七年级上期中联考数学试卷含答案
- 格式:docx
- 大小:212.61 KB
- 文档页数:11
2023-2024学年度第一学期期中素质调研大联考七年级数学人教版(试卷页数:8页,考试时间:120分钟,总分:120分)注意事项:1.使用考试专用扁头2B涂卡铅笔填涂,或将普通2B铅笔削成扁鸭嘴状填涂.2.修改时,请先用橡皮擦干净,再重新填涂,不得使用修正带或涂改液.3.填涂的正确方法:错误方法:一、选择题(本大题共16个小题,共38分.1~6小题各3分;7~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列计算正确的是( )A. -3+2=-5B. (-3)×(-5)=-15C. -(-22)=-4D. -(-3)2=-9【答案】D解析:A. -3+2=-1,故错误;B. (-3)×(-5)=15,故错误;C. -(-22)=4,故错误;D. -(-3)2=-9,正确,故选D.2. 下列算式中,结果是正数的是( )A. B. C. D.【答案】D解析:解:A、,结果为负数,不符合题意;B、,结果为负数,不符合题意;C、,结果为负数,不符合题意;D、,结果为正数,符合题意;故选D.3. 下列各组中的两项,属于同类项的是( )A. 与B. 与C. 与D. 与【答案】B解析:解:A、与所含的字母不相同,不是同类项,不符合题意;B、与所含字母相同,相同字母的指数也相同,是同类项,符合题意;C、与所含字母相同,相同字母的指数不相同,不是同类项,不符合题意;D、与所含的字母不相同,不是同类项,不符合题意;故选B.4. 下列用正数和负数表示相反意义量,其中正确的是( )A. 一天凌晨的气温是,中午比凌晨上升,所以中午气温是B. 如果表示比海平面高,那么表示比海平面低C. 如果生产成本增长记作,那么表示生产成本降低D. 如果收入增加10元记作元,那么元表示支出减少4元【答案】C解析:解:A、一天凌晨的气温是,中午比凌晨上升,所以中午气温是,原说法错误,不符合题意;B、如果表示比海平面高,那么表示比海平面低,原说法错误,不符合题意;C、如果生产成本增长记作,那么表示生产成本降低,原说法正确,符合题意;D、如果收入增加10元记作元,那么元表示收入减少4元,原说法错误,不符合题意;故选C.5. 多项式的次数与项数分别是( )A. 2,3B. 3,3C. 4,3D. 5,3【答案】B解析:解:多项式的次数与项数分别是,3,故选B.6. 下列式子变形正确的是( )A. B. C. D.解析:解:A、,原式计算错误,不符合题意;B、,原式计算错误,不符合题意;C、,原式计算正确,符合题意;D、,原式计算错误,不符合题意;故选C.7. 下列说法中,正确的是( )A. 若x、y互为倒数,则B. 如果,那么x的值一定是2C. 与原点的距离为3个单位长度的点所表示的有理数是3D. 若,则【答案】A解析:解:A、若x、y互为倒数,则,则,原说法正确,符合题意;B、如果,那么x的值是,原说法错误,不符合题意;C、与原点的距离为3个单位长度的点所表示的有理数是,原说法错误,不符合题意;D、若,则,即,则,原说法错误,不符合题意;故选A8. 已知有理数a、b在数轴上对应的点如图所示,则下列式子结果是负数的有( )①②③④A. ③④B. ②③④C. ①③④D. ①②③④【答案】D解析:解∶由数轴得,,∴,,,,9. 若A与B都是三次多项式,则关于的结论,甲、乙、丙、丁四位同学展开了讨论:甲:结果可能是三次多项式;乙:结果可能是四次式;丙:结果可能是一次式;丁:结果不可能是零.下列判断正确的是( )A. 四位同学说法都对B. 只有甲、丙说法正确C. 只有乙说法不对D. 只有丁说法不对【答案】B解析:解;∵A与B都是三次多项式,∴当A与B的三次项系数不相同时,的结果是三次多项式,故甲说法正确;∵A与B都是三次多项式,∴的结果不可能是四次式,故乙说法错误;∵A与B都是三次多项式,∴当A与B的三次项系数和二次项系数分别相同,一次项系数不同时,的结果是一次式,故丙说法正确;故选B.10. 对于有理数a,b,定义,则计算后的结果是( )A. B. C. 4 D.【答案】C解析:解∶根据题中的新定义,得.故选∶C.11. 对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N 是m的“和倍数”.对下列三个人的说法判断正确的是( )小嘉说:247是13的“和倍数” 小淇说:441是9的“和倍数”小华说:214、357均不是“和倍数”A. 三人说法都对B. 只有一人说法不对C. 小华说的不对D. 只有一人说法对【答案】A解析:解∶∵,∴247是13的“和倍数”,故小嘉的说法正确;∵,∴441是9的“和倍数”,故小淇的说法正确;∵,∴214不是“和倍数”,∵,∴357不是“和倍数”,故小华的说法正确;故选:A.12. 已知声音在水中的传播速度为1500米/秒,声音在水中经过t秒()传播的距离用科学记数法表示为“”米,则n的值为( )A 2 B. 3 C. 3或4 D. 3或4或5【答案】C解析:解:当时,传播的距离为米,写成科学记数法为:米,当时,传播的距离为米,写成科学记数法为:米,∴n的值为3或4,故选:C.13. 若关于a,b的多项式与的和不含三次项,则k的值为( )A. 3B.C. 6D.【答案】D解析:解∶,∵多项式与的和不含三次项,∴,∴.故选∶D.14. “大国点名,没你不行”,第七次全国人口普查口号深入人心,统计数据真实可信,全国大约人.用四舍五入法对“”取近似值,其中错误的是( )A. 14亿(精确到亿位)B. (精确到百分位)C. (精确到十万位)D. 1412百万(精确到百万位)【答案】B解析:解:A、亿(精确到亿位),原说法正确,不符合题意;B、(精确到百万位),原说法错误,符合题意;C、(精确到十万位),原说法正确,不符合题意;D、百万(精确到百万位).原说法正确,不符合题意;故选B.15. 若,则的值是()A. 2B.C.D. 10【答案】C解析:解:解得:故选C.16. 已知一个两位数a和一个两位数b,将a放在b的左边,形成一个四位数A,交换a和b的位置形成另一个四位数B,则的值为( )A. B. C. D.【答案】A解析:解∶由题意可得:,,∴,故选∶A.二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,空2分,把答案写在题中横线上)17. 对单项式可以解释为:一件商品原价为元,若按原价折出售,这种商品现在的售价是元.请你对再赋予一个实际意义:____________.【答案】练习本每本0.8元,小明买了a本,共付款0.8a元.解析:解:答案不唯一,例如:练习本每本0.8元,小明买了a本,共付款0.8a元.故答案为:练习本每本0.8元,小明买了a本,共付款0.8a元.18. 已知,.(a为常数)(1)若A与B的二次项系数互为相反数,则___________;(2)在(1)的条件下,化简:___________.【答案】①. ②. ##解析:解:(1)∵,,A与B的二次项系数互为相反数,∴,故答案为:;(2)由(1)得,∴,故答案为:.19. 已知笔记本的单价是m元,碳素笔的单价为n元.(1)嘉嘉买了3本笔记本,2支碳素笔,一共花费___________元;(2)若,,在(1)的条件下,嘉嘉一共花费___________元.【答案】①. ##②.解析:解:(1)由题意得,嘉嘉买了3本笔记本,2支碳素笔,一共花费元,故答案为:;(2)当,时,,∴在(1)的条件下,嘉嘉一共花费元,故答案为:.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20. 计算:(1)(2)(3)【答案】(1)5 (2)(3)4【小问1解析】解:;【小问2解析】解:;【小问3解析】解:.21. 嘉淇在电脑上设计了一个有理数运算程序:输入a,加*键,再输入b,得到运算:.(1)求的值;(2)小华在运用此程序计算时,屏幕显示“该程序无法操作”,你猜小华在输入数据时,出现了什么情况?为什么?【答案】(1)(2)输入了的数值,理由见解析【小问1解析】解∶;【小问2解析】解∶∵0不能作除数,∴小华在输入数据时可能是,即.22. 某超市在甲批发市场以每包m元的价格购进了40包茶叶,又在乙批发市场以每包n元的价格购进了同样的60包茶叶,共用去P元;如果以每包元的价格全部卖出这种茶叶,销售收入为Q元.(1)用含m、n的整式分别表示P、Q;(2)如果,请判断超市在这次买卖中的盈亏情况.【答案】(1),(2)超市在这次买卖中的盈利元小问1解析】解:由题意得,,;【小问2解析】解:∵,∴∵,即,∴,∴卖出的钱数大于购进的钱数,∴超市在这次买卖中的盈利元.23. 化简并求值:已知,小明错将“”看成“”,算得结果.(1)计算的表达式;(2)小强说正确结果的大小与的取值无关,对吗?请说明理由.(3)若,,求正确结果的代数式的值.【答案】(1);(2)小强的说法对,正确结果的取值与无关,理由见解析;(3)0.解析:解:(1)∵,∴.B;(2).因正确结果中不含,所以小强的说法对,正确结果的取值与无关;(3)将, 代入(2)中的代数式,得:.24. 甲、乙两家文具店出售同样的毛笔和宣纸(中国传统的古典书画用纸),毛笔每支20元,宣纸每张2元.甲文具店优惠方法为:买一支毛笔送两张宣纸;乙文具店优惠方法为:按总价的九折优惠.小嘉想购买5支毛笔,宣纸x张().(1)若到甲店购买,小嘉应付多少元?(用含x的整式表示)(2)若到乙店购买,小嘉应付多少元?(用含x的整式表示)(3)若小嘉要购买5支毛笔,10张宣纸,应选择哪家文具店?若购买5支毛笔,100张宣纸呢?【答案】(1)元(2)(3)若小嘉要购买5支毛笔,10张宣纸,应选择甲文具店;若小嘉要购买5支毛笔,100张宣纸,应选择乙文具店【小问1解析】解;由题意得,到甲店购买,小嘉应付元;【小问2解析】解:由题意得,到乙店购买,小嘉应付元;【小问3解析】解:当时,,,∵,∴若小嘉要购买5支毛笔,10张宣纸,应选择甲文具店;当时,,,∵,∴若小嘉要购买5支毛笔,100张宣纸,应选择乙文具店.25. 图是2023年8月的日历:(1)求出图甲中带阴影方框中9个数的和m,并指出m与方框正中心的数n有什么数量关系;(2)如果把图甲带阴影的方框移至图乙带阴影的方框的位置,(1)中的关系还成立吗?(3)不改变带阴影的方框大小,把方框移动几个位置,写出方框中9个数的和m与方框正中心的数n之间存在的数量关系,并证明这个结论的正确性;(4)直接写出9月4日、9月11日是星期几.【答案】(1)(2)成立(3)(4)9月4日是星期一、9月11日是星期一【小问1解析】解:由题意知,,∴;【小问2解析】解:由题意知,,∴,∴结论还成立;【小问3解析】解:正中心数为,则它左边的数为,右边的数为,正上方的数为,正下方的数为,左上方的数为,右下方的数为,左下方的数为,右上方的数为,∴,∴;【小问4解析】解:由表格知8月31日是星期四,则9月1日是星期五,9月2日是星期六,9月3日是星期日,9月4日是星期一,又9月11日比9月4日多7天,∴9月11日也是星期一.26. 某水果店新进了A、B两种水果,进价分别为每千克10元、每千克16元,A、B两种水果分别购进a 千克、b千克,共付款P元.(1)用含a、b的整式表示P;(2)若购进千克A种水果和千克B种水果,用科学记数法表示P;(3)购进A种水果后,水果店A种水果一周的批发销售情况如下表所示(以销售50千克为标准,超过标准用正数表示,不足用负数表示),若A种水果批发价为每千克16元,B种水果批发价为每千克20元,这周B种水果批发销售的数量是总量的,求这周销售A、B两种水果的总利润的和.星期一二三四五六日A种水果销售情况(千克)425【答案】(1)(2)(3)【小问1解析】解:由题意得,;【小问2解析】解:∵购进千克A种水果和千克B种水果,∴;【小问3解析】解:,千克,∴这周A种水果的销量为347千克,设这周B种水果的销量为千克,由题意得,,解得,∴这周B种水果的销量为千克,∴这周销售A、B两种水果的总利润的和为元.。
