电磁场的四个基本量 (2)
- 格式:ppt
- 大小:798.00 KB
- 文档页数:73
《电磁场理论》知识点第一章 矢量分析一、基本概念、规律矢量微分算子在不同坐标系中的表达,标量场的梯度、矢量场的散度和旋度在不同坐标系中的计算公式,常用的矢量恒等式(见附录一1.和2.)、矢量积分定理(高斯散度定理、斯托克斯旋度定理及亥姆霍兹定理)。
二、基本技能练习1、已知位置矢量z y x e z e y ex r ˆˆˆ++=ρ,r 是它的模。
在直角坐标系中证明 (1)r r r ρ=∇ (2)3=•∇r ρ (3)∇×0=r ρ (4)∇×(0)=∇r (5)03=•∇r rρ2、已知矢量z y e xy e x eA z y x 2ˆˆˆ++=ϖ,求出其散度和旋度。
3、在直角坐标系证明0A ∇⋅∇⨯=r4、已知矢量y x e eA ˆ2ˆ+=ϖ,z x e eB ˆ3ˆ-=ϖ,分别求出矢量A ϖ和B ϖ的大小及B A ϖϖ⋅ 5、证明位置矢量x y z r e x e y e z =++r r r r的散度,并由此说明矢量场的散度与坐标的选择无关。
6、矢量函数z y x e x e y ex A ˆˆˆ2++-=ϖ,试求 (1)A ϖ⋅∇(2)若在xy 平面上有一边长为2的正方形,且正方形的中心在坐标原点,试求该矢量A ϖ穿过此正方形的通量。
第二章 静电场一、基本常数真空中介电常数0ε二、基本概念、规律静电场、库仑定律、电场强度、电位及其微分方程、电荷密度、电偶极子模型、高斯定理、环路定理、极化强度矢量、电位移矢量、场方程(真空中和电介质中)、介质性能方程,边界条件,场能及场能密度。
三、基本技能练习1、设非均匀介质中的自由电荷密度为ρ,试证明其中的束缚电荷密度为)(00εεερεεερ-∇•---=D b ρ。
2、证明极化介质中,极化电荷体密度b ρ与自由电荷体密度ρ的关系为:ρεεερ0--=b 。
3、一半径为a 内部均匀分布着体密度为0ρ的电荷的球体。
求任意点的电场强度及电位。
电磁场电磁波复习重点(共13页) -本页仅作为预览文档封面,使用时请删除本页-电磁场电磁波复习重点第一章矢量分析1、矢量的基本运算标量:一个只用大小描述的物理量。
矢量:一个既有大小又有方向特性的物理量,常用黑体字母或带箭头的字母表示。
2、叉乘点乘的物理意义会计算3、通量源旋量源的特点通量源:正负无旋度源:是矢量,产生的矢量场具有涡旋性质,穿过一曲面的旋度源等于(或正比于)沿此曲面边界的闭合回路的环量,在给定点上,这种源的(面)密度等于(或正比于)矢量场在该点的旋度。
4、通量、环流的定义及其与场的关系通量:在矢量场F中,任取一面积元矢量dS,矢量F与面元矢量dS的标量积定义为矢量F穿过面元矢量dS的通量。
如果曲面 S 是闭合的,则规定曲面的法向矢量由闭合曲面内指向外;环流:矢量场F沿场中的一条闭合路径C的曲线积分称为矢量场F沿闭合路径C的环流。
如果矢量场的任意闭合回路的环流恒为零,称该矢量场为无旋场,又称为保守场。
如果矢量场对于任何闭合曲线的环流不为零,称该矢量场为有旋矢量场,能够激发有旋矢量场的源称为旋涡源。
电流是磁场的旋涡源。
5、高斯定理、stokes定理静电静场高斯定理:从散度的定义出发,可以得到矢量场在空间任意闭合曲面的通量等于该闭合曲面所包含体积中矢量场的散度的体积分,即散度定理是闭合曲面积分与体积分之间的一个变换关系,在电磁理论中有着广泛的应用。
