汽蚀:水泵安装过高,或流量偏离设计流量时,产生的汽蚀现象,其汽泡的形成和溃灭基本上发生在叶片的正面和反面。
2)间隙汽蚀:在离心泵密封环与叶轮外缘的间隙处,由于叶轮进出水侧的压力差很大,导致高速回流,造成局部压降,引起间隙汽蚀,轴流泵叶片外缘与泵壳之间很小的间隙内,在叶片正反面压力差的作用下,也因间隙中的反向流速大,压力降低,在泵壳对应叶片外缘部位引起间隙汽蚀。
3)水流经过泵内粗糙凹凸不平的内壁面和过流部件时。
在凸出物下游发生的汽蚀,称为粗糙汽蚀。
1.2汽蚀的危害:1)使水泵性能恶化。
泵内发生汽蚀时,大量的汽泡破坏了水流的正常流动规律,流道内过流面积减小,流动方向改变,从而叶轮和水流之间能量交换的稳定性遭到破坏,能源损失增加,从而引起水泵流量,扬程和效率的迅速下降,甚至达到断流状态。
2)损坏过流部件。
当汽泡被水流带到高压区迅速凝结,溃灭时,汽泡周围的水流质点高速地向汽泡中心集中,产生强烈的冲击。
如果汽泡在过流部件附近溃灭,就形成对过流部件的打击,容易引起过流部件的塑性变形和局部硬化,产生疲劳,性能变脆,很快就会发生裂纹与剥落,形成窝蜂状孔洞。
振动和噪音。
在汽泡凝结溃灭时,产生压力瞬时升高和水流质点间的撞击以及对泵壳和第 2 页共 6 页叶轮的打架,使水泵产生噪音和振动现象。
当汽蚀振动频率与水泵自振频率接近时,会引起共振,从而导致整个机组甚至整个泵房振动。
在这种情况下,机组就不应该继续工作了。
水泵汽蚀、汽蚀余量、气囊危害-机理分解,处置措施!石峥嵘:了解离心式水泵的汽蚀机理,掌握必需汽蚀余量和有效汽蚀余量等概念,有利水泵设计及应用,有利于防范汽蚀、气囊危害,具重要意义!同时,本文列示了水泵最大取水高度的计算方法,以供参考!本文要点:1 水泵的汽蚀机理2 离心泵及原理3 汽蚀形成及危害4 汽蚀危害与气囊危害的区别5 “汽蚀”与“气蚀”6 必需汽蚀余量、有效汽蚀余量第一章水泵汽蚀机理(饱和蒸汽压、沸点)一、饱和蒸汽压:饱和蒸汽压是指蒸汽与液体保持动态平衡时的压强,由液体物质本身性质决定,饱和蒸汽压随温度升高而增大。
二、沸腾、沸点:1、沸腾是液体内部和表面同时发生剧烈汽化的现象,当液体的饱和蒸汽压与外界压强相等时,产生沸腾。
当外界压强大于液体饱和蒸汽压时,通常仅在液体表面发生汽化(图示1左),当液体饱和蒸汽压与外界压强相等时,液体的内部和外部可同时发生汽化,开始沸腾(图示1右)。
注:敞开容器中的沸腾液体,蒸汽带走大量热量,温度不再升高。
(图示1)2、在一定压强下,液体沸腾时的温度称为沸点,当液体所受的压强增大时,沸点升高,压强减小时,沸点降低。
三、水的沸腾、沸点:水的饱和蒸汽压随温度升高而增大,部分水温下的饱和蒸汽压如下(表1):注:数据源自网络,仅供参考!处于空气中的水,外界压强为大气压,当水的饱和蒸汽压与大气压相等时,水产生沸腾。
通常,以下两种方式可使水沸腾:1、加热,可使水沸腾:水加热时,温度升高,饱和蒸汽压增大。
由表1可知,当温度为100℃时,水的饱和蒸汽压达到101.33kPa(10.33m水柱),与标准大气压相当,发生沸腾(图示1右),也就是说,水在标准大气压下的沸点为100℃。
2、降低外部压强,可使水沸腾:同理,降低外部压强,也可以使水沸腾,可以认为,当外部压强与表1右侧的某个饱和蒸汽压值相等时,表1左侧对应温度为该压强下的沸点,比如,当外部压强为0.238m水柱时,对应水的沸点为20℃,常温下的水就沸腾了。
简述水泵的汽蚀现象水泵的汽蚀是指在水泵吸入液体时,由于一些因素导致在水泵叶轮和进口之间产生了气体,在液体受到真空作用时,气体被吸入液体中,形成气泡并不断增多,这种情况称为汽蚀现象。
造成水泵汽蚀的原因有很多,主要包括以下几个方面:1. 进口压力较低:当进口压力低于一定值时,就会在进口处出现真空,随着液体流速的变化,液体中的气体会形成气泡,从而引起汽蚀现象。
