加工中心的主轴部件
- 格式:doc
- 大小:368.50 KB
- 文档页数:3
加工中心主轴气幕在加工过程中的作用加工中心主轴气幕是加工中心主轴系统中的一个关键部分,它在加工过程中起着重要的作用。
主轴气幕的主要功能是冷却、清洁和保护主轴,从而提高加工质量、延长主轴寿命。
下面将对加工中心主轴气幕在加工过程中的作用进行详细阐述。
1.冷却主轴加工中心主轴在高速运转中会产生大量的热量,如果不及时散热,将会使主轴温度过高,导致主轴变形、热胀冷缩等问题,严重影响加工精度和稳定性。
主轴气幕通过向主轴喷射冷却空气,有效降低主轴温度,保持主轴在可控范围内的温度。
2.清洁主轴主轴在加工过程中会产生金属屑、碳化物、润滑剂等污物,这些污物堆积在主轴周围会影响冷却效果和主轴的运转,甚至会使主轴磨损加剧。
主轴气幕通过喷射气流,可以有效清洁主轴和周围的污物,使主轴保持清洁状态,保证加工的精度和质量。
3.保护主轴主轴是加工中心的核心部件,其精度和可靠性直接影响加工质量和效率。
主轴气幕在加工过程中起到了保护主轴的作用,它可以防止金属屑、润滑剂等外部物质进入主轴内部,减少主轴的磨损和故障发生的可能性,延长主轴的使用寿命。
4.提高加工质量加工中心主轴气幕对主轴进行冷却和清洁,可以有效减少主轴温度和积聚的污物,从而保持主轴的精度和稳定性。
同时,主轴气幕还可以减少切削液的使用量,降低切削液对加工质量的影响。
通过提高加工质量,可以达到更高的加工精度和表面质量要求。
5.增加加工效率主轴气幕的冷却和清洁作用可以使主轴长时间保持稳定的运转状态,减少因温度过高或污物积累而导致的停机时间,提高加工效率。
此外,主轴气幕还可以减少切削液的使用,缩短切削液更换和清洗时间,进一步提高加工效率。
总结而言,加工中心主轴气幕在加工过程中的作用主要包括冷却主轴、清洁主轴、保护主轴、提高加工质量和增加加工效率等方面。
它的存在可以有效保护主轴,延长主轴的使用寿命,提高加工质量和效率。
因此,在使用加工中心时,合理使用主轴气幕对加工过程中的主轴进行冷却和清洁是非常重要的。
加工中心主轴组件分析报告一、主轴组件概述1.主轴组件定义加工中心主传动系统是由主轴电动机、主轴传动系统以及主轴组件组成,而主轴组件是加工中心的主传动部分的主要组成部分,在机床上,主轴主要作用是夹持工件或刀具旋转,提供足够的驱动功率或输出转矩,能在整个速度范围内提供切削所需功率和转矩,以满足机床强力切削时的要求,直接参加表面成形运动。
(应附图)主轴被比喻为“机床的心脏”,这是再恰当不过了,人们期望它输出更高的转速、更大的扭矩、更强劲的功率、更小的主轴跳动、更低的磨损率、更少的故障及更低的价格。
目前国内机床主轴的水平还未满足用户的要求。
2.国内外主轴现状比较在国外,主轴单元的设计大多是可以公开的,一些大轴承公司甚至公开出版书籍,教人们如何设计适合的主轴单元具体到使用什么轴承、轴承的精度等级、相应的配合公差、形位公差、主轴单元可以达到的精度、润滑方式、润滑油、密封方法、动平衡精度等,有的公司还会介绍如何装配,应在什么环境下装配等。
设计可以公开,但加工工艺就很少见诸文献。
大多数公司对工艺都严守秘密,好多出国考察的人士就反映主轴单元零件的精加工场所,甚至装配场所几乎都不允许参观。
因此很难叙述目前国外的工艺水平,只能从一些间接的现象来评估。
例如有时我们采用相同的设计、相同的材料、用同一轴承公司的型号、精度等级相同的轴承,而做不出相同精度或相同速度的主轴单元来。