Stokes定理:从旋度的定义出发,可以得到矢量场沿任意闭合曲线的环流等于矢量场的旋度在该闭合曲线所围的曲面的通量,即斯托克斯定理是闭合曲线积分与曲面积分之间的一个变换关系式,也在电磁理论中有广泛的应用。
6、亥姆霍兹定理若矢量场在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则当矢量场的散度及旋度给定后,该矢量场可表示为亥姆霍兹定理表明:在无界空间区域,矢量场可由其散度及旋度确定。
第二章电磁场的基本规律1、库伦定律(大小、方向)说明:1)大小与两电荷的电荷量成正比,与两电荷距离的平方成反比;2)方向沿q1 和q2 连线方向,同性电荷相排斥,异性电荷相吸引;3)满足牛顿第三定律。
电磁场与电磁波知识点在我们的日常生活中,电磁场与电磁波虽然看不见摸不着,但却无处不在,发挥着至关重要的作用。
从手机通讯到广播电视,从医疗设备到卫星导航,都离不开电磁场与电磁波的应用。
那么,究竟什么是电磁场与电磁波呢?让我们一起来探索一下相关的知识点。
首先,我们来了解一下电磁场。
电磁场是由电场和磁场组成的统一体。
电场是由电荷产生的,而磁场则是由电流或者变化的电场产生的。
电荷在其周围空间会产生电场,当电荷移动时,也就是形成电流,就会产生磁场。
电场的强度可以用电场强度这个物理量来描述。
它的单位是伏特每米(V/m),用来表示单位电荷在电场中所受到的力。
而磁场的强度则用磁感应强度来衡量,单位是特斯拉(T),描述的是单位电流元在磁场中所受到的力。
电磁波,简单来说,就是电磁场的一种运动形式。
当电场和磁场相互激发时,就会产生电磁波,并以光速在空间中传播。
电磁波具有波动性和粒子性双重性质。
电磁波的波动性可以通过波长、频率和波速这三个重要的参数来描述。
波长是指相邻两个波峰或者波谷之间的距离,单位通常是米(m)。
频率则是指电磁波在单位时间内振动的次数,单位是赫兹(Hz)。
波速是指电磁波在介质中传播的速度,在真空中,电磁波的波速约为3×10⁸米每秒。
它们之间存在着一个简单的关系:波速等于波长乘以频率。
电磁波的频率范围非常广泛,按照频率从低到高的顺序,可以分为无线电波、微波、红外线、可见光、紫外线、X 射线和伽马射线等。
不同频率的电磁波具有不同的特性和应用。
无线电波的频率较低,波长较长,常用于广播、电视和通信等领域。
微波的频率比无线电波高一些,在雷达、卫星通信和微波炉等设备中得到广泛应用。
红外线具有热效应,常用于遥控器、红外测温等。
可见光就是我们能够看到的光,它的频率和波长在一定范围内,使我们能够感知到丰富多彩的世界。
紫外线具有杀菌消毒的作用,但过量的紫外线对人体有害。
X 射线具有很强的穿透力,常用于医学成像和安检。
工程电磁场基础目录引言一、电磁学发展简史二、电磁场理论课程的特点第一章自由空间中的电磁场定律1.1基本定义1.1.1电荷密度一、体电荷密度ρ二、面电荷密度η三、线电荷密度λ四、点电荷q1.1.2电流密度一、体电流密度J二、面电流密度K三、线电流I1.1.3基本场量一、洛仑兹力公式二、电场强度E三、磁场强度H1.2自由空间中的电磁场定律1.2.1场定律中符号的意义1.2.2各电磁场定律的数学物理意义一、法拉第电磁感应定律的意义二、修正的安培环路定律的意义三、电场高斯定律的意义四、磁场高斯定律的意义五、电荷守恒定律的意义1.2.3电磁场定律整体的物理意义1.3积分形式场定律的应用习题第二章矢量分析2.1标量场的梯度2.1.1