2024学年第一学期七年级期中教学质量检测数学试题卷(时间:100分钟 总分:120分)一、选择题(每小题3分,共30分)1.的倒数是 ( )A . B .C.D .2.下列各组量中具有相反意义的量是 ( ) A .胜3局与输2局 B .身高增加3厘米与体重减轻3kg C .气温升高3℃与气温为-3℃ D .向右走6米与向西走5米3.2024年7月26日,第33届夏季奥林匹克运动会开幕,共有来自世界各地10500名参赛运动员,10500这个数字用科学记数法可表示为 ( )A .0.105×105 B .1.05×104 C .10.5×103 D .105×1024.下列运算正确的是 ( )ABCD5.下列结论中,正确的是( )A .是整式B .的系数是,次数是2C . 的次数为5D .是三次二项式6.若a ,b 互为相反数,c ,d 互为倒数,e 是9的平方根,则 (a+b )3+2cd-e 的值为( )A.B . C .或D .或7.已知代数式与是同类项,则的值为( )A .2B .C .1D .8. 小明在电脑中设置了一个有理数的运算程序:,例如,试求4*(-3)的值为()A. B .C .D .9. 当时,代数式的值是8,则当时,这个代数式的值是( )A. B. 4 C. 8 D. 62024-20242024-1202412024-4=±3=-3=-153=13xy-237xy 37223xy -22R R ππ+1-2-51-42-245m x y ﹣43n x y n m -1-2-2*5a b a b =-+()()23*23252-=--+=-12-012541x =31322ax bx -+=1x -31322ax bx -+4-10.如图,在两个完全相同的大长方形中各放入五个完全一样的白色小长方形,得到图(1)与图(2).若AB =m ,则图(1)与图(2)阴影部分周长的差是( )A .mB.C .D .二、填空题(每小题4分,共24分)11.-7的相反数是 .12.16的平方根是 ,64立方根是 .13.用四舍五入法把3.1415926精确到0.01,所得到的近似数为 .14.按图中的程序运算:当输入的数据为1时,则输出的数据是 .15.已知实数x ,y 满足,则代数式的值为 .16. 小红房间窗户的装饰物是由两个半径相同的四分之一圆组成的(如图1所示),小兰房间窗户的装饰物是由半径相同的两个四分之一圆和一个半圆组成的(如图2所示),小明房间窗户的装饰物是由半径相同的两个四分之一圆和两个半圆组成的(如图3所示).请代数式表示出第n 个装饰物的面积为 .三、解答题(17题6分,18题6分,19题8分,20题8分,21题8分,22题8分,23题10分,24题12分,共66分)17.(6分)在数轴上把下列各数表示出来,并用“<”连接起来:54m65m76m24(5)0x y -++=2024()x y +10122(4)0(1)22-----,,,,,18. (6分)把下列各数的序号填在相应的大括号里:①,②,③0,,⑤,⑥,⑦,⑧整数:{ };负分数:{ };无理数:{ }.19.(8分)计算(1)(2);(3)(4)20.(8分)先化简,再求值:2x 2y +3xy -3x 2y -xy ,其中x =-1,y =2.21.(8分)在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从地出发,晚上到达地,约定向东为正方向,当天的航行路程记录如下(单位:千米)..(1)请你帮忙确定地位于地的什么方向,距离地有多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为30升,求冲锋舟当天救灾过程中至少还需补充多少升油?22.(8分)阅读下列材料:通过探究知道:,它是个无限不循环小数,也叫无理数,因的小数部分我们不可能全部写出来,的小数部分, 你同意小明的表示方法吗?事实上, 小明的表示方法是有道理的, 的整数部分是1 , 将这个数减去其整数部分, 差就是小数部分, 又例如: ,即 的整数部分是2(1________.(2)已知 ,其中 是一个整数, ,求的值.π3227-(5)-- 6.24- 3.1415926-2(3)(5)+---()77(48)1244⎛⎫-÷÷-⨯- ⎪⎝⎭412(63)7921⎛⎫-+⨯- ⎪⎝⎭201212(1)2⎛⎫⨯-- ⎪⎝⎭A B 14,9,8,7,13,6,12,5,2+-+-+-+-+B A A 1.414≈ 122273<< 23<<,2-.8x y +=+x 01y <<(20172x y +-23.(10分)外卖送餐为我们生活带来了许多便利,某学习小组调查了一名外卖小哥一周的送餐情况,规定每天送餐量超过50单(送一次外卖称为一单)的部分记为“+”,低于50单的部分记为“”,下表是该外卖小哥一周的送餐量:星期一二三四五六日送餐量(单位:单)-3+4-5+14-8+7+12(1)该外卖小哥这一周送餐量最多的一天比最少的一天多多少单?(2)求该外卖小哥这一周一共送餐多少单?(3)外卖小哥每天的工资由底薪60元加上送单补贴构成,送单补贴的方案如下:每天送餐量不超过50单的部分,每单补贴2元;超过50单的部分,超出部分每单补贴4元.求该外卖小哥这一周的工资收入.24.(12分)【阅读】如图1,在数轴上点M 表示的数为m ,点N 表示的数为n ,点M 到点N 的距离记为MN .我们规定:MN 的大小可以用位于右边的点表示的数减去左边的点表示的数表示,即.图1【应用】请用上面的知识解答下面的问题:图2如图2,在数轴上有A 、B 两点,点A 表示的数为-12,点B 表示的数为8 . 点P 以1个单位/秒的速度从A 点出发向数轴正方向运动,点Q 以3个单位/秒的速度同时从B 点出发向数轴负方向运动.设运动时间为t.(1)求A 、B 两点之间的距离.(2)当t 为何值时,点P 与点Q 相遇,并求出相遇点在数轴上所对应的数.(3)点P 与点Q 在相遇后立即以原速度向相反方向运动,在整个过程中,请问当t 为何值时,OP=2OQ ?-MN n m =-2024学年第一学期七年级期中检测数学答案一、选择题(本题有10小题,每小题3分,共30分)题号12345678910答案DABCACABAC二.填空题(本题有6小题,每小题4分,共24分)11. 712. ±4 4 13. 3.14 14.1315. 116.三.解答题(17题6分,18题6分,19题8分,20题8分,21题8分,22题8分,23题10分,24题12分,共66分)17.(6分)图略18. (6分)整数:{③④⑤}负分数:{②⑦⑧}无理数:{①⑥}19.(8分 )(1)2+(﹣3)﹣(﹣5);(2);原式=2−3+5 原式= =4=−4(3)(4)原式=×(-63)-+×(-63) 原式==−36+7−6 = −2=−3520.(8分)原式=将x =-1,y =2代入原式中,得原式=-621.(8分)(1)+14-9+8-7+13-6+12-5+2=22故地位于地东方,距离地有22千米(2)(L)22.(8分)2π8b n10120(1)22(4)2-----<<<<<()77(48)1244⎛⎫-÷÷-⨯- ⎪⎝⎭417(48)(()7124-⨯⨯-⨯-412(63)7921⎛⎫-+⨯-⎪⎝⎭201212(1)2⎛⎫⨯--- ⎪⎝⎭47()1639⨯-22121(2)(2)⨯--⨯-22x y xy-+B A A 14987136125276()km ++-+++-+++-++++-++=760.5308⨯-=(1)___1___.(2)由题意可知:x =9,代入原式=1723.(10分)(1)22(2)解:由题意, 得:50+[ (-3) + (+4) + (-5) + (+14) + (-8) + (+7) + (+12)]=371(单),答:该外卖小哥这一周平均每天送餐53单;(3)解:由题意, 得:60×7+50×2×7+(-3) ×2+4×4+(-5) ×2+14×4+(-8) ×2+7×4+12×4(元),答:该外卖小哥这一周工资收入1248元.24. (12分)(1)20(2)(3)解:①当P 、Q 未相遇且Q 在原点右侧时②当P 、Q 未相遇且Q 在原点左侧时③当P 、Q 相遇后且Q 在原点左侧时④当P 、Q 相遇后且Q 在原点右侧时综上,1y 1236=20513t s ==+12517-+⨯=-12,83OP t OQ t =-=-122(83)t t -=⨯-145t ∴=12,38OP t OQ t =-=-122(38)t t -=⨯-24t ∴=572,7(315)223OP t t OQ t t =-+=+=--=-22(223)t t +=⨯-36t ∴=2,322OP t OQ t =+=-22(322)t t +=⨯-4465t ∴=446,4,6,55t =。
七年级上册数学期中考试试题2022年一、单选题1.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示正确的是()A .6.8×109元B .6.8×108元C .6.8×107元D .6.8×106元2.如果向东为正,那么-50m 表示的意义是()A .向东行进50mB .向南行进50mC .向西行进50mD .向北行进50m 3.下列计算正确..的是()A .(3)21-+=B .(3)21--=-C .(2)(1)(2)-⨯-=-D .(6)23-÷=-4.2--的相反数是()A .12-B .2-C .12D .25.已知有理数a 、b 在数轴上对应的点如图所示,则下列式子正确的是()A .a•b >0B .a+b <0C .|a|<|b|D .a ﹣b >06.下列代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有()个.A .3B .4C .5D .67.下列各组是同类项的一组是()A .xy 2与﹣12x 2yB .3x 2y 与﹣3xyzC .﹣a 3b 与12ba 3D .a 3与b 38.一个多项式与x 2﹣2x+1的和是3x ﹣2,则这个多项式为()A .x 2﹣5x+3B .﹣x 2+x ﹣3C .﹣x 2+5x ﹣3D .x 2﹣5x ﹣139.对于有理数a ,b ,定义一种新运算,规定a※b =﹣a 2﹣b ,则(﹣2)※(﹣3)=()A .7B .1C .﹣7D .﹣110.某公园计划砌一个形状如图(1)的喷水池(图中长度单位:m ),后来有人建议改为图(2)的形状,且外圆的直径不变,请你比较两种方案,砌各圆形水池的周边需要的材料多的是()(提示:比较两种方案中各圆形水池周长的和)A .图(1)B .图(2)C .一样多D .无法确定二、填空题11.计算:4ab 2﹣5ab 2=_______,(﹣25)﹣(﹣35)=_______,10÷3×13=______.12.多项式1﹣3x ﹣2xy ﹣4xy 2是___次___项式,其中二次项是___.13.数轴上有一点A 对应的数为﹣2,在该数轴上有另一点B ,点B 与点A 相距3个单位长度,则点B 所对应的有理数是_______.14.列代数式表示:“a ,b 和的平方减去它们差的平方”为________________.15.若ab =﹣2,a+b =3,那么2a ﹣ab+2b 的值为___.16.单项式2332a b π的系数是__,次数是__.17.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为_____个.三、解答题18.计算题:(1)13﹣(﹣18)+(﹣7)﹣15;(2)﹣24+(﹣3)3﹣(﹣1)10;(3)12﹣6÷(﹣3)﹣22332⨯;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-).19.整式的计算:(1)4x 2﹣5x+2+x 2+3x ﹣4;(2)(8a ﹣7b )﹣2(4a ﹣5b );(3)3x 2﹣[5x ﹣(12x ﹣3)+2x 2].20.有8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:2,﹣3,1.5,﹣0.5,1,﹣2,﹣1.5,﹣2.5.(1)这8筐白菜中,最重的一筐白菜比最轻的一筐白菜重了多少千克?(2)若白菜每千克售价3元,则出售这8筐白菜可卖多少元?21.已知多项式A =2x 2-xy ,B =x 2+xy -6,求:(1)4A -B ;(2)当x =1,y =-2时,求4A -B 的值.22.化简求值:4xy-(2x 2+5xy-y 2)+2(x 2+3xy),其中212(02x y ++-=..23.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是40km/h ,水流速度是akm/h .(1)3h 后两船相距多远?(2)4h 后甲船比乙船多航行多少千米?24.阅读理解,并解答问题:观察下列各式:11112122==-⨯,111162323==-⨯,1111123434==-⨯,......,请利用上述规律计算(要求写出计算过程):(1)1111111261220304256++++++;(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯.25.阅读下列材料:我们知道(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩现在我们可以用这个结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,令10x +=,求得1x =-;令20x -=,求得2x =(称-1,2分别为1x +,2x -的零点值).在有理数范围内,零点值-1和2可将全体有理数分成不重复且不遗漏的如下3种情况:①当1x <-时,原式()()1221x x x =-+--=-+;②当12x -≤≤时,原式()123x x =+--=;③当2x >时,原式1221x x x =++-=-.综上所述,21(1)123(12)21(2)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩通过以上阅读,请你解决以下问:(1)分别求出2x +和4x -的零点值;(2)化简代数式24x x ++-.26.探究性问题:在数学活动中,小明为了求23411112222++++……+12n 的值(结果用含n 的式子表示).设计了如图1所示的几何图形.(1)利用这个几何图形,求出23411112222++++ (12)的值为;(2)利用图2,再设计一个能求23411112222++++ (12)的值的几何图形.参考答案1.B 【解析】【详解】680000000元=6.8×108元.故选:B .【点睛】考点:科学记数法—表示较大的数.2.C 【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】∵向东为正,∴-50m表示的意义为向西50m.故选C.【点睛】本题考查正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.3.D【解析】【分析】根据有理数加、减、乘、除运算法则计算出各项的结果,再进行判断即可.【详解】-+=--=-,选项A计算错误,故不符合题意;解:A.(3)2(32)1--=-+=-,选项B计算错误,故不符合题意;B.(3)2(32)5-⨯-=⨯=,选项C计算错误,故不符合题意;C.(2)(1)212-÷=-÷=-,计算正确,符合题意.D.(6)2(62)3故选:D.【点睛】本题考查了有理数的混合运算,解答本题的关键是有理数混合运算的计算方法.4.D【解析】【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D.