对铣削加工中心,主轴跳动在1um已经是国内用户购买高精度机床的一个标淮,这对于国外的机床来说,也已经是一个非常普通的参数,甚至于价位很低的机床,反观我们国内的情况,还没有哪个厂家明确地在产品样本上标明主轴跳动为lum,而实际的情况更糟糕,机床的主轴指标往往是5um。
情况为什么会是这样呢?原因主要的还是主轴的结构设计、加工工艺、热处理工艺、装配工艺的问题。
这个也是以后开发主轴的技术难点。
此处至少应就主轴类技术指标、材料及热处理的差距列表,差距比较是表现技术水平高低的重要形式,必须有数据,国外在主轴方面的发展方向是什么,必须在文中有回答(并提供一些参考资料作为支持)二主轴组件的分类、功能、性能要求以下以铣加工中心作为例子介绍(1)主轴组件的分类:皮带式主轴、直结式主轴、内藏式主轴(电主轴)(应附图)三类主轴使用环境:皮带式主轴广泛用于小型机床上,并能满足机床对转矩特性的要求;直结式主轴虽然简化了主轴结构,有效地提高了主轴刚度,但主轴输出转矩小,电动机发热对主轴精度影响大;内藏式主轴是集皮带式主轴和直结式主轴优点,具有高速度,高精度,以及良好的稳定性能等多项优点,广泛用于数控钻铣设备,精密雕刻、雕铣、木工机械、精密磨床及其他数控高速机械。
加工中心主轴工作原理
加工中心主轴的工作原理是将电动机的旋转运动转化为主轴的旋转运动。
主轴是加工中心中的核心部件,负责驱动刀具进行切削加工。
主轴通常由电动机、主轴箱体、主轴轴承和主轴刀具夹持装置等组成。
当电动机启动时,通过传动装置(如带动皮带和齿轮传动)将电动机的旋转运动传递给主轴箱体。
主轴箱体内部安装有主轴轴承,使得主轴可以在箱体内旋转。
主轴刀具夹持装置用于夹持切削工具,通常是通过刀具夹头或刀柄等进行固定。
当主轴旋转时,刀具跟随主轴一起旋转,实现加工工件的切削。
另外,为了保证加工的精度和稳定性,主轴通常还配备有冷却系统,用于散热,提高主轴的使用寿命。
部分高速主轴还会采用轴向压力系统,通过油膜支撑使主轴更加稳定和精准。
总的来说,加工中心主轴工作的原理就是通过电动机和传动装置实现主轴的旋转运动,从而通过切削工具对工件进行加工。
主轴的精度、稳定性和功率等特性对加工中心的加工能力和质量有着重要影响。
加工中心主轴轴承轴向间隙加工中心主轴轴承轴向间隙是指主轴轴承在轴向方向上的间隙或间隙范围。
主轴轴承是加工中心的核心部件之一,其性能直接影响到加工中心的加工精度和稳定性。
轴向间隙的大小和控制对于保证加工中心的正常运行和提高加工质量具有重要意义。
轴向间隙的存在是为了保证主轴轴承在工作时能够自由膨胀和收缩。
由于主轴在高速旋转时会产生热量,轴承也会因此而发热。
如果没有轴向间隙,轴承在发热膨胀时可能会被限制,导致轴承过热甚至损坏。
因此,适当的轴向间隙可以使轴承在工作时具有一定的自由度,保证其正常运行。
轴向间隙的大小对加工中心的加工精度和稳定性有直接影响。
如果轴向间隙过大,主轴在工作时可能会产生较大的偏移量,导致加工中心的加工精度下降。
另外,轴向间隙过大还可能引起主轴的振动和噪音,影响加工中心的稳定性。
因此,控制轴向间隙的大小是保证加工中心加工精度和稳定性的重要措施之一。
在实际应用中,轴向间隙的控制需要根据具体的加工要求和主轴轴承的类型来确定。
一般来说,轴向间隙应该在一定的范围内,既不能过大也不能过小。
如果轴向间隙过小,可能会导致主轴轴承在工作时过紧,增加摩擦和磨损,降低轴承的使用寿命。
而轴向间隙过大,则可能会引起主轴的偏移和振动,影响加工中心的加工精度和稳定性。
为了控制轴向间隙的大小,加工中心制造商通常会在设计和制造过程中采取一系列的措施。