标量场的等值面2.1.2标量场的梯度一、位移的方向余弦和单位矢量二、方向导数三、标量场的梯度2.1.3梯度的性质2.1.4标量场梯度的物理意义2.1.5例题2.2矢量场的散度和高斯定理2.2.1矢量场的场流图2.2.2矢量场的散度一、散度的定义二、散度的数学计算式2.2.3矢量场散度的性质2.2.4矢量场散度的物理意义2.2.5高斯定理一、高斯定理二、高斯定理的证明2.2.6自由空间中微分形式场定律的散度关系式2.2.7拉普拉斯运算符2.2.8例题2.3矢量场的旋度和斯托克斯定理2.3.1保守场和非保守场2.3.2矢量场的旋度一、旋度的定义二、旋度的数学计算式2.3.3矢量场的旋度的性质2.3.4矢量场旋度的物理意义2.3.5斯托克斯定理一、斯托克斯定理二、定理证明三、保守场的判据2.3.6自由空间微分场定律中的旋度关系式2.3.7例题习题第三章自由空间的微分场定律3.1微分场定律3.1.1微分场定律的数学物理意义一、法拉第电磁感应定律的意义二、修正的安培定律的意义三、电场高斯定律的意义四、磁场高斯定律的意义五、电荷守恒定律的意义3.1.2微分场定律整体的意义3.1.3例题3.2边界条件3.2.1电磁场中的不连续界面3.2.2边界条件一、边界法线方向上的关系式(法向边界条件)二、边界切线方向上的关系式(切向边界条件)3.2.3边界条件的物理意义一、电场强度切向边界条件的意义二、磁场强度切向边界条件的意义三、电场法向边界条件的意义四、磁场法向边界条件的意义五、电场和磁场边界条件的物理解释六、电流边界条件的意义七、边界条件所含的方向关系3.2.4微分场定律与边界条件的形式对应关系3.3微分场定律(含边界条件)的应用3.3.1已知场分布求源分布3.3.2已知源分布求场分布习题第四章静电场的标量位4.1静电场的标量位4.1.1静电场标量位的引入一、在原点的点电荷电场的标量位二、在空间某点的点电荷电场的标量位三、点电荷系电场的标量位四、分布在有限区域的带电系统的标量位4.1.2标量位(电位)的物理意义4.1.3电偶极子的电场和电位一、直接计算电场二、使用标量位计算电场4.1.4标量位的微分方程和边界条件一、微分方程二、一般边界条件三、边界为偶极层时的条件四、导体表面的边界条件4.1.5泊松方程的解4.2标量位的性质4.2.1极值定理4.2.2平均值定理一、格林定理二、平均值定理的证明三、平均值定理的应用4.2.3唯一性定理一、定理内容二、唯一性定理的证明4.3唯一性定理的应用4.3.1静电镜象法一、在无限大接地导体平板上方放置一个点电荷的系统二、接地导体角域内放置点电荷的系统三、接地导体球外放置一个点电荷的系统四、不接地不带电的导体球外放置一个点电荷的系统五、不接地、带电量为Q的导体球外放置一个点电荷的系统六、在一个接地的无限大导电平面上方放置一个偶极子的系统4.3.2电轴法一、两根相互平行且带等量异号电荷的无限长直导线的场二、两个等截面导体圆柱系统三、两个截面不相等的导体圆柱系统4.4复变函数在静电场问题中的应用4.4.1复电位(复位函数)4.4.2保角变换(保角映射)4.4.3许瓦兹-克瑞斯托弗尔变换4.5静电场示意场图的画法4.5.1静电场示意场图的作用4.5.2绘制静电场示意场图的基本法则4.5.3静电场示意场图实例一、在球形接地导体空腔内有一个点电荷二、两个不等量的异号电荷三、接地导体上的矩形空气槽四、矩形空气域五、两个同轴圆柱面间的空气域习题第五章静电场的分离变量法求解5.1拉普