【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.5.D【解析】【详解】试题解析:由数轴可知:10,1 2.b a -<<<<A.0,ab <故错误.B.0.a b +>故错误.C.,a b >故错误.D.0.a b ->正确.故选:D .6.C 【解析】【分析】单项式:数字与字母的积,单个的数或单个的字母也是单项式,根据定义逐一判断即可得到答案.【详解】解:代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有:23,,10,,2,3axy b x y -共5个,故选C 【点睛】本题考查的是单项式的定义,熟练的运用单项式的概念判断代数式是否是单项式是解本题的关键.7.C 【解析】【分析】根据同类项是字母相同,且相同的字母的指数也相同解答即可.【详解】解:A .字母相同,但相同的字母的指数不相同,不是同类项,故此选项不符合题意;B .所含字母不尽相同,不是同类项,故此选项不符合题;C .字母相同,且相同的字母的指数也相同,故此选项符合题意;D .字母不同,不是同类项,故此选项不符合题意;故选:C .【点睛】本题考查了同类项,关键是根据同类项是所含字母相同,并且相同字母的指数也相同解答.8.C 【解析】【分析】设这个多项式为A ,根据整式的加减即可求出答案.【详解】解:设这个多项式为A ,∴A+(x 2﹣2x+1)=3x ﹣2∴A =3x ﹣2﹣(x 2﹣2x+1)=3x ﹣2﹣x 2+2x ﹣1=﹣x 2+5x ﹣3故选C .【点睛】本题考查整式的加减,掌握去括号和合并同类项是关键.9.D 【解析】【分析】由新定义列式可得:()()223,----再先计算乘方,最后计算加减运算即可.【详解】解: a※b =﹣a 2﹣b ,(﹣2)※(﹣3)=()()223431,----=-+=-故选D 【点睛】本题考查的是新定义运算,含乘方的有理数的混合运算,理解新定义的运算法则是解本题的关键.10.C 【分析】利用圆的周长公式直接计算即可得到答案.11.2ab -15或者0.2109或者1110【解析】【分析】把同类项的系数相减,字母与字母的指数不变,可得第一空的答案;先把减法转化为加法,再计算加法可得第二空的答案;先把除法转化为乘法,再计算乘法运算即可得到第三空的答案.【详解】解:4ab 2﹣5ab 2=()2245,ab ab -=-(﹣25)﹣(﹣35)=231,555-+=10÷3×13=111010,339⨯⨯=故答案为:2110,,59ab -【点睛】本题考查的是合并同类项,有理数的减法运算,有理数的乘除混合运算,易错点是计算乘除同级运算时,不注意运算顺序.12.三四−2xy .【解析】【分析】直接利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【详解】解:多项式1﹣3x ﹣2xy ﹣4xy 2是三次四项式,其中二次项是:−2xy .故答案为:三,四,−2xy .【点睛】此题主要考查了多项式,正确掌握多项式的相关次数确定方法是解题关键.13.1或5-##5-或1【解析】【分析】由数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,则把表示2-的点向左边或右边移动3个单位即可得到答案.【详解】解: 数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,231∴-+=或235,--=-B ∴对应的数为:1或5-故答案为:1或5-【点睛】本题考查的是数轴上两点之间的距离,有理数的加法与减法运算,掌握“数轴上两点之间的距离的含义”是解题的关键.14.(a +b )2−(a−b )2【解析】【分析】先列两个数和再平方,然后减去它们差的平方即可列出代数式.【详解】解:a ,b 和的平方减去它们差的平方,列出代数式为:(a +b )2−(a−b )2,故答案为:(a +b )2−(a−b )2.【点睛】本题考查了列代数式,解题的关键是理解题意准确列出代数式.15.8【解析】【分析】先把原式化为:()2,a b ab +-再整体代入代数式求值即可.【详解】解: ab =﹣2,a+b =3,∴2a ﹣ab+2b ()2a b ab=+-()=232628,´--=+=故答案为:8【点睛】本题考查的是代数式的值,掌握“整体代入法求解代数式的值”是解题的关键.16.32π5【解析】【分析】根据单项式的定义即可得【详解】因为单项式中的数字因数叫单项式的系数,所有字母的指数和叫单项式的次数,所以32πa2b3.的系数是32π,次数是5.【点睛】本题考查的知识点是单项式,解题的关键是熟练的掌握单项式. 17.3n+2【解析】【详解】解:第一个图案为3+2=5个窗花;第二个图案为2×3+2=8个窗花;第三个图案为3×3+2=11个窗花;…从而可以探究:第n个图案所贴窗花数为(3n+2)个.故答案为:3n+218.(1)9;(2)44-;(3)10;(4)11 12 -【解析】【分析】(1)先把运算统一为省略加号的和的形式,再计算即可;(2)先计算乘方运算,再计算减法运算即可;(3)先计算乘除运算,再计算加减运算即可;(4)先化简绝对值与计算括号内的运算,再计算减法运算即可.【详解】解:(1)13﹣(﹣18)+(﹣7)﹣151318715=+--31229=-=;(2)﹣24+(﹣3)3﹣(﹣1)10 1627144=---=-;(3)12﹣6÷(﹣3)﹣223 32⨯83 12232 =+-⨯14410 =-=;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-)212132312=--⨯-2113312=---11111212=--=-【点睛】本题考查的是含乘方的有理数的混合运算,掌握“有理数的混合运算的运算顺序与运算法则”是解题的关键.19.(1)2522x x--;(2)3b;(3)293 2x x--【解析】【分析】(1)直接把同类项的系数相加减,字母与字母的指数不变,从而可得答案;(2)先去括号,再合并同类项即可;(3)先去小括号,再去中括号,再合并同类项即可得到答案.【详解】解:(1)4x2﹣5x+2+x2+3x﹣42522x x=--(2)(8a﹣7b)﹣2(4a﹣5b)87810a b a b=--+3b=(3)3x2﹣[5x﹣(12x﹣3)+2x2]22135322x x x x ⎛⎫=--++ ⎪⎝⎭22135322x x x x =-+--2932x x =--【点睛】本题考查的是整式的化简求值,熟练的运用去括号,合并同类项是解本题的关键.20.(1)4.5千克;(2)585元【解析】【分析】(1)由超过最多的一筐减去不足最多的一筐可得答案;(2)先求解这8筐白菜的总重量,再乘以单价即可得到答案.【详解】解:(1)8筐白菜中,最重的一筐白菜比最轻的一筐白菜重:()1.53 1.53 4.5--=+=千克.(2)()()()()()23 1.50.512 1.5 2.5+-++-++-+-+-Q 5,=-∴这8筐白菜的总重量为:8255195´-=千克,所以白菜每千克售价3元,出售这8筐白菜可卖:1953=585´元.【点睛】本题考查的是正负数的应用,有理数的加法与乘法的实际应用,理解题意,列出正确的运算式是解本题的关键.21.(1)7x 2-5xy +6;(2)23【解析】【分析】(1)本题考查了整式的加减,列式时注意加括号,然后去括号合并同类项;(2)本题考查了求代数式的值,把x=1,y=﹣2代入到(1)化简得结果中求值即可.【详解】解:(1)∵多项式A=2x 2﹣xy ,B=x 2+xy ﹣6,∴4A ﹣B=4(2x 2﹣xy )﹣(x 2+xy ﹣6)=8x 2﹣4xy ﹣x 2﹣xy+6=7x 2﹣5xy+6;(2)∵由(1)知,4A ﹣B=7x 2﹣5xy+6,∴当x=1,y=﹣2时,原式=7×12﹣5×1×(﹣2)+6=7+10+6=23.22.25xy y +,﹣434【解析】【分析】首先去括号合并同类项,再得出x ,y 的值代入即可.【详解】解:原式=22242523xy x xy y x xy -+-++()()22242526xy x xy y x xy =--+++25xy y =+,∵21202x y ++-=(,∴x=﹣2,y=12,故原式=5×(﹣2)×12+14=﹣434.23.(1)240km ;(2)8a km 【解析】【分析】(1)先表示顺水,逆水航行的速度,再求解两船航行3小时的路程和即可;(2)利用甲船航行4小时的路程减去乙船航行4小时的路程即可.【详解】解:(1) 船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h ,∴3h 后两船相距:()()34034012031203240a a a a ++-=++-=km.(2)4h 后甲船比乙船多航行:()()440440*********a a a a a +--=+-+=km.本题考查的是列代数式,整式的加减运算,掌握“船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h”是解本题的关键.24.(1)78;(2)715【解析】【分析】(1)运用题干中的裂项变形法计算即可;(2)仿照题目规律可得111=11323⎛⎫⨯- ⎪⨯⎝⎭,按照此方法裂项计算即可.【详解】(1)1111111261220304256++++++1111111111111=12233445566778-+-+-+-+-+-+-1=18-7=8(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯11111111111111=12335577991111131315⎛⎫-+-+-+-+-+- ⎪⎝⎭11=1215⎛⎫- ⎪⎝⎭7=15【点睛】本题考查了有理数的运算,解题的关键是找到规律,运用裂项求和的方法.25.(1)2x +的零点值为-2, 4x -的零点值是4.(2)当2x <-时,原式22x =-+;当-2≤x≤4,原式6=;当4x >时,原式22x =-.【解析】【分析】(1)根据题中所给材料,求出零点值;(2)将全体实数分成不重复且不遗漏的三种情况解答;解:(1)令20x +=,解得2x =-,所以2x +的零点值为-2,令40x -=,解得4x =,所以4x -的零点值是4.(2)当2x <-时,原式()()242422x x x x x =-+--=---+=-+;当-2≤x≤4,原式()()24246x x x x =+--=+-+=;当4x >时,原式()()2422x x x =++-=-.综上所述:22(2)246(24)22(4)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩。
荆楚初中名校联盟2023—2024年度第一学期期中联考七年级数学试卷本试卷共4页,24题 满分:120分 考试用时:120分钟注意事项:1.考生答题全部在答题卷上,答在试题卷上无效。
2.请认真核对监考教师在答题卷上所粘贴条形码的姓名、准考证号是否与本人相符,再将自己的姓名、准考证号用0.5毫米的黑色墨水签字笔填写在答题卷及试题卷上。
3.选择题作答必须用2B 铅笔将答题卷上对应的答案标号涂黑。
如需要改动,请用橡皮擦干净后,再选涂其他答案。
非选择题作答必须用0.5毫米黑色墨水签字笔写在答题卷上指定位置,在其他位置答题一律无效。
4.考生不得折叠答题卷,保持答题卷的整洁。
考试结束后,请将试题卷和答题卷一并上交。
一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将其标号在答题卡上涂黑作答.)1.数1,0,,-2中最大的是( )A.1B.0C.D.-22.-4的绝对值是( )A.4B.-4C. D.3.下列计算结果为负数的是( )A. B. C. D.4.北京时间2023年5月30日,神舟十六号载人飞船奔赴苍穹!根据中国载人航天官网信息,神舟十六号载人飞船围绕地球飞行1小时的航程约为28000公里,将数据28000用科学记数法表示为( )A. B. C. D.5.将一组有理数“,,,,,0,,”按正数、负数、整数、分数分类,其中准确且无遗漏的是( )A.正数有:,,0B.负数有:-15,-2,-1,-3.6523-23-1414-()42-122⎛⎫-÷-⎪⎝⎭()12--2-32810⨯32.810⨯42.810⨯50.2810⨯15-6+2-1-34+1233.65-6+34+C.整数有:,,,D.分数有:,6.下列说法正确的是()A.代数式的系数是-2,次数是4B.是单项式C.的常数项是1D.是四次二项式7.下列各式中,与是同类项的是( )A. B.C. D.8.如图,数轴上有三个点A 、B 、C .若点A 、C 表示的数互为相反数,数轴的单位长度为1,则图中点B 对应的数是()A.4B.3C.2D.19.如图,图甲是我国古代著名的赵爽弦图的示意图,它是由四个能完全重合的直角三角形围成的.若直角三角形的一条直角边长是a ,另一条直角边长是b ,将四个直角三角形中长度是b 的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则图乙中阴影部分的面积是()图甲 图乙A.B. C. D.10.学校组织学生参加木艺艺术品加工劳动实践活动.已知某木艺艺术品加工完成共需A 、B 、C 、D 、E 、F 、G 七道工序,加工要求如下:①工序C 、D 须在工序A 完成后进行,工序E 须在工序B 、D 都完成后进行,工序F 须在工序C 、D 都完成后进行;②一道工序只能由一名学生完成,此工序完成后该学生才能进行其他工序;③各道工序所需时间如下表所示:15-6+2-1-34+1232223x y -3x y-+2331x y x -+-41x -22ab abc212ab 2a b-222b12ab ab2ab4ab工序A B C D E F G 所需时间/分钟99797102在不考虑其他因素的前提下,若由一名学生单独完成此木艺艺术品的加工,则需要分钟;若由两名学生合作完成此木艺艺术品的加工,则最少需要( )分钟.A.19B.28C.30D.37二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在答题卡的相应位置上.)11.