例如,选择合适的轴承类型和规格,确保轴承的质量和精度;采用适当的装配工艺和技术,保证轴承的装配质量;并在使用过程中进行定期的检查和维护,及时调整轴向间隙。
加工中心主轴轴承轴向间隙的控制对于保证加工中心的正常运行和提高加工质量具有重要意义。
合理控制轴向间隙的大小,可以保证主轴轴承的正常工作,提高加工中心的加工精度和稳定性。
因此,在加工中心的设计、制造和使用过程中,应该重视轴向间隙的控制,并采取相应的措施来确保其在合理范围内。
加工中心主轴装配过程首先,在进行主轴装配之前,需要准备好主轴所需的各种零部件。
这些零部件包括主轴轴承、主轴套、主轴管、主轴法兰、主轴鱼雷座等。
这些零部件通常是通过零部件供应商采购,并按照装配顺序进行分类和存放,以便后续装配使用。
接下来,开始主轴装配的第一步是检查主轴零部件的质量。
通过检查零部件的外观和尺寸,以确保零部件的质量达到要求。
如果发现有损坏或不合格的零部件,需要将其进行更换或修复。
然后,开始进行主轴的装配。
首先,将主轴轴承和主轴套进行配对,并用合适的工具将轴承安装到主轴套上。
在此过程中,需要确保轴承和轴套之间的配对与工艺要求一致,并采取适当的措施,如加热或冷却等,以确保装配过程顺利进行。
装配好主轴轴承后,将主轴套与主轴管进行组合。
这一过程需要精确的对位和配合,以确保主轴能够顺利旋转,并保持良好的精度。
在组合过程中,需要使用合适的工具和测量设备,如千分尺、划线尺等,对轴承和轴套进行精确的测量和调节。
组合好主轴套和主轴管后,接下来需要将主轴法兰和主轴鱼雷座进行安装。
这一过程主要是将法兰和鱼雷座与主轴套和主轴管进行固定,使其构成一个整体。
在安装过程中,需要采取适当的扭矩和紧固力度,以确保固定牢固,不出现松动或脱落。
完成主轴的基本装配后,需要进行主轴的环境测试和功能测试。
环境测试主要是将主轴放置在规定的环境中,如高温、低温、高湿度、低湿度等条件下进行测试,以检查主轴在不同环境下的性能和可靠性。
功能测试主要是通过连接电源和控制系统,对主轴进行转动和负载测试,以检查主轴的运转和负载能力是否满足要求。
最后,将主轴进行清洁和润滑。
清洁主轴是为了保持其表面的干净和光滑,以防止灰尘、污垢等对主轴的影响。
润滑主轴是为了降低主轴的摩擦和磨损,以延长主轴的使用寿命。
在清洁和润滑过程中,需要使用适当的清洁剂和润滑剂,并采取适当的方法和工具进行处理。
综上所述,主轴装配过程需要经历准备零部件、检查质量、组装轴承、安装套管、组合法兰和鱼雷座、环境测试、功能测试、清洁和润滑等多个步骤。
适宜用加工中心加工的主要零件类别加工中心适宜于加工复杂、工序多、要求较高、需用多种类型的普通机床和众多刀具夹具,且经屡次装夹和调整才能完成加工的零件。
其加工的主要对象有箱体类零件、复杂曲面、异形件、盘套板类零件和特殊加工等五类。
(1)箱体类零件箱体类零件一般是指具有一个以上孔系,内部有型腔,在长、宽、高方向有一定比例的零件。
这类零件在机床、汽车、飞机制造等行业用的较多。
箱体类零件一般都需要进展多工位孔系及平面加工,公差要求较高,特别是形位公差要求较为严格,通常要经过铣、钻、扩、镗、铰、锪,攻丝等工序,需要刀具较多,在普通机床上加工难度大,工装套数多,费用高,加工周期长,需屡次装夹、找正,手工测量次数多,加工时必须频繁地更换刀具,工艺难以制定,更重要的是精度难以保证。
加工箱体类零件的加工中心,当加工工位较多,需工作台屡次旋转角度才能完成的零件,一般选卧式镗铣类加工中心。
当加工的工位较少,且跨距不大时,可选立式加工中心,从一端进展加工。