拉斯方程的变量可分离解5.1.1在直角坐标系中一、平凡解(明显解)二、一般解5.1.2在柱坐标系中一、平凡解二、与z变量无关的二维一般解三、柱坐标中拉普拉斯方程解的物理意义5.1.3在球坐标系中一、平凡解二、一般解三、球坐标中拉普拉斯方程解的物理意义5.2静电场问题求解实例5.2.1边界电位值已知的静电系统例1(上下为导体板,左右为源的矩形二维空气域)例2(扇形域)例3(锥面间域)例4(导体块上的空气槽)例5(有导体角的矩形域,迭加原理)例6(立方域)5.2.2带有自然边界条件的静电系统例1(导体上的半无界缝)例2(已知电位分布的圆柱面)例3(已知电位分布的球面)5.2.3带有电位导数边界条件的静电系统例1(平板电容器)例2(长方体形电阻器)例3(矩形导体片)例4(内有面电荷的二维矩形空腔)例5(带面电荷的圆柱面)例6(带面电荷的球面)例7(两种导体构成的半圆形电阻)5.2.4带有趋势性边界条件的静电系统例1(中心放置电偶极子的导体球壳)例2(中心放置点电荷的导体球壳)例3(上下异号的线电荷)例4(均匀电流场中的导体球)例5(均匀电场中的导体圆柱)5.3柱坐标系中三维拉普拉斯方程的分离变量解习题第六章静磁场与位函数的远区多极子展开式6.1静磁场的矢量位6.1.1毕奥-沙瓦定律一、电流元产生的磁场二、闭合电流线产生的磁场三、分布电流产生的磁场6.1.2磁场的矢量位一、静磁场方程二、磁场的矢量位三、磁矢位的方程四、磁矢位方程的解五、磁矢位的物理意义六、边界条件6.1.3例题6.2静磁场的标量位6.2.1磁标位一、磁标位的定义二、一个电流环的磁标位三、磁标位的方程和方程解族四、边界条件6.2.2例题6.3位函数在远区的多极子展开式6.3.1静电标量位Φ(r)的多极子展开式一、1/RQP的级数展开式二、Φ(r)的展开式三、电位Φ(r)多极子展开式的物理意义四、多极子展开式的应用6.3.2磁矢位A(r)的远区多极子展开式习题第七章有物质存在时的宏观场定律7.1物质极化的宏观模型7.1.1极化的概念7.1.2极化强度P7.1.3极化电荷与电场高斯定律一、极化电荷二、宏观极化模型下的电场高斯定律7.1.4极化电流与修正的安培定律一、极化电流二、宏观极化模型下的修正安培定律7.2极化问题举例7.2.1永久极化物体一、永久极化板二、永久极化球7.2.2非永久极化物体一、均匀电场中的电介质球二、填充均匀∈材料的平行板电容器三、填充非均匀∈材料的电容器四、空心介质球心放置一个电偶极子7.3物质磁化的安培电流模型7.3.1物质磁化的机理7.3.2磁化强度M7.3.3磁化电流密度7.3.4安培电流模型下的场定律7.3.5永久磁化圆柱的磁场7.4物质磁化的磁荷模型7.4.1物质磁化的机理7.4.2磁荷模型下的磁化强度7.4.3物质中的磁场高斯定律7.4.4物质中的法拉第电磁感应定律7.4.5永久磁化圆柱的磁场7.4.6有均匀磁介质的磁场系统一、均匀磁场中的磁介质球二、空心磁介质球心放置一个磁偶极子7.5物质中的场量组成关系和场定律7.5.1物质中的场量组成关系一、单值关系二、多值关系三、各向同性和各向异性7.5.2物质中的电磁场定律一、B-D形式的场定律二、E-H形式的场定律三、对称形式的场定律习题第八章电磁场的能量和功率8.1静电场和静磁场的能量8.1.1静电场的能量8.1.2静电场能计算举例8.1.3静磁场能量8.1.4静磁场能计算举例8.2坡印廷定理8.2.1电磁场供给运动电磁荷的功率一、电磁场对运动电磁