2. 液体中含有气体:如果水中含有较多的氧气、二氧化碳等气体,也会使水泵发生汽蚀。
3. 泵的运行状态不稳定:如泵的轴承磨损、转子失衡、叶轮变形等都会引起泵的振动,从而引起汽蚀现象。
4. 气液分离不良:当液体经过水泵的叶轮后,很快就流入了泵室,并在叶轮的旋转下被排出,但是如果液体中的气体无法很好地与液体分离,就会导致气泡被带入泵室,增加进一步产生汽蚀的风险。
5. 进口管道过长或过小:进口管道过长或过小会增加水泵吸入液体的阻力,导致进口压力降低,从而使水泵容易出现汽蚀现象。
6. 进口管道堵塞:进口处如果有杂物或垃圾阻塞,也会导致进口压力降低,引起汽蚀。
7. 真空度过大:当真空度过大时,流体中的气体被抽取到最高点并扩散形成气泡,导致汽蚀的产生。
8. 叶轮和泵壳摩擦磨损严重:如果水泵叶轮和泵壳之间的配合不良或叶轮磨损过度等也会引起水泵汽蚀。
总之,水泵汽蚀是一种比较常见的现象,如果不及时采取措施加以解决,会对水泵的正常运行造成较大的影响,甚至对设备的使用寿命产生严重的影响。
需注意保养维护,及时排查问题。
水泵汽蚀现象严重时,会减小水泵的效率、降低流量和压力,并可能造成泵的过热和轴承损坏等问题,因此应采取措施避免汽蚀的发生,如增大进口压力、使用抗氧化剂、检查和修复泵的运行状态等。
水泵运作气蚀成因及应对措施1、汽蚀成因与危害水泵的应用很广泛,在水泵设备运作过程中,汽蚀是怎样产生的?汽蚀有些什么危害,我们应该怎样防止汽蚀的产生呢?汽蚀是指液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡的现象。
泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。
在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。
在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。
水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。
二、泵汽蚀基本关系式泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。
因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为NPSHc≤NPSHr≤[NPSH]≤NPSHaNPSHa=NPSHr(NPSHc)——泵开始汽蚀NPSHa NPSHa>NPSHr(NPSHc)——泵无汽蚀式中NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀;NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好;NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量;[NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。
三、装置汽蚀余量的计算NPSHa=Ps/ρg+Vs/2g-Pc/ρg=Pc/ρg±hg-hc-Ps/ρg4、防止发生汽蚀的措施当水泵叶轮进口处真空度较高时,形成气蚀的趋势较强,但这种关系并不明显。
水泵气蚀一般是无法完全避免的,因为离心泵在告诉旋转时,中心部分肯定会产生负压从而使气体分离成小气泡,而排出集液腔也就是叶轮的外周附近压力猛力增加,这样液体就把气泡压破,气泡形成的空穴由液体高速填充。