如果向东走10米,记作+10米,那么向西走10米,可记作________米.12.在数轴上到原点的距离小于3的整数可以为________.(任意写出一个即可)13.某地居民生活用水收费标准为:每月用水量不超过20立方米,每立方米a 元;超过部分每立方米元,该地区某用户上月用水量为23立方米,则应缴水费为________元.14.代数式的值是1,则的值________.15.观察下列算式:;;;;;……若字母n 表示自然数,请你把观察到的规律用含有字母n 的式子表示出来:________.16.在多项式(其中)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:,,…….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的结论序号是________.三、解答题(本大题共8个小题,共72分.解答应写出文字说明,证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内)17.(本小题8分)计算:(1)(2)18.(本小题8分)先化简,再求值:,其中,.19.(本小题8分)已知,b 和d 互为倒数,m 和n 的绝对值相等,且,p 是最大的负整数.求的值.20.(本小题8分)某校七年级某班学生的平均体重是45公斤.(1)下表给出了该班6位同学的体重情况(单位:公斤),完成下表9979710253++++++=()1.5a +231x x +-2262023x x ++2210101-=+=2221213-=+=2232325-=+=2243437-=+=2254549-=+=x y z m n ----x y z m n >>>>x y z m n x y z m n ----=--+-x y z m n x y z m n ----=---+()122232-⨯-⨯-()2611432532⎛⎫⨯---÷ ⎪⎝⎭()()2222222a b ab ab a b -+-13a =3b =-()2320x y -+-=0mn <()()22p y m x bd ny ++++姓名小丽小华小明小方小颖小宝体重3851404649体重与平均体重的差值-7+6-5-3+1小方的体重是多少公斤?小宝的体重与平均体重的差值是多少公斤?(2)最重的与最轻的同学的体重相差多少?(3)这6位同学的体重和是多少?21.(本小题8分)中国最古老的天文学和数学专著《周髀算经》在记载“勾股圆方图”时说:“勾实之矩以股弦差为广,股弦并为袤,而股实方其里.……股实之矩以勾弦差为广,勾弦并为袤,而勾实方其里.”将这段话实践起来:如图1,在边长为a 的正方形中作一个边长为的正方形,则余下的阴影部分面积等于一个以为长、为宽的长方形面积,如图2.图1 图2(1)请列式表示:图1中阴影部分的面积为________,图2中阴影部分的面积为________;(2)图1和图2两图中阴影部分面积相等,你能写出(1)中代数式之间的等量关系吗?(3)根据(2)中的等量关系,解决如下问题:若,,求的值.22.(本小题10分)下图是2023年10月的月历,观察月历,回答问题:日一二三四五六1休2休3休4休5休6休78910111213141516171819202122232425262728293031(1)小欢国庆假期外出旅行三天,三天日期之和是12,小欢是星期几出发的?(2)“S 型”、“田型”两个阴影图形分别覆盖其中四个方格(可以重叠覆盖),设“S 型”阴影覆盖的最小数字为m ,四个数字之和为,“田型”阴影覆盖的四个数字之和为.①2023年是建国74周年,的值能否等于74?若能,求m 的值;若不能,说明理由;②若,求的值.23.(本小题10分)如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.b ()a b >()a b +()a b -14a b +=2a b -=22a b -1S 2S 1S 1246S S +=12S S -11a b 2-7c …(1)可求得a =________,b =________,c =________;(2)第2023个格子中的数为________;(3)若前m 个格子中所填整数之和,则m 的值为多少?若,m 的值为多少?(4)若,则的最小值为________.24.(本小题12分)在同一直线上的三点A 、B 、C ,若满足点C 到另两个点A 、B 的距离之比是2,则称点C 是其余两点的亮点(或暗点).具体地,当点C 在线段AB 上时,若,则称点C 是的亮点;若,则称点C 是的亮点.当点C 在线段AB 的延长线上时,若,称点C 是的暗点.例如,如图1,数轴上点A ,B ,C ,D 分别表示数-1,2,1,0,则点C 是的亮点,又是的暗点,点D 是的亮点,又是的暗点.(1)如图2,P 、Q 为数轴上两点,点P 所表示的数为-4,点Q 所表示的数为2.的亮点表示的数是________,的亮点表示的数是________;的暗点表示的数是________,的暗点表示的数是________;(2)如图3,数轴上点E 所表示的数为-40,点F 所表示的数为20,动点M 从点F 出发以每秒4个单位的速度向左运动,设运动时间为t 秒.①求当t 为何值时,M 是的暗点;②求当t 为何值时,M ,E 和F 三个点中恰有一个点为其余两点的亮点.荆楚初中名校联盟2023-2024年度第一学期期中考试七年级数学参考答案与评分说明一、选择题(10×3分=30分)666S =2033S =b x c <<x a x b x c -+-+-2CACB=[],A B 2CB CA =[],B A 2CACB=[],A B [],A B [],A D [],B A [],B C [],P Q [],Q P [],P Q [],Q P [],F E题号12345678910答案AADCBDBACB二、填空题:(6×3分=18分)11.-10;12.-1;13.;14.2027;15.(n 为正整数);16.①②.三、解答题(共8小题,共72分)17.(本小题8分)(1);解:原式==11(2).解:原式====-0.718.(本小题8分)解:原式,当,时,原式=.19.﹙本题8分﹚解:(1)由题意可得,,,,,,()23 4.5a +22(1)121n n n n n --=+-=-122(32)2-⨯-⨯-()5262⨯--56=+()2611432532⎛⎫⨯---÷ ⎪⎝⎭6161116535232⨯-⨯-⨯231552--0.20.5--2222242a b ab ab a b =--+23ab =13a =3b =-()213393⨯⨯-=3x =2y =1bd =m n =-1p =-()()22p y m x bd ny ++++20.(本小题8分)解:(1),故小方的体重是42公斤,,故小宝的体重与平均体重的差值是+4公斤(2)最重同学的体重是51公斤,最轻的同学的体重是38公斤(公斤)所以最重的与最轻的同学的体重相差13公斤(3)(公斤)(公斤)所以这6位同学的体重和是266公斤.21.(本小题8分)解:(1)图1中阴影部分的面积为,图2中阴影部分的面积为;(2)(3)若,,则22.(本小题10分)解:(1)因为,所以小欢是3号星期二出发的.(2)①,解得但15在第一列,所以S 1的值不能等于74②设“田型”阴影覆盖的最小数字为n ,,得,因为m 、n 是正整数,若,则n =3,与题意不符,舍;若m =2,则n =2,符合题意;若m =3,则n =1,符合题意当m =2,则n =2时,当m =3,则n =1时,所以的值是2或6.()()212314n n =-+-++144n n=-+1=45342-=49454-=513813-=7653144-+--++=-4456266-+⨯=22a b -()()a b a b +-()()22a b a b a b =+--14a b +=2a b -=()()2214228a b a b a b =+=⨯=--34512++=17674m m m m ++++++=15m =12176178443046m m m m n n n n m n S S =+++++++++++++=+=++4416m n +=1m =()12176178442m m m m n n S m S n n n =++++++-+++++--+=-122S S -=126S S -=12S S -23.(本小题10分)(1)a =2,b =-7,c =11(2)第2023个格子中的数为11(3)任意三个相邻格子中所填整数之和:11-7+2=6因为666÷6=111,所以共有111组数,m 的值为333因为S =2033=337×6+11,所以共有337组数,m 的值为337×3+1=1012(4)若,则的最小值为18.24.(本小题12分)(1)[P ,Q ]的亮点表示的数是0,[Q ,P ]的亮点表示的数是2.[P ,Q ]的暗点表示的数是8,[Q ,P ]的暗点表示的数是10.(2)①当M 是[F ,E ]的暗点时,M 在FE 延长线上且FM =2EM ,则EM =EF =60,则FM =120,t =120÷4=30秒.②当M 是[E ,F ]的亮点时,ME =2MF ,则,t =20÷4=5秒;当M 是[F ,E ]的亮点时,MF =2ME ,则,t =40÷4=10秒;当E 是[F ,M ]的亮点时,EF =2EM ,则,t =90÷4=22.5秒;当E 是[M ,F ]的亮点时,EM =2EF ,则MF =3EF =180,t =180÷4=45秒;综上,当t 为5、10、22.5或45秒时,M ,E 和F 三个点中恰有一个点为其余两点的亮点.b xc <<x a x b x c -+-+-2013MF EF ==4023MF EF ==9032MF EF ==。
2024年最新人教版七年级数学(上册)期中试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. 3/4C. πD. √12. 下列哪个数是整数?A. 1.5B. 2/3C. 3/4D. 53. 下列哪个数是无理数?A. 2/3B. 3.25C. √3D. 1/24. 下列哪个式子是正确的?A. √9 = 3B. √9 = 3C. √9 = 2D. √9 = 45. 下列哪个式子是错误的?A. 2^3 = 8B. 3^2 = 9C. 4^2 = 16D. 5^2 = 20二、判断题5道(每题1分,共5分)1. 任何两个有理数的和都是有理数。
()2. 任何两个整数的积都是整数。
()3. 任何两个无理数的积都是无理数。
()4. 任何两个实数的和都是实数。
()5. 任何两个实数的积都是实数。
()三、填空题5道(每题1分,共5分)1. 两个有理数的和是______数。
2. 两个整数的积是______数。
3. 两个无理数的积是______数。
4. 两个实数的和是______数。
5. 两个实数的积是______数。
四、简答题5道(每题2分,共10分)1. 请简要说明有理数的定义。
2. 请简要说明整数的定义。
3. 请简要说明无理数的定义。
4. 请简要说明实数的定义。
5. 请简要说明有理数和无理数的区别。
五、应用题:5道(每题2分,共10分)1. 计算下列式子的值:2^3 + 3^2 4^22. 计算下列式子的值:√9 + √16 √253. 计算下列式子的值:3/4 + 2/3 1/24. 计算下列式子的值:2/3 3/4 4/55. 计算下列式子的值:√2 √3 √6六、分析题:2道(每题5分,共10分)1. 请分析并解释为什么√1是无理数。
2. 请分析并解释为什么π是无理数。
七、实践操作题:2道(每题5分,共10分)1. 请用计算器计算下列式子的值:2^10 + 3^5 4^32. 请用计算器计算下列式子的值:√9.6 + √36.9 √81.25八、专业设计题:5道(每题2分,共10分)1. 设计一个函数,使其输入一个正整数n,输出n的所有正因数。
初一数学上册期中考试试卷及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -3B. 0C. 5D. -1答案:C2. 以下哪个表达式的结果为负数?A. 2 + 3B. -2 - 3C. 2 × 3D. -2 × 3答案:B3. 哪个分数等于1/2?A. 2/4B. 3/6C. 4/8D. 5/10答案:A4. 如果a = 5,b = 3,那么a + b的值是多少?A. 2B. 8C. 10D. 15答案:B5. 哪个图形不是轴对称图形?A. 圆形B. 正方形C. 等边三角形D. 不规则四边形答案:D6. 下列哪个选项是质数?A. 4B. 6C. 7D. 8答案:C7. 一个数的相反数是-5,这个数是多少?A. 5B. -5C. 0D. 10答案:A8. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C9. 哪个选项表示的是不等式?A. 3 + 4 = 7B. 2 × 5 = 10C. 9 > 3D. 6 = 6答案:C10. 下列哪个选项是正确的比例?A. 2:3 = 4:6B. 3:4 = 6:8C. 5:7 = 10:14D. 1:2 = 3:6答案:D二、填空题(每题2分,共20分)11. 一个数的平方是16,这个数是______。
答案:4或-412. 如果一个数除以3余1,这个数可能是______。