荷的电磁力二、电磁场供给运动电磁荷的功率8.2.2坡印廷定理一、微分形式的坡印廷定理二、积分形式的坡印廷定理8.2.3坡印廷定理的量纲单位分析8.2.4坡印廷定理的物理解释一、对微分形式坡印廷定理的物理解释二、对积分形式坡印廷定理的物理解释三、在解释坡印廷定理上的假说性8.2.5对S和w的补充规定8.2.6坡印廷定理在物质中的应用8.3静态功率流与损耗8.4物质中的极化能和磁化能8.4.1极化能和电能8.4.2磁化能和磁能8.4.3磁能计算举例8.4.4物质宏观模型与坡印廷定理的关系8.5小结习题第九章时变场的低频特性9.1平行板系统中的交变电磁场9.1.1交变电磁场的严格解9.1.2平行板系统的低频响应9.2时变场的幂级数解法9.3低频系统中的场9.3.1平行板系统一、参考点的选取二、零阶场三、一阶场四、高阶场五、场分布和等效电路9.3.2单匝电感器一、系统的参考点二、零级近似场三、一级近似场四、二级近似场五、高阶场9.3.3多匝线圈一、不考虑线圈存在时的一阶电场二、放入线圈后的一阶电场三、计算a、b两点间的端电压9.4电路理论与电磁场理论的关系习题第十章平面电磁波10.1自由空间中均匀平面波的时域解10.1.1均匀平面波的电场和磁场时域解10.1.2均匀平面波的传播特性10.2正弦律时变场10.2.1复矢量10.2.2复数形式的场定律10.2.3复矢量乘积的物理意义10.3正弦律均匀平面波10.3.1均匀平面波的频域解10.3.2复数形式的坡印廷定理10.3.3复数坡印廷定理与微波网络的关系10.4平面波在有耗媒质中的传播10.4.1有耗媒质中的均匀平面波解10.4.2半导电媒质中均匀平面波的传播10.4.3良导体的趋肤效应10.4.4相速、群速和色散10.5电磁波的极化状态10.5.1电场极化状态的概念10.5.2极化方向的工程判断法一、瞬时场极化方向的判断二、复数场极化方向的判断10.5.3波的分解与合成一、线极化波的分解二、椭圆极化波的分解三、圆极化波的分解10.6沿任意方向传播的均匀平面波10.6.1波的数学表达式一、一般形式二、在直角坐标系中的表达式三、在柱坐标系和球坐标系中的表达式10.6.2波的特性10.7无耗媒质中的非均匀平面波10.8频率极高时媒质中的波10.8.1电介质中的波10.8.2金属中的波10.8.3电离层和等离子体中的波习题第十一章平面波的反射与折射11.1在自由空间与理想导体分界面处的反射现象11.1.1正入射11.1.2斜入射一、垂直极化二、平行极化11.2在两种介质分界面处的反射和折射现象11.2.1垂直极化一、入射角θi=0二、入射角θi>011.2.2平行极化11.3导电媒质表面的反射和折射11.3.1导电媒质中的实数折射角一、媒质Ⅱ是良导体二、媒质Ⅱ是不良导体11.3.2良导体中的透射功率11.3.3导电表面的反射一、媒质Ⅱ是良导体二、媒质Ⅱ是不良导体11.4透波和吸波现象11.4.1透波现象一、电磁波正入射二、电磁波斜入射三、多层介质板的透波现象11.4.2吸波现象一、干涉型吸收材料二、宽带吸收材料习题第十二章电磁波的辐射12.1时变场的位函数12.1.1标量位和矢量位12.1.2赫兹电矢量Ⅱ12.2时变场位函数方程的解12.2.1克希荷夫积分12.2.2达朗贝尔公式12.3交变电偶极子的辐射12.3.1交变电偶极子的电磁场量一、矢量位二、磁场强度三、电场强度12.3.2交变电偶极子场的分析一、近区场二、远区场三、辐射场的方向性四、辐