(2)复杂曲面复杂曲面在机械制造业,特别是航天航空工业中占有特殊重要的地位。
复杂曲面采用普通机加工方法是难以甚至无法完成的。
在我国,传统的方法是采用精细铸造,可想而知其精度是低的。
复杂曲面类零件如:各种叶轮,导风轮,球面,各种曲面成形模具,螺旋桨以及水下航行器的推进器,以及一些其它形状的自由曲面。
这类零件均可用加工中心进展加工。
比较典型的下面几种:①凸轮、凸轮机构作为机械式信息贮存与传递的根本元件,被广泛地应用于各种自动机械中,这类零件有各种曲线的盘形凸轮,圆柱凸轮、圆锥凸轮、桶形凸轮、端面凸轮等。
加工这类零件可根据凸轮的复杂程度选用三轴、四轴联动或选用五轴联动的加工中心。
②整体叶轮类这类零件常见于航空发动机的压气机,制氧设备的膨胀机,单螺杆空气压缩机等,对于这样的型面,可采用四轴以上联动的加工中心才能完成。
③模具类如注塑模具、橡胶模具、真空成形吸塑模具、电冰箱发泡模具、压力铸造模具,精细铸造模具等。
加工中心主轴工作原理详解
加工中心的主轴是整个加工中心的核心部件,主要负责传递转速和扭矩给刀具,从而实现切削加工。
主轴的工作原理如下:
1. 电机驱动:通常采用电机作为主轴驱动源。
电机会将电能转换为机械能,从而实现主轴的旋转。
在加工中心中,常见的电机类型包括三相交流电机和直流电机。
2. 主轴传动系统:电机的转速通常需要通过传动系统进行调节,以满足加工需求。
传动系统通常包括主轴齿轮箱、皮带传动、齿轮传动等。
其中,主轴齿轮箱可以实现不同转速的切换,以适应不同工况下的加工需求。
3. 主轴轴承:主轴的承载能力和精度往往直接影响加工质量。
为了提高主轴的刚性和稳定性,通常使用高精度的轴承来支撑主轴。
常见的主轴轴承类型包括球轴承、滚动轴承和角接触轴承等。
4. 冷却系统:由于主轴在加工过程中会产生热量,为了保证主轴的正常运行,通常需要通过冷却系统对主轴进行冷却。
常见的冷却方式包括风冷和液冷。
风冷可以通过风扇将冷却风送入主轴,而液冷则通过液压系统将冷却液传送到主轴上进行冷却。
5. 刀具夹持系统:主轴上通常装有刀具夹持系统,用于夹持切削刀具。
刀具夹持系统通常采用弹簧夹持、液压夹持或机械夹持等方式,以确保刀具能够在高速旋转的主轴上稳定运行。
总之,在加工中心中,主轴的工作原理是电机驱动主轴转动,通过传动系统实现不同转速的切换,通过轴承支撑主轴的旋转,通过冷却系统进行冷却,以及通过刀具夹持系统夹持刀具进行切削加工。
这些工作原理共同作用,使得加工中心的主轴能够高效、精准地完成加工任务。
卧式加工中心的基本构造
卧式加工中心是一种高精度、高效率的加工设备,其基本构造包括机床主体、主轴、刀库、刀具和控制系统等部分。
机床主体是卧式加工中心的基础结构,其主要由床身、工作台、立柱和横梁等部分组成。
床身采用优质铸铁材料铸造而成,具有足够的刚性和稳定性。
工作台可以进行三维运动,并且可以承受较大的负荷,以保证加工精度和效率。
立柱和横梁则起到支撑和稳定的作用。
主轴是卧式加工中心的核心部件,其主要由主轴箱、主轴头和主轴马达等部分组成。
主轴箱是主轴的安装和固定部位,主轴头则是刀具的安装和固定部位。
主轴马达则是驱动主轴旋转的动力源,其性能和质量的好坏直接影响加工效果。
刀库是卧式加工中心的重要组成部分,其主要功能是存放和更换刀具。
刀库的种类和规格不同,可以根据不同的加工需求进行配置选择。
刀具则是卧式加工中心的加工工具,其种类、尺寸和形状也不同,可以根据不同的加工任务进行选择。
控制系统是卧式加工中心的大脑,其主要由数控系统、伺服系统和传感器等部分组成。