答案:413. 一个数的立方是-8,这个数是______。
答案:-214. 一个数的倒数是1/3,这个数是______。
答案:315. 一个数的绝对值是它本身,这个数是非负数,包括______。
答案:0和正数16. 如果一个三角形的两边长分别是3和4,那么第三边的长度应该在______范围内。
答案:1和7之间17. 一个数的平方根是2,这个数是______。
答案:418. 如果一个数的相反数是它本身,这个数是______。
七年级上册数学期中考试试题一、单选题1.下面四个数中比﹣5小的数是()A .1B .0C .﹣4D .﹣62.如果a 与2020-互为倒数,那么a 的值是()A .2020B .2020-C .12020D .12020-3.下列各式计算结果为负数的是()A .﹣(﹣1)B .|﹣(+1)|C .﹣|﹣1|D .|1﹣2|4.由中国南车制造的CTT500型高铁,它的实验速度高达605公里/小时,打破了法国高速列车574.8公里/小时的世界纪录.若保持这样的速度,用科学记数法写出行驶10小时的路程为()A .46.0510⨯公里B .36.0510⨯公里C .56.0510⨯公里D .30.60510⨯公里5.下列去括号正确的是()A .﹣(a+b ﹣c )=a+b ﹣cB .﹣2(a+b ﹣3c )=﹣2a ﹣2b+6cC .﹣(﹣a ﹣b ﹣c )=﹣a+b+cD .﹣(a ﹣b ﹣c )=﹣a+b ﹣c 6.下列判断中正确的是()A .23a bc 与2b ca 是同类项B .25m n 不是整式C .单项式32x y -的系数是1-D .2235x y xy -+是二次三项式7.有理数a ,b ,c 在数轴上的位置如图所示,则a b b c +--的值为()A .2a b c --B .a c +C .2a b c--+D .a c--8.已知21a b -+的值是1-,则()3224a b a b --+的值是()A .4-B .10-C .0D .2-9.如图,A 、B 、C 、D 是数轴上的四个整数所对应的点,且1B A C B D C -=-=-=,而数m 在A 与B 之间,数n 在C 与D 之间,若3m n +-=,且A 、B 、C 、D 中有一个是原点,则此原点可能是()A .A 点或D 点B .B 点或D 点C .A 点D .D 点10.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,求422a bx cdx ++-的值是()A .10B .-10C .20D .-20二、填空题11.用四舍五入法按照要求对0.43295取近似值,精确到千分位是________.12.若25-m x y 与n x y 是同类项,则m n +=__________.13.某超市销售的一种水果原价为m 元,因为销量不好,降价10%进行销售,一段时间后销量良好,决定提价20%,提价20%后这种水果的价格为________.14.若式子()333394mx x x nx -+--的值与x 无关,则mn 的值是________.15.对于有理数a ,b 定义一种新运算:*24a b a b =-+-.则()3*4*2-⎡⎤⎣⎦的值是________.16.如图是用大小相等的小正方形拼成的一组图案:…(1)(2)(3)(4)…观察并探索:第(100)个图案中有小正方形的个数是________.17.如果水库水位上升2m 记作+2m ,那么水库水位下降6m 记作_____.三、解答题18.计算:(1)()()1536---+.(2)()948149-÷⨯.(3)()157362612⎛⎫--⨯- ⎪⎝⎭.(4)()2411133162⎛⎫⎡⎤--⨯+-÷- ⎪⎣⎦⎝⎭.19.化简:(1)()()223222a a a a ++-+.(2)()2243324y y y y ⎡⎤---+⎣⎦.20.先化简,再求值:()()225214382a a a a+---+,其中3a =-.21.已知a 、b 互为相反数,x 、y 互为倒数,m 到原点距离2个单位.(1)根据题意,m =________.(2)求()202022a b mxy +++-的值.22.某公园中一块草坪的形状如图中的阴影部分.()1用整式表示草坪的面积;()2若2a =米,5b =米,求草坪的面积.23.已知一个三角形的第一条边长为3a b +,第二条边比第一条边短2a b -,第三条边比第二条边长2a b +.(1)则第二边的边长为________,第三条的边长为________.(2)用含a ,b 的式子表示这个三角形的周长,并化简.(3)若a ,b 满足()2870a b -+-=,求这个三角形的周长.24.小丽暑假期间参加社会实践活动,从某批发市场以每个a 元的价格购进50个手机充电宝,然后每个加价b 元到市场出售.(以下结果用含a ,b 的式子表示)(1)全部售出50个手机充电宝的总销售额为多少元?(2)由于开学临近,小丽在成功售出30充电宝后,决定将剩余充电宝按售价8折出售,并很快全部售完.①她的总销售额是多少元?②如果不采取降价销售,并且全部售出这50个充电宝,小丽将比实际销售多盈利多少元?25.“幸福是奋斗出来的”,在数轴上,若C 到A 的距离刚好是3,则C 点叫做A 的“幸福点”;若C 到A 、B 的距离之和为6,则C 叫做A 和B 的“幸福中心”.(1)如图1,点A 表示的数为1-,则A 的幸福点C 所表示的数应该是________.(2)如图2,M 、N 为数轴上两点,点M 所表示的数为4,点N 所表示的数为2-,若点C 就是M 和N 的幸福中心,则C 所表示的所有数中,整数之和为________.(3)如图3,A 、B 、C 为数轴上三点,点A 所表示的数为1-,点B 所表示的数为4,点C 所表示的数为8,点P 从点C 出发,以每秒2个单位的速度向左运动,同时,点M ,N 分别从点A ,B 以每秒1个单位的速度向右运动,经过多少秒时,点P 是M 和N 的幸福中心?26.已知A 点的初始位置位于数轴上表示1的点,现对点A 做如下移动:第1次向左移动3个单位长度至1A 点,第2次从1A 点向右移动6个单位长度至2A 点,第3次从2A 点向左移动9个单位长度至3A 点,第4次从3A 点向右移动12个单位长度至4A 点,…,依此类推.设点i A (1,2,3,i =⋅⋅⋅)对应的数为i a (1,2,3,i =⋅⋅⋅).(1)点5A 对应的数5a =________,点6A 对应的数6a =________.(2)第n 次移动到点n A ,求n a 的表达式(用含n 的式子表示).(3)是否存在第m 次移动到的点m A 到原点的距离为2020?如果存在,请求出m 的值,若不存在,请说明理由.参考答案1.D【解析】【详解】解:根据有理数比较大小的方法,可得﹣5<1,﹣5<0,﹣5<﹣4,﹣5>﹣6,∴四个数中比﹣5小的数是﹣6.故选:D.2.D【解析】【分析】根据倒数的概念求解可得.【详解】解:∵1()(2020)1 2020-⨯-=,∴-2020的倒数是1 2020 -,故选:D.【点睛】本题主要考查了倒数,解题的关键是掌握乘积是1的两数互为倒数.3.C【解析】【分析】将各式的结果计算出来,再根据小于零的数是负数,可得答案.【详解】A.﹣(﹣1)=1,1是正数,故A错误;B.|﹣(+1)|=1,1是正数,故B错误;C.﹣|﹣1|=﹣1,﹣1是负数,故C正确;D.|1﹣2|=|-1|=1,1是正数,故D错误.故选:C.【点睛】本题考查了正数和负数.掌握正数和负数的分辨,明确小于零的数是负数,能够正确化简各数是解题的关键.4.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:605×10=6.05×103(公里),故选:B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.B【解析】【分析】若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变,“﹣”遇“+”变“﹣”号,“﹣”遇“﹣”变“+”;据此判断.【详解】解:A、﹣(a+b﹣c)=﹣a﹣b+c,所以A不符合题意;B、﹣2(a+b﹣3c)=﹣2a﹣2b+6c,正确;C、﹣(﹣a﹣b﹣c)=a+b+c,所以C不符合题意;D、﹣(a﹣b﹣c)=﹣a+b+c,所以D不符合题意;故选:B.【点睛】本题考查去括号的知识,若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变.6.C【解析】【分析】分别根据同类项的定义,整式的定义,单项式的定义以及多项式的定义逐一判断即可.【详解】解:A 、23a bc 与2b ca ,所含字母相同,但是相同字母的指数不相同,故本选项不合题意;B 、25m n 属于整式,故本选项不合题意;C 、单项式32x y -的系数是1-,故本选项符合题意;D 、2235x y xy -+是三次三项式,故本选项不合题意;故选:C .【点睛】本题主要考查了同类项,整式,单项式与多项式的定义,熟记相关定义是解答本题的关键.7.D 【解析】【分析】先根据数轴判断出a 、b 、c 的正负情况以及绝对值的大小,然后判断出a+b ,b-c 的正负情况,再根据绝对值的性质去掉绝对值号,合并同类项即可.【详解】解:根据图形可知,b <c <0<a ,且|b|>|a|>|c|,∴a+b <0,b-c <0,∴|a+b|−|b−c|=-(a+b )+(b-c )=-a-b+b-c =-a-c .故选:D .【点睛】本题考查了整式的加减,数轴与绝对值的性质,根据数轴判断出a 、b 、c 的大小关系以及a+b ,b-c 的正负情况是解题的关键,也是难点.8.D 【解析】【分析】先化简多项式,再变形已知条件,最后整体代入求值.【详解】解:3(2)24a b a b --+3624a b a b=--+2a b =-,21a b -+ 的值是1-,211a b ∴-+=-.即22a b -=-.∴原式2=-.故选:D .【点睛】本题考查了整式的加减,掌握整式加减的运算法则是解决本题的关键.9.A 【解析】【分析】先根据图形和已知条件找出各线段长度,然后由3m n +-=推测原点位置.【详解】解:由“B-A=C-B=D-C=1且数m 在A 与B 之间,数n 在C 与D 之间”可以得出:1AB BC CD ===3AD ∴=①当原点是B 点或C 点时,3m n +-<与已知3m n +-=相矛盾,故原点不可能是B 点或C 点;②当原点在A 点或D 点且A m D n -=-时,3m n m n +-=+=,综上可知:数轴原点可能是A 点或D 点.故选A .【点睛】本题主要考查了数轴和绝对值,解决本题的关键在于理解绝对值的几何意义.10.C 【解析】【分析】根据相反数的定义,倒数的定义,绝对值的定义求出a+b=0,cd=1,2x =±,分两种情况代入数值计算即可.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,∴a+b=0,cd=1,2x =±,当x=2时,422a bx cdx ++-=16+4-0=20,当x=-2时,422a b x cdx ++-=16+4-0=20,故选:C .【点睛】此题考查已知式子的值求代数式的值,正确掌握相反数的定义,倒数的定义,绝对值的定义是解题的关键.11.0.433【解析】【分析】把万分位上的数字9进行四舍五入即可.【详解】解:0.43295≈0.433(精确到千分位).故答案是:0.433.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有精确到哪一位,保留几个有效数字等说法.12.3.【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程等式,求出n ,m 的值,再相加即可.【详解】∵-5x 2y m 和x n y 是同类项,∴n=2,m=1,∴m+n=2+1=3.13.1.08m 【解析】【分析】直接利用降价与提价的变化得出变化后实际价格.【详解】解:由题意可得:m (1-10%)(1+20%)=1.08m (元).故答案为:1.08m .【点睛】本题主要考查了列代数式,正确表示出变化后价格是解题关键.14.4【解析】【分析】先将原式化简为()()33439m x n x -+-+,,再根据多项式的值与x 无关,可得340m -=,30n -=,由此即可求得mn 的值.【详解】解:33339(4)mx x x nx -+--333394mx x x nx =-+-+()()33439m x n x =-+-+,式子33339(4)mx x x nx -+--的值与x 无关,340m ∴-=,30n -=,43m ∴=,3n =.4343mn ∴=⨯=.故答案为:4.【点睛】本题考查了整式的加减运算,重点是根据题中条件得到340m -=,30n -=,同学们应灵活掌握.15.-7【解析】【分析】先计算(-3)*4得出其结果,再代入[(-3)*4]*2列式计算即可.【详解】解:∵(-3)*4=-(-3)+2×4-4=3+8-4=7,∴[(-3)*4]*2=7*2=-7+2×2-4=-7+4-4=-7,故答案为:-7.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.16.397【解析】【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n 个图形中共有4(1)1n -+个小正方形.【详解】解:由图片可知:第(1)个图案中有4011⨯+=个小正方形,第(2)个图案中有4115⨯+=个小正方形,第(3)个图案中有4219⨯+=个小正方形,⋯∴规律为小正方形的个数4(1)143n n =-+=-.当100n =时,小正方形的个数41003397=⨯-=.故答案为:397.