射功率五、辐射电阻12.4交变磁偶极子的辐射12.4.1通过复数矢量位求电磁场12.4.2使用电磁对偶原理求电磁场12.5缝隙元的辐射12.6半波天线12.7天线阵12.8线天线电磁场的精确计算12.9天线的输入功率和输入阻抗习题第十三章电磁场的基本定理13.1格林定理13.1.1标量格林定理13.1.2广义格林定理13.1.3矢量格林定理13.2亥姆霍尔兹定理13.3静态场的几个定理13.3.1标量位Φ的唯一性定理13.3.2平均值定理13.3.3无极值定理13.3.4汤姆生定理13.3.5恩绍定理13.3.6矢量位A的唯一性定理13.4坡印廷定理13.5电磁力的定理――麦克斯韦定理13.6时变场的唯一性定理13.7相似原理13.8二重性原理和电磁对偶原理13.9等效原理13.10感应定理13.11互易定理13.12天线远场定理13.13克希荷夫-惠更斯原理13.14费马原理附录A 矢量的代数运算附录B 坐标系的有关概念附录C 立体角的有关概念。
电磁场的基本特性与场强计算电磁场是由电荷和电流引起的一种物理现象。
在电磁场中,电荷和电流产生的作用力可通过场强进行描述。
本文将介绍电磁场的基本特性,以及如何计算电磁场的场强。
一、电磁场的基本特性在物理学中,电磁场是关于电场和磁场的统称。
电场是由电荷引起的一种力场,而磁场则是由电流引起的一种力场。
电磁场遵循麦克斯韦方程组,描述了电场和磁场之间的相互作用。
1. 电场的基本特性电场是由带电粒子周围所产生的力场。
任何带电粒子都会在其周围产生电场,电场会对带电粒子施加作用力。
电场的强弱可以用电场强度来衡量,电场强度的单位是伏特/米(V/m)。
2. 磁场的基本特性磁场是由电流或磁化物质产生的力场。
电流通过导线时会产生磁场,磁场会对磁性物体或电流施加作用力。
磁场的强弱可以用磁感应强度来衡量,磁感应强度的单位是特斯拉(T)。
二、电磁场的场强计算方法在电磁场中,场强是描述电场或磁场强度的物理量。
场强可以通过计算得到,具体计算方法如下:1. 电场场强的计算电场场强的计算公式为:E = k * (Q / r^2)其中,E表示电场场强,k表示电场常量,Q表示电荷量,r表示观测点到电荷的距离。
2. 磁场场强的计算磁场场强的计算公式根据不同的情况有所不同。
以下是一些常见情况下的磁场场强计算公式:a) 直导线电流的磁场场强计算公式:B = (μ0 * I) / (2 * π * r)其中,B表示磁场场强,μ0表示真空磁导率,I表示电流,r表示观测点到导线的距离。
b) 矩形线圈电流的磁场场强计算公式:B = (μ0 * N * I) / (2 * π * r)其中,B表示磁场场强,μ0表示真空磁导率,N表示线圈匝数,I 表示电流,r表示观测点到线圈的距离。
c) 环形线圈电流的磁场场强计算公式:B = (μ0 * I * R^2) / (2 * (R^2 + r^2)^(3/2))其中,B表示磁场场强,μ0表示真空磁导率,I表示电流,R表示线圈半径,r表示观测点到线圈中心的距离。