而接近叶轮外周表面的空穴填充过程就会伤及叶轮表面,除非液体不含任何气体成分也不会在一定负压下挥发。
如果涡壳结构合理,在一定程度上可以延缓气蚀引起的损伤时间。
另外叶轮用比较硬的材料做成也有一定效果。
如果能一定程度降低液体内气体含量就更好了,比如曝气。
气蚀是难以避免的,这是离心泵与生俱来的特性。
但是,我们可以在设计方面考虑。
比如:1.加大泵的气蚀余量,尽量避免采用自吸的,让液面高于吸口;2.采用比较好的叶轮,提高抗气蚀性能;泵内气蚀现象水泵在运行期间,若由于某种原因使泵内局部压力降低到水的汽化压力(vapor pressure)时,水就会产生汽化而形成气液流。
从水中离析出来的大量气泡随着水流向前运动,到达高压区时受到周围液体的挤压而溃灭,气泡内的气体又重新凝结成水,同时产生很高的水锤压力,使材料的边壁遭受侵蚀和破坏。
通常把这种现象,称为水泵的气蚀(cavitation)现象。
气蚀过程中,由于泵内含有大量的气泡,叶轮与水流之间的能量转换规律遭到破坏,从而引起水泵性能变坏(流量、扬程和效率迅速下降),甚至达到断流状态,并伴随有强烈的振动和噪声。
这种性能的变化,对于不同比转数的泵有着不同的特点。
如低比转数的离心泵因叶槽狭长、出口宽度较小,当气蚀发生后,气泡区很容易扩展到叶槽的整个范围,引起水流断裂,水泵性能曲线呈急剧下降形状,如图4-1(a)所示。
对于中、高比转数的离心泵和混流泵,由于叶槽较宽,气泡不容易堵塞通道,只有在脱流区继续发展时,气泡才会布满整个叶槽,因此在性能出现断裂之前,其性能曲线先是比较平缓地下降,然后迅速呈直线下降,如图4-1(b)所示。
对高比转数的轴流泵,由于叶片之间的通道相当宽阔,故气蚀发生后气泡区不易扩展到整个叶槽,因此性能曲线下降缓慢,以至无明显的断裂点,如图4-1(c)所示。
图⽂解析⽔泵汽蚀⼀、⽔泵产⽣汽蚀的过程⼆、汽蚀介绍(1)汽蚀是由于在泵内(叶轮)产⽣汽泡引起。
(2)汽蚀是由于在叶轮进⼝处压⼒下降⽽产⽣汽泡⽽引起,汽泡随叶轮叶⽚向⾼压区移动,在达到⼀定压⼒后便破裂爆炸。
(3)汽泡的破裂爆炸向叶轮或叶⽚形成喷射冲击。
在这⼀点,此⾼速喷射冲击的峰值压⼒可达到100bar(1450 psi)。
三、汽蚀类型1、叶型汽蚀(1)⽔泵在设计⼯况运⾏低压区:叶⽚背⾯流速最⾼处(叶⽚进出⼝背⾯2 、3区)。
(2)⽔泵在流量⼤于设计流量时运⾏叶⽚前缘正⾯(1区)发⽣脱流、旋涡,导致压⼒降低。
(3)⽔泵在流量⼩于设计流量时运⾏加重了叶⽚背⾯的低压区2、间隙汽蚀汽蚀发⽣位置:叶轮室内壁、叶⽚外断⾯。
3、涡带汽蚀三、NPSH值是如何确定的?NPSH,汽蚀余量,是⽔泵进⼝的⽔流能量相对汽化压⼒的富余⽔头。
1、泵内的压⼒改变2、在设计点5.37m3/h时 NPSH 为多少?四、泵必需汽蚀余量(NPSHr)计算公式:式中:vo---叶⽚进⼝前的绝对速度wo---叶⽚进⼝前的相对速度λ---叶⽚进⼝压降系数(1)NPSHr即⽔泵吸⼊⼝处与⽔泵进⼝流道内的压⼒最低点处的压差,其值取决于⽔泵⼊⼝流道⾃⾝的阻⼒损失特性,显然越⼩越好。
(2)NPSHr近似与泵叶⽚进⼝流速平⽅成正⽐,其为泵的固有特性,不会随使⽤条件⽽改变。
(3)NPSHr表⽰泵的抗汽蚀性能,值越⼩,泵的抗汽蚀性能越好。
(4)从泵性能曲线中可查出相应流量值下NPSHr。
五、泵有效汽蚀余量(NPSHa)有效汽蚀余量:⽔泵进⼝处液体所具有的超过当时温度下汽化压⼒的富裕能量。
列进⽔池与⽔泵进⼝断⾯能量⽅程可得:所以:有效汽蚀余量的⼤⼩只与⽔泵装置进⽔侧的情况有关(液⾯上的⼤⽓压⼒、⽔泵安装⾼度、进⽔管路损失及汽化压⼒),⽽与⽔泵本⾝的因素⽆关。
⼀台⽔泵是否发⽣汽蚀,是由泵装置的条件与泵本⾝条件决定的。
当NPSHa>NPSHr时,⽔泵不发⽣汽蚀;当NPSHa<NPSHr时,⽔泵发⽣汽蚀。