【点睛】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n 个图形中共有4(1)1n -+个小正方形.17.﹣6m .【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:∵“正”和“负”相对,水位上升2m ,记作+2m ,∴水位下降6m ,记作﹣6m .故答案为﹣6m .【点睛】本题主要考查了理解“正”和“负”的相对性,确定一对具有相反意义的量,比较简单.18.(1)6-;(2)16-;(3)33;(4)13【解析】【分析】(1)根据有理数的加减运算法则计算即可;(2)根据有理数的乘除运算法则计算即可;(3)根据乘法的分配律计算即可;(4)根据有理数的乘方以及混合运算,计算即可;【详解】解:(1)()()()153615366---+=-++=-(2)()94448181164999-÷⨯=-⨯⨯=-(3)()15715736(36)(36)(36)1830213326122612⎛⎫--⨯-=⨯--⨯--⨯-=-++= ⎪⎝⎭(4)()2411133162⎛⎫⎡⎤--⨯+-÷- ⎪⎣⎦⎝⎭121(39)(63=--⨯+⨯-12112(63=--⨯⨯-413=-+13=【点睛】此题考查了有理数的运算,涉及了加减、乘除以及乘方,熟练掌握有理数的运算法则是解题的关键.19.(1)254a +;(2)35y -.【解析】【分析】(1)先去括号,然后合并同类项即可求出答案;(2)先去小括号,再去中括号,然后合并同类项即可求出答案.【详解】解:(1)原式2232224a a a a =++-+254a =+;(2)原式224(3324)y y y y =--++2243324y y y y =-+--35y =-.【点睛】本题考查整式的加减运算,解题的关键是熟练运用整式的加减运算法则,本题属于基础题型.20.233413a a -+-,142-【解析】【分析】先将原式去括号合并同类项得到最简结果,再将a 的值代入计算即可求出值.【详解】解:原式2252112328a a a a =+--+-,233413a a =-+-,当3a =-时,原式23(3)34(3)13=-⨯-+⨯--2710213=---142=-.【点睛】此题考查了整式的加减-化简求值,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.21.(1)2或-2;(2)5.【解析】【分析】(1)根据绝对值的定义可得答案;(2)先根据相反数的性质、倒数的定义得出a+b=0,xy=1,再结合m 的值分别代入计算即可.【详解】解:(1)∵m 到原点距离2个单位,∴m=2或-2,故答案为:2或-2;(2)根据题意知a+b=0,xy=1,m=2或-2,当m=2时,()202022a b m xy +++-=22+0+(-1)2020=4+1=5;当m=-2时,()202022a b m xy +++-=(-2)2+0+(-1)2020=4+1=5;综上,()202022a b m xy +++-的值为5.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.22.(1)草坪的面积为18ab 平方米;()2草坪的面积是180平方米.【解析】【分析】(1)草坪的面积=大长方形的面积-两个空白长方形的面积,应该根据图中数据逐一进行计算,然后求差;(2)将a 2=米,b 5=米代入求值即可.【详解】(1)(1.5b+2.5b )(a+2a+a+2a+a )-2.5b×2a×2=18ab ,即草坪的面积为18ab 平方米;(2)当a 2=米,b 5=米时,18ab 1825180=⨯⨯=(平方米),答:草坪的面积是180平方米.【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.23.(1)23a b +,44a b +;(2)98a b +;(3)128【解析】【分析】(1)根据题意列出算式即可求出答案;(2)列出算式后,根据整式的运算法则即可求出答案;(3)先求出a 与b 的值,然后代入原式即可求出答案.【详解】解:(1)第二条边为(3)(2)3223a b a b a b a b a b +--=+-+=+,第三条边为:(23)(2)23244a b a b a b a b a b +++=+++=+,故答案为:23a b +,44a b +;(2)该三角形的周长为:(3)(23)(44)a b a b a b +++++32344a b a b a b=+++++98a b =+;(3)∵()2870a b -+-=,且80a -≥,()270b -≥,∴80a -=,70b -=,∴8a =,7b =,∴该三角形的周长为:9887128⨯+⨯=.【点睛】本题考查整式加减的应用,解题的关键是熟练运用整式加减的运算法则,本题属于基础题型,也考查了绝对值和平方的非负性.24.(1)全部售出50个手机充电宝的总销售额为50(a+b )元(2)①她的总销售额是(46a+46b )元;②小丽将比实际销售多盈利(4a+4b )元.【解析】【分析】(1)根据总销售额=销售单价×数量列出式子即可.(2)①总销售额等于未打折的30个充电宝的销售额+(50-30)个打8折的充电宝的销售额,列出算式并化简即可;②用(1)中的销售额减去(2)①中的销售额,计算即可.【详解】解:(1)由题意可知,每个手机充电宝的售价为(a+b )元,∴全部售出50个手机充电宝的总销售额为:50(a+b )元.(2)①由题意得:30(a+b )+(50-30)(a+b )×0.8=30a+30b+16a+16b=(46a+46b )元,∴她的总销售额是(46a+46b )元;②由题意得:50(a+b )-46(a+b )=(4a+4b )元,∴小丽将比实际销售多盈利(4a+4b )元.【点睛】本题考查了列代数式在成本利润问题中的应用,明确成本利润问题的基本数量关系是解题的关键.25.(1)2或4-;(2)7;(3)76秒或196秒【解析】【分析】(1)根据幸福点的定义即可求解,注意分类讨论;(2)先根据题意可求得6MN =,由此再结合幸福中心的定义即可求解;(3)分两种情况讨论:①P 在N 的右边;②P 在M 的左边,由此可以得出结论.【详解】解:(1)132-+= ,134--=-,A ∴的幸福点C 所表示的数应该是2或4-,故答案为:2或4-;(2)4(2)6MN =--= ,M ∴,N 之间的所有数都是M ,N 的幸福中心,故C 所表示的整数可以是2-或1-或0或1或2或3或4,21012347∴--+++++=,故答案为:7;(3)设经过x 秒时,点P 是M 和N 的幸福中心,由题意可得:点P 表示的数为82x -,点M 表示的数为1x -+,点N 表示的数为4x +,∴4(1)56MN x x =+--+=<,又∵点P 是M 和N 的幸福中心,∴点P 在点M 的左边或者在点N 的右边,①当点P 在N 的右边时,有82(4)82(1)6x x x x --++---+=,解得:76x =;②当点P 在M 的左边时,有4(82)(1)(82)6x x x x +--+-+--=,解得:196x =.答:当经过76秒或196秒时,点P 是M 和N 的幸福中心.【点睛】本题考查了一元一次方程的应用、数轴及数轴上两点的距离、动点问题,熟练掌握动点中三个量的数量关系式:路程=时间⨯速度,认真理解新定义,学会运用分类讨论思想是解决本题的关键.该类题型主要考查学生对新知识的接受和应用能力.26.(1)8-;10;(2)()()312322n n n a n n +⎧-⎪⎪=⎨+⎪⎪⎩为奇数时为偶数时;(3)1346【解析】【分析】(1)按照题目,找出已知规律,推算即可;(2)根据数轴上点所对应的数的变化和平移规律(左减右加),分别求出点所对应的数,进而求出点到原点的距离;然后对第奇数个以及第偶数个分别探究,找出其中的规律(相邻两数都相差3),进而写出表达式就可解决问题;(3)利用(2)中的结论,代入求值.【详解】解:(1)第1次点A 向左移动3个单位长度至点1A ,则1A 表示的数,132-=-;第2次从点1A 向右移动6个单位长度至点2A ,则2A 表示的数为264-+=;第3次从点2A 向左移动9个单位长度至点3A ,则3A 表示的数为495-=-;第4次从点3A 向右移动12个单位长度至点4A ,则4A 表示的数为5127-+=;第5次从点4A 向左移动15个单位长度至点5A ,则5A 表示的数为7158-=-;第6次从点5A 向右移动18个单位长度至点6A ,则6A 表示的数为81810-+=;故答案是:8-;10;(2)由(1)可知,当移动次数n 为奇数时,点n A 在原点的左侧,1369123n a n-+-+--=…1(36)(912)[3(2)3(1)]3n n n=+-++-+++--+--…11332n n-=+⨯-312n +=-,当移动次数n 为偶数时,点n A 在原点的右侧,1369123(1)3n a n n-+-+---+=...1(36)(912)[3(1)3]n n =+-++-+++--+ (13)2n=+⨯322n +=,综上所述,()()312322n n n a n n +⎧-⎪⎪=⎨+⎪⎪⎩为奇数时为偶数时;(3)根据题意,得当移动次数n 为奇数时,3120202m +-=-,解得:40393m =(不符合题意,舍去),当移动次数n 为偶数时,3220202m +=,解得:1346m =,∴存在第m 次移动到的点m A 到原点的距离为2020,此时m 的值为1346.。
2023-2024学年度第一学期期中学情分析样题七年级数学注意事项:1.本试卷共4页.全卷满分100分.考试时间为100分钟.考生答题全部答在答题卷上,答在本试卷上无效.2.请认真核对监考教师在答题卷上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卷及本试卷上.3.答选择题必须用2B 铅笔将答题卷上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷...相应位置....上) 1.-4的倒数是A .4B .-4C .-14D .142.在5,-23,0,2,3.1415926,-1.6666…,0.1010010001…(相邻两个1之间依次多一个0)这些数中,其中无理数共有 A .1个B .2个C .3个D .4个3.紫金山山顶的气温某天早晨是零下5℃,中午上升了8℃,傍晚下降了 6℃.这天傍晚紫金山山顶的气温是 A .零上2℃B .零下2℃C .零上3℃D .零下3℃4.下列各数中,与-32相等的是A .-23B .(-2)3C .(-3)2D .-(-3)25.下列运算正确的是A .4x -x =3B .4x +x =4x 2C .4xy -yx =3xyD .4x +y =4xyA .6B .3C .1D .-27.设面积为5的正方形的边长为a ,下列关于a 的结论:①a 是无理数;②a 可以用数轴上的一个点来表示;③2<a <3,其中,所有正确结论的序号是A .①②B .①③C .②③D .①②③8.若a <0,a +b <0,a +2b >0,则下列结论正确的是A .b <0B .a -b <0C .||a <||bD .-a +2b <0二、填空题(每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷相应位置.......上) 9.化简:-(-2)= ▲ ,||-2= ▲ .10.“杭州第19届亚运会”截至10月7日早晨售票超过了305万张,将数据“305万”用科学记数法表示为 ▲ .11.比较大小:-23 ▲ -34(填“>”、“=”或“<”)12.单项式-2x 2y3的系数与次数分别是 ▲ ; ▲ .13.若|x -2|+(y +3)2=0,则y x 的值为 ▲ .14.点A 在数轴上表示的数是-2.若点B 与点A 的距离是4,则点B 在数轴上表示的数为 ▲ . 15.若a -2b 3=3则代数式1-2a +4b 3= ▲ .16.有理数a ,b ,c 在数轴上的位置如图所示,试化简:|a -b |+|a -c |= ▲ .17.已知a ,b 为常数,且三个单项式2xy 3,axy b ,-5xy 的和仍然是单项式,则a +b 的值是 ▲ . 18.10,A 10表示的数为 ▲ .三、解答题(本大题共9小题,共64分.请在答题卷指定区域作答,解答时应写出文字说明、证明过程或演算步骤)19.(5分)在数轴上画出表示-1.5,-||-3,0,+4的点,并按从小到大的顺序,用“<”号把这些数连接起来.(第19题)cab20.(12分)计算:(1)8-(-3)+(-2); (2)1÷54×(-15);(3)(310-14+45)÷(-120); (4)-102+[(-4)²-(1-3²)÷12]21.(8分)化简:(1)5a 2+3a -a 2-2a +1; (2)3(a 2b -ab )-2(a 2b -2ab ).22.(7分)化简并求值2(m 2-3mn -n 2)-(2m 2-7mn -2n 2),其中m =4,n =-12.23.(7分)某水果店销售某种水果,原计划每天卖出100kg ,但由于种种原因,实际每天的销售量与计划量相比有出入,如表是某一周的销售情况:(超额记为正,不足记为负,单位:kg )(1)请计算该店一周这种水果的销售总量;(2)若该店以1.5元/kg 的价格购进这种水果,又按4元/kg 出售,则该水果店本周一共赚了多少元?24.(7分)某养殖场计划用96米的竹篱笆围成如图所示的①、②、③三个养殖区域,其中区域①是正方形,区域②和③是长方形,且AG ∶BG =3∶2.设BG 的长为2x 米. (1)用含x 的代数式表示AF = ▲ ;(2)用含x 的代数式表示DF ,并求当x =125.