第一章矢量分析①A A Ae =②cos A B A Bθ⋅=⋅③A 在B 上的分量B AB A B A COS BA θ⋅==④e xyz x y z xyzA B e e A A AB B B⨯=⑤A B A B⨯=-⨯ ,()A B C A B A C⨯+=⨯+⨯ ,()()()A B C B C A C A B ⋅⨯=⋅⨯=⋅⨯(标量三重积),()()()A B C B A C C A B ⨯⨯=⋅-⋅⑥ 标量函数的梯度xy z u u u ux y ze e e ∂∂∂∇=++∂∂∂⑦ 求矢量的散度=y x z A xyzA A A ∂∂∂∇⋅++∂∂∂散度定理:矢量场的散度在体积V 上的体积分等于在矢量场在限定该体积的闭合曲面S 上的面积分,即VSFdV F d S ∇⋅=⋅⎰⎰,散度定理是矢量场中的体积分与闭合曲面积分之间的一个变换关系。
⑧ 给定一矢量函数和两个点,求沿某一曲线积分E dl ⋅⎰,x y CCE dl E dx E dy ⋅=+⎰⎰积分与路径无关就是保守场。
⑨ 如何判断一个矢量是否可以由一个标量函数的梯度表示或者由一个矢量函数的旋度表示?如果0A ∇⋅= 0A ∇⨯=,则既可以由一个标量函数的梯度表示,也可以由一个矢量函数的旋度表示;如果0A ∇⋅≠,则该矢量可以由一个标量函数的梯度表示;如果0A ∇⨯≠,则该矢量可以由一个矢量函数的旋度表示。
矢量的源分布为A ∇⋅ A ∇⨯.⑩ 证明()0u ∇⨯∇=和()0A ∇⋅∇⨯=证明:解 (1)对于任意闭合曲线C 为边界的任意曲面S ,由斯托克斯定理有()d d dSCCuu u l l ∂∇⨯∇=∇==∂⎰⎰⎰S l 由于曲面S 是任意的,故有()0u ∇⨯∇=(2)对于任意闭合曲面S 为边界的体积τ,由散度定理有12()d ()d ()d ()d SS S ττ∇∇⨯=∇⨯=∇⨯+∇⨯⎰⎰⎰⎰A A S A S A S 其中1S 和2S 如题1.27图所示。
第14讲电磁场与电磁波课程标准课标解读1.初步了解麦克斯韦电磁场理论的基本思想,初步了解场的统一性与多样性,体会物理学对统一性的追求。
2.结合牛顿万有引力定律和麦克斯韦电磁场理论,体会物理学发展过程中对统一性的追求。
1.知道电磁场的概念及产生过程.2.了解电磁波的基本特点、发现过程及传播规律,知道电磁波与机械波的区别.知识点01 电磁场1.变化的磁场产生电场(1)实验基础:如图所示,在变化的磁场中放一个闭合电路,电路里就会产生感应电流.(2)麦克斯韦的见解:电路里能产生感应电流,是因为变化的磁场产生了电场,知识精讲目标导航电场促使导体中的自由电荷做定向运动.(3)实质:变化的磁场产生了电场.2.变化的电场产生磁场麦克斯韦假设,既然变化的磁场能产生电场,那么变化的电场也会在空间产生磁场.【知识拓展1】对麦克斯韦电磁场理论的理解(1)变化的磁场产生电场①均匀变化的磁场产生恒定的电场.②非均匀变化的磁场产生变化的电场.③周期性变化的磁场产生同频率的周期性变化的电场.(2)变化的电场产生磁场①均匀变化的电场产生恒定的磁场.②非均匀变化的电场产生变化的磁场.③周期性变化的电场产生同频率的周期性变化的磁场.【即学即练1】麦克斯韦是从牛顿到爱因斯坦这一阶段中最伟大的理论物理学家,他的科学思想和科学方法的重要意义直到20世纪科学革命来临时才充分体现出来,下列关于麦克斯韦的理论,正确的是()A.均匀变化的电场周围产生均匀变化的磁场B.光是以波动形式传播的一种电磁振动C.水波、声波和电磁波都能在真空中传播D.当电场和磁场同时存在空间某一区域时,就会形成电磁波【答案】B【解析】A.均匀变化的电场周围产生恒定的磁场,故A错误;B.光是以波动形式传播的一种电磁振动,故B正确;C.水波、声波属于机械波,不能在真空中传播;电磁波能在真空中传播,故C错误;D.电磁波是由变化的电场和磁场,从发生区域由近及远传播形成的,故D错误。