数控系统是实现加工程序自动化控制的核心部分,可以根据用户需求进行编程和操作。
伺服系统则是控制各个轴的运动和精度控制的重要组成部分。
传感器则可以实时监测机床的运行状态,以保证加工的精度和质量。
卧式加工中心的基本构造是相当复杂的,需要各个部分的协同工作才能实现高精度、高效率的加工任务。
了解和掌握其基本构造,可
以更好地进行加工操作和维护保养工作。
加工中心的主轴部件
1 主轴部件精度
加工中心主轴部件由主轴动力、传动及主轴组件组成,它是加工中心成型运动的重要执行部件之一,因此要求加工中心的主轴部件具有高的运转精度、长久的精度保持性以及长时fdl 运行的精度稳定性。
加工中心通常作为精密机床使用,主轴部件的运转精度决定了机床加工精度的高低.考核机床的运转精度一般有动态检验和静态检验两种方法。
静态检验是指在低速或手动转动主轴情况下,检验主轴部件各个定位面及工作表面的跳动量.动态检验则需使用一定的仪器在机床主轴额定转速下.采用非接触的检测方法检验主轴的回转精度。
由于加工中心通常具有自动换刀功能,刀具通过专用刀柄由安装在加工中心主轴内部的拉紧机构紧固.因此主轴的回转精度要考虑由于刀柄定位面的加工误差所引起的误差。
加工中心主轴轴承通常使用C级轴承,在二支承主轴部件中多采用4-1、2-2组合使用,即前支承和后支承分别用四个向心推力轴承和一个向心球轴承,或前、后支承都使用两个向心推力轴承组成主轴部件的支承体系.对于轻型高精度加工中心,也有前、后支承各使用一个向心推力轴承组成主轴部件的支承体系,该种结构适宜高精度、高速主轴部件的场合.简单的主轴轴承组合,可以大大降低主轴部件的装配误差和热传导引起的主轴隙丧失,但主轴的承载能力会有较大幅度的下降.
2 主轴部件结构
主轴部件主要由主轴、轴承、传动件、密封件和刀具自动卡紧机构等组成
⑴主轴
主轴前端有7:24的锥孔.用于装夹BT40刀柄或刀杆.主轴端面有一瑞面键.既可通过它传递刀具的扭矩,又可用于刀具的周向定位.主轴的主要尺寸参数包括:主轴的直径、内孔直径、悬伸长度和支承跨距。
评价和考虑主轴主要尺寸参数的依据是主轴的刚度、结构上艺性和主轴组件的工艺适用范围.主轴材料的选择主要根据刚度、载荷特点、耐磨性和热处理变形大小等因素确定。
主轴材料常采用的有45 钢、Gcr15 等,需经渗氮和感应加热悴火.
加工中心的主轴支承形式很多.其中立式加工中心的主轴前支承采用四个向心推力球轴承,后支承采用一个向.心球轴承,这种支承结构使主轴的承载能力较高.且能适应高速的要求.主轴支承前端定位,主轴受热向后伸长,能较好地满足精度需要.只是支承结构较为复杂。
⑵刀具自动卡紧机构
加工中心可以白动换刀,所以,主轴系统应具备自动松开和夹紧刀具的功能。
刀具的自动夹紧机构安装在主轴的内部,图2一7所示为刀具的夹紧状态.刀柄1由主轴抓刀爪2 央持,碟形弹簧5通过拉杆4、抓刀爪 2 ,在内套3的作用下将刀栖的拉钉拉紧,当换刀时,要求松开刀柄.此时将主轴上端气缸的上腔通压缩空气,活塞7带动压杆8及拉4向下移动.同时压缩碟形弹簧5,当拉杆4下移到使抓刀爪2的下端移出内套3时.卡爪张开.同时拉杆4将刀柄顶松,刀其即可由机械手或刀库拔出。
待新刀装入后,气缸6的下腔通压缩空气.在碟形弹簧的作用下.活塞带动抓刀爪上移.抓刀爪拉杆贯新进人内套3 ,将刀柄拉紧。
活塞7移动的两个极限位置分别设有行程开关10,作为刀具夹紧和松开的信号.
刀杆尾部的拉紧机构,除上述的卡爪式外,常见的还有钢球拉紧机构,其内部结构如图2一8所示。