(8分)对于一种新运算“⊙”,请观察下列各式,并完成问题: ①1⊙2=3×2-2×1=4;②4⊙(-2)=3×(-2)-2×4=-14; ③(-3)⊙1=3×1-2×(-3)=9;④(-2)⊙(-3)=3×(-3)-2×(-2)=-5; (1)1⊙(-2)= ▲ ; (2)求(2⊙3)⊙(-4)的值.(3)判断a ⊙b 和(-a ) ⊙b 的大小关系,并说明理由.26.(10分)数轴是非常重要的数学工具,它可以使代数中的推理更加直观.借助数轴解决下列问题: 【知识回顾】数轴上点A ,B 表示的数分别为a ,b ,A ,B 两点之间的距离记为AB ; (1)若a =-1,b =3,则AB = ▲ ;若a =-1,b =-4,则AB = ▲ ;一般地,AB = ▲ (用含a ,b 的代数式表示).【概念理解】(2)代数式||x +3+||x -4的最小值为 ▲ ; 【深入探究】(3)代数式||x +3+||x -m +||x -4(m 为常数)的最小值随m 值的变化而变化,直接写出该代数式的最小值及对应的m 的取值范围(用含m 的代数式表示); (4)若代数式||x +3+||x -m +||2x -8(m 为常数)的最小值为8,则m 的值为 ▲ .2023-2024学年度第一学期期中学情分析样题七年级数学参考答案说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共8小题,每小题2分,共16分)二、填空题(本大题共10小题,每小题2分,共20分)9.2,2 10.3.05×106 11.> 12.-23,3 13.914.-6或2 15.-5 16.c -b 17.6或1 18.370三、解答题(本大题共8小题,共64分.请在答题卷指定区域作答,解答时应写出文字说明、证明过程或演算步骤) 19.(5分)描点略 ···················································································· 4分 -│-3│<-1.5<0<4 ····························································· 5分 20.(12分)(1)原式=8+3-2 ······································································· 2分 =9 ············································································· 3分(2)原式=1×45×(-15) ································································ 1分=-425·········································································· 3分(3)原式=-6+5-16 ·································································· 2分=-17 ············································································ 3分(4)原式=-100+[ 16-(-8)×2] ··················································· 2分=-100+32=-68 ············································································ 3分21.(8分)(1)原式=4a 2+a +1 ···································································· 4分 (2)原式=3a 2b -3ab -2a 2b +4ab ··················································· 2分=a 2b +ab ········································································ 4分22.(7分)原式=2m 2-6mn -2n 2-2m 2+7mn +2n 2 ····································· 2分 =mn ····················································································· 4分当m=4,n=-12时,原式=4×(-12)=-2.··························································· 7分23.(7分)(1)+6-2+12+3-7+19-11=20 ····································· 2分100×7+20=720所以,该店一周这种水果的销售总量为720kg. ················· 4分(2)720×(4-1.5)=1800····················································· 6分所以,该水果店本周一共赚了1800元. ····························· 7分24.(7分)(1)3x;··············································································· 2分(2)DF=48-12x ·································································· 4分当x=1时,区域③的面积为5x (48-12x)=180. ······················ 7分25.(8分)(1)-8; ············································································· 2分(2)(2⊙3)⊙(-4)=5⊙(-4);········································ 3分=-22; ················································ 5分(3)a⊙b=3b-2a,(-a)⊙b=3b+2a····································· 6分a⊙b-(-a)⊙b=-4a当a>0时,-4a<0,a⊙b<(-a)⊙b;当a=0时,-4a=0,a⊙b=(-a)⊙b;当a<0时,-4a>0,a⊙b>(-a)⊙b; ································· 8分26.(10分)(1)4,3,│a-b│; ·································································· 3分(2)7; ····················································································· 5分(3)当m<-3时,最小值为4-m;当-3≤m≤4时,最小值为7;当m>4时,最小值为m+3;················································ 8分(4)3或5.··············································································10分。
七年级数学上学期期中考试卷(含答案)(考试时间: 120分钟, 本卷满分: 150分)一、选择题(每题3分, 共24分)1.中国古代数学著作《九章算术》的“方程”一章, 在世界数学史上首次正式引入负数.如果支出100元记作﹣100元, 那么+80元表示()A. 支出80元B. 收入80元C. 支出20元D. 收入20元2.在下列数1, 6.7, ﹣14, 0, ﹣/, 中, 属于整数的有()A. 2个B. 3个C. 4个D. 5个3. 下列各式的计算结果正确的是()A. B.C. D.4. 下列各对数中互为相反数的是( )A.和B.和C.和D.和5.若是方程的解, 则a的值为()A. 1B. ﹣1C. ﹣3D. 36.一个长方形的长是a+b, 宽是a, 其周长是()A. 2a+bB. 4a+bC. 4a+2bD. 2a+2b7.如图所示的程序计算, 若开始输入的值为, 则输出的结果y是()A. 25B. 30C. 45D. 408.有理数a、b、c在数轴上的位置如图所示,化简:|b-c|-|b-a|+|a+c|结果....)A. B. C. D.二、填空题(每题3分, 共30分)9.武汉火神山医院建筑面积339000000平方厘米, 拥有1000张床位, 将339000000平方厘米用科学记数法表示应为平方厘米.10. 比较大小: .11. 已知和是同类项, 则a ﹣b 的值是 . 12.若关于的方程是一元一次方程, 则__________.13. 下数轴上到-3的距离是5个单位长度的点表示的数是 . 14. 已知是关于a 、b 的五次单项式, 则 . 15. 若关于x 、y 的多项式的值与y 无关, 则____________. 16. 已知的值为10, 则代数式的值为 .17.如图, 用若干相同的小棒拼成含正五边形的图形, 拼第1个图形需要5根小棒;拼第2个图形需要9根小棒;拼第3个图形需要13根小棒……按此规律, 拼第个图形需要 根小棒.18. 已知有理数满足, , 且, 则 . 三、解答题(共96分) 19.计算:(1)20(15)(14)18-+----; (2)3428122022⨯-÷+ 20. 化简:(1)25(1)3(1)a a a ++--; (2)22(24)4(31)x xy x xy -+-- 21.解方程:(1)43(20)3x x --= (2)3157146x x ---= 22. 先化简, 再求值: , 其中.23. “⊗”表示一种新运算, 它的意义是(1)求(﹣2)⊗(﹣3); (2)已知(3⊗4)⊗=, 求值.国庆期间, 特技飞行队进行特技表演, 其中一架飞机起飞后的高度变化如右表: (1) 此时这架飞机比起飞点高了多少千米?(2) 如果飞机每上升或下降1千米需消耗2升燃油, 那么这架飞机在这4个动作表演过程中, 一共消耗了多少升燃油?25. 下面是小明同学解方程的过程, 请认真阅读并完成相应任务. 解方程:解: ____, 得 第一步 去括号, 得 第二步 移项, 得 第三步合并同类项, 得 第四步 方程两边同除以-1, 得 第五步 方程两边同除以-1,得13-=x 第五步 任务:①以上求解步骤中, 第一步进行的是______, 这一步的依据是__________; ②以上求解步骤中, 第________步开始出现错误, 具体的错误是_____________﹔ ③请直接写出该方程正确的解为____________________.26. 周末, 小明陪爸爸去陶瓷商城购买一些茶壶和茶杯, 甲、乙两家商店出售他们看中的同样品牌的茶壶和茶杯, 茶壶每把定价都为30元, 茶杯每只定价都为5元. 这两家商店都有优惠, 甲店买一把茶壶赠送茶杯一只;乙店全场九折优惠. 小明爸爸需买茶壶5把, 茶杯若干只(不少于5只).(1)设购买茶杯只, 如果在甲店购买, 需付款多少元? 如果在乙店购买, 需付款多少元? (用含的代数式表示并化简).(2)当购买15只茶杯时, 应在哪家商店购买合算?为什么?27. 定义: 求若干个相同的有理数(均不等于0)的除法运算叫做除方, 如2÷2÷2等. 类比有理数的乘方, 我们把2÷2÷2记作23, 读作“2的下3次方”, 一般地, 把n个a(a≠0)相除记作an, 读作“a的下n次方”.理解:(1)直接写出计算结果: 23=.(2)关于除方, 下列说法正确的有(把正确的序号都填上);①a2=1(a≠0);②对于任何正整数n, 1n=1;③34=43;④负数的下奇数次方结果是负数, 负数的下偶数次方结果是正数.应用:(3)我们知道, 有理数的减法运算可以转化为加法运算, 除法运算可以转化为乘法运算, 有理数的除方运算如何转化为乘方运算呢?例如:/(幂的形式).试一试: 将下列除方运算直接写成幂的形式: =;=;(4)计算:28. 如图, 已知数轴上有A.B.C三点, 点O为原点, 点A.点B在原点的右侧, 点C在原点左侧, 点A 表示的数为a, 点B表示的数为b, 且a与b满足, .(1)直接写出a、b的值, a=, b=;(2)动点P从点C出发, 以每秒4个单位的速度向右运动, 同时动点Q从点B出发, 以每秒2个单位的速度向右运动, 设运动时间为秒, 请用含的式子表示点P , 点Q 以及线段PQ长度;(PQ就是点P与点Q之间的距离)(3)在(2)的条件下, 若点M在A点以每秒6个单位向左与P、Q同时运动, 当M点与P点或者Q点相遇时, 则立即改变运动方向, 以原速度向相反方向运动。
