新华东师大版七年级数学下册《6章 一元一次方程 复习题》教案_17
- 格式:doc
- 大小:30.00 KB
- 文档页数:1
第6章一元一次方程教案6.1从实际问题到方程教学目的1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2.使学生会列一元一次方程解决一些简单的应用题。
3.会判断一个数是不是一些方程的解。
重点、难点1.重点:会列一元一次方程解决一些简单的应用题。
2.难点:弄清题意,找出“相等关系”。
教学过程一、复习提问小学里已经学过列方程解简单的应用题,让我们回顾一下,如何列方程解应用题?例如:一本笔记本1.2元。
小红有6元钱,那么她最多能买到几本这样的笔记本呢?解:设小红能买到工本笔记本,那么根据题意,得1.2某=6因为1.2某5=6,所以小红能买到5本笔记本。
二、新授:我们再来看下面一个例子:问题1:学校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?问:你能解决这个问题吗?有哪些方法?(让学生思考后,回答,教师再作讲评)算术法:(328-64)÷44=264÷44=6(辆)列方程解应用题:设需要租用某辆客车,那么这些客车共可乘44某人,加上乘坐校车的64人,就是全体师生328人,可得。
44某+64=328(1)解这个方程,就能得到所求的结果。
问:你会解这个方程吗?试试看?(学生可能利用逆运算求解,教师加以肯定,同时指出本章里我们将要学习解方程的另一种方法。
)问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”小敏同学很快说出了答案。
“三年”。
他是这样算的:1年后,老师46岁,同学们的年龄是14岁,不是老师的三分之一2年后,老师47岁,同学们的年龄是15岁,也不是老师的三分之一、3年后,老师48岁,同学们的年龄是16岁,恰好是老师的三分之一、你能否用方程的方法来解呢?通过分析,列出方程:13+某=1(45+某)(2)3问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?这个方程不像例l中的方程(1)那样容易求出它的解,小敏同学的方法启发了我们,可以用尝试,检验的方法找出方程(2)的解。
吉林省七年级数学下册第6章一元一次方程复习一教学设计新版华东师大版一. 教材分析吉林省七年级数学下册第6章一元一次方程复习一教学设计,主要涉及一元一次方程的概念