七年级数学上册期中考试卷(附有答案)(试卷满分:150分;考试时间:120分钟)一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选項符合題目要求.1.-2024的相反数是( )A.-2024B.2024C.±2024D.120242.如下列各图片所示的景德镇瓷器中,主视图和左视图相同的是(不考虑瓷器花纹等因素)( )A. B. C. D.3.2024年6月2日6时23分,"嫦娥六号"着陆器在月球背面预定着陆区域成功着陆.月球与地球之间的距离约为380000千米,将380000用科学记数法表示为( )A.0.38x106B.3.8x105C.38x104D.3.8x1064.数学课上,小明用土豆做了一个长方体模型,若用一个平面去截该模型,截面的形状不可能是( )A. B . C . D .5.下列运算正确的是( )A .5m+5n=5mnB .2m2n-m2n=2C .m5-m2=m3D .-m+4m=3m6.如图所示的是一个正方体的表面展开图,每个面都标注了一个字,则展开前与"冷"相对的是( )A.仔B.着C.沉D.细7.若7x2y2和﹣11x3m y2的和是单项式,则式子12m-16的值是( )A .-13B .-9C .-8 D.﹣58.如图,数轴上点A和点B分别表示数a和b.则下列式子正确的是()A.a-b<0B.a+b>0C.ab>0D.ab>09.已知非零实数x、y、z满足(x+y)(y+z)(x+z)=0,且x+y+z<0,则x|x|+y|y|+z|z|的值为()A .1B .-1C .3 D.﹣310.将图1中周长为12的长方形纸片剪成1号、2号、3号、4号正方形和5号长方形,并将它们按图2的方式放入周长为26的长方形中,则没有覆盖的阴影部分的周长为()A.20B.22C.23D.24 二.填空题:本题共6小题,每小超4分,共24分.11.电视剧《西游记》中,"齐天大生"孙悟空有一个宝贝如意金箍棒,当他快速旋转金箍棒时,展现在我们眼前的是一个圆面的形象,这说明 . 12.比较大小:-2 -1.8(填">","<"或"="). 13.一个棱柱有10个面,则它有 个顶点.14.如图是一组有规律的图案,它们是由正三角形组成的,第1个图案中有6个正三角形,第2个图案中有10个正三角形,第3个图案中有14个正三角形…按此规律,第100个图案中有 个正三角形。
上学期期中联考数学试卷七年级数学(测试时间:90分钟,满分:120分)一、选择题(每题3分,共30分)1.31-的倒数是( ) A .-3 B .3 C .31 D .31- 2.总投资647亿元的西成高铁预计2017年11月竣工,用科学记数法表示647亿元为( )A .647×108B .6.47×109C .6.47×1010D .6.47×1011 3.下列运算正确的是( )A.2523a a a =+B.ab b a 333=+C.bc a bc a bc a 2222=-D.325a a a =- 4.下列各数中:2)3(-,0,2)21(--,722,2017)1(-,22-,)8(--,|43|--中,非负数有( ) A .2个B .3个C .4个D .5个 5.单项式y x 221-的系数和次数分别是( ) A .21,3 B .21-,3 C .21-,2 D .21,2 6.下列说法不正确的是( )A .若x =y ,则x +a =y +aB .若x =y ,则x -b =y -bC .若x =y ,则ax =ayD .若x =y ,则by b x = 7.若代数式43-x 与12+-x 的值相等,则x 的值是( )A.1B.2C.3D.58.单项式3y x m 与ny x 24的和是单项式,则m n 的值是( )A.3B.6C.8D.99.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )A.b a <B.0<abC.||||b a <D.0>+b a10.如图所示的运算程序中,若开始输入的x 值为15,则第1次输出的结果为18,第2次输出的结果为9,···,第2017次输出的结果为( )A. 3B. 18C. 12D. 6二、填空题(每题4分,共24分)11.若方程02|1|=++k kx 是关于x 的一元一次方程,则=k .12.若2=x 是关于x 的方程0132=-+m x 的解,则m 的值为 .13.已知3=-b a ,2=+d c ,则)()(d a c b --+的值是 .14.若数轴上点A 对应的数为-1,则与A 点相距3个单位长度的点所对应的数为__________.15.已知一个两位数M 的个位数字是a ,十位数字是b ,交换这个两位数的个位与十位上的数字的位置,所得的新数记为N ,则2M -N =__________(用含a 和b 的式子表示).16.观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,则=+-m b a .三、解答题(每题6分,共18分)17.计算:[]24)2(131)5.01(1--⨯⨯---18.已知a ,b 互为相反数,c ,d 互为倒数,且3||=m ,求2m b a cd m +-+的值.19.方程23213-=-x x 的解与关于x 的方程22-=-x m x 的解互为相反数,求m 的值.四、解答题(每题7分,共21分)20.先化简,后求值:])23(22[322xy y x xy xy y x +---,其中3=x ,31-=y .21.已知ab a B A 772-=-,且7642++-=ab a B .(1)求A .(2)若0)2(12=-++b a ,求A 的值.22.某公路检修组乘汽车沿公路检修,约定前进为正,后退为负,某天自A 地出发到收工时所走的路程(单位:千米)为+10,-3,+4,-2,-8,+13,-2,-11,+7,+5.(1)问收工时相对A 地是前进了还是后退了?距A 地多远?(2)若检修组最后回到A 地,且每千米耗油0.2升,问共耗油多少升?五、解答题(每题9分,共27分)23.小明房间窗户的装饰物如图所示,它们由两个四分之一圆组成(半径相同).(1)请用代数式表示装饰物的面积(结果保留π);(2)请用代数式表示窗户能射进阳光部分面积(结果保留π);(3)若a =1,b=32,请求出窗户能射进阳光的面积的值(取π=3)24.观察下列按一定规律排列的三行数:1,-2,4,-8,16,-32,64,···; ①4, 1, 7,-5,19,-29,67,···; ②-2,1,-5,7,-17,31,-65···; ③(1)第①行数的第10个数是________;(2)第②行数的第n 个数是________;(3)取每行数的第m 个数,是否存在m 的值,使这三个数的和等于1026?若存在,求出m 的值,若不存在,请说明理由.25.如图,已知点A ,B ,C 是数轴上三点,O 为原点,点C 对应的数为3,BC=2,AB=6.(1)求点A ,B 对应的数;(2)动点M ,N 分别同时从AC 出发,分别以每秒3个单位和1个单位的速度沿数轴正方向运动.P 为AM 的中点,Q 在CN 上,且CQ=31CN ,设运动时间为t (t > 0). ①求点P ,Q 对应的数(用含t 的式子表示);②t 为何值时OP=BQ .参考答案一、选择题(每题3分,共30分)1.31-的倒数是( A ) A .-3 B .3 C .31 D .31- 2.总投资647亿元的西成高铁预计2017年11月竣工,用科学记数法表示647亿元为( C )A .647×108B .6.47×109C .6.47×1010D .6.47×1011 3.下列运算正确的是( C )A.2523a a a =+B.ab b a 333=+C.bc a bc a bc a 2222=-D.325a a a =- 4.下列各数中:2)3(-,0,2)21(--,722,2017)1(-,22-,)8(--,|43|--中,非负数有( C ) A .2个B .3个C .4个D .5个+ 5.单项式y x 221-的系数和次数分别是( B ) A .21,3 B .21-,3 C .21-,2 D .21,2 6.下列说法不正确的是( D )A .若x =y ,则x +a =y +aB .若x =y ,则x -b =y -bC .若x =y ,则ax =ayD .若x =y ,则by b x = 7.若代数式43-x 与12+-x 的值相等,则x 的值是( A )A.1B.2C.3D.58.单项式3y x m 与ny x 24的和是单项式,则m n 的值是( D ) A.3 B.6 C.8 D.99.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( C )A.b a <B.0<abC.||||b a <D.0>+b a10.如图所示的运算程序中,若开始输入的x 值为15,则第1次输出的结果为18,第2次输出的结果为9,···,第2017次输出的结果为( A )A. 3B. 18C. 12D. 6二、填空题(每题4分,共24分)11.若方程02|1|=++k kx 是关于x 的一元一次方程,则=k -2 .12.若2=x 是关于x 的方程0132=-+m x 的解,则m 的值为 -1 .13.已知3=-b a ,2=+d c ,则)()(d a c b --+的值是 -1 .14.若数轴上点A 对应的数为-1,则与A 点相距3个单位长度的点所对应的数为_-4或2__.15.已知一个两位数M 的个位数字是a ,十位数字是b ,交换这个两位数的个位与十位上的数字的位置,所得的新数记为N ,则2M -N =___19b -8a ___(用含a 和b 的式子表示).16.观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,则=+-m b a 43 .三、解答题(每题6分,共18分)17.计算:[]24)2(131)5.01(1--⨯⨯---解:原式=-1-0.5×31×(-3)=-1+0.5=-0.5 18.已知a ,b 互为相反数,c ,d 互为倒数,且3||=m ,求2m b a cd m +-+的值. 解:依题意,得a+b=0,cd=1,m=±3(1)当m=3时,原式=3+1-0=4;(2)当m=-3时,原式=-3+1-0=-2.所以原式的值为4或-2.19.方程23213-=-x x 的解与关于x 的方程22-=-x m x 的解互为相反数,求m 的值. 解:由23213-=-x x 解得3=x ;由22-=-x m x 解得2-=m x ; 所以023=-+m ,解得m=-1.四、解答题(每题7分,共21分)20.先化简,后求值:])23(22[322xy y x xy xy y x +---,其中3=x ,31-=y . 解:化简,得 原式=-xy. 当3=x ,31-=y 时,原式=1. 21.已知ab a B A 772-=-,且7642++-=ab a B .(1)求A .(2)若0)2(12=-++b a ,求A 的值. 解:(1)A =3a 2-ab+7(2)由a+1=b -2=0,得a=-1,b=2,代入得A =12.22.某公路检修组乘汽车沿公路检修,约定前进为正,后退为负,某天自A 地出发到收工时所走的路程(单位:千米)为+10,-3,+4,-2,-8,+13,-2,-11,+7,+5.(1)问收工时相对A 地是前进了还是后退了?距A 地多远?(2)若检修组最后回到A 地,且每千米耗油0.2升,问共耗油多少升?解:(1)+10-3+4-2-8+13-2-11+7+5=13(千米)收工时相对A 地是前进了,距A 地13千米远.(2)(10+3+4+2+8+13+2+11+7+5+13)×0.2=15.6(升)共耗油15.6升.五、解答题(每题9分,共27分)23.小明房间窗户的装饰物如图所示,它们由两个四分之一圆组成(半径相同).(1)请用代数式表示装饰物的面积(结果保留π);(2)请用代数式表示窗户能射进阳光部分面积(结果保留π);(3)若a =1,b=32,请求出窗户能射进阳光的面积的值(取π=3) 解:(1)2283)21(21b b =π; (2)283b ab -; (3)把a=1,b=32,π=3代入(2)式,得原式=21)32(833212=⨯-⨯. 24.观察下列按一定规律排列的三行数:1,-2,4,-8,16,-32,64,···; ①4, 1, 7,-5,19,-29,67,···; ②-2,1,-5,7,-17,31,-65···; ③(1)第①行数的第10个数是________;(2)第②行数的第n 个数是________;(3)取每行数的第m 个数,是否存在m 的值,使这三个数的和等于1026?若存在,求出m 的值,若不存在,请说明理由.解:(1)因为第①行数的规律为112)1(-+⋅-n n ,所以第①行数的第10个数是-512.(2)因为第②行的每个数比第①行的每个数大3,所以第②行的第n 个数为32)1(11+⋅--+n n . (3)第③行的数的规律为12)1(1-⋅--n n ,假设取每行数的第m 个数,存在m 的值,使这三个数的和等于1026,可得方程102612)1(32)1(2)1(11111=-⋅-++⋅-+⋅---+-+m m m m m m ,即10122)1(-=⋅--m m解得,m=1125.如图,已知点A ,B ,C 是数轴上三点,O 为原点,点C 对应的数为3,BC=2,AB=6.(1)求点A ,B 对应的数;(2)动点M ,N 分别同时从A 、C 出发,分别以每秒3个单位和1个单位的速度沿数轴正方向运动.P 为AM 的中点,Q 在CN 上,且CQ=31CN ,设运动时间为t (t > 0). ①求点P ,Q 对应的数(用含t 的式子表示);②t 为何值时OP=BQ .最新人教版七年级上册数学精品资料设计最新人教版七年级上册数学精品资料设计 11 解:(1)∵点C 对应的数为3,BC=2,∴点B 对应的数为3-2=1,∵AB=6,∴点A 对应的数为1-6=-5.(2)①∵动点M ,N 分别同时从A 、C 出发,分别以每秒3个单位和1个单位的速度沿数轴正方向运动,且运动时间为t∴AM=3t ,CN=t∵P 为AM 的中点,Q 在CN 上,且CQ=31CN , ∴AP=t 23,CQ=t 31 ∵点A 对应的数为-5,点C 对应的数为3∴点P 对应的数为t 235+-,点Q 对应的数为t 313+ ②∵OP=BQ. ∴|1313||)235(0|-+=+--t t 解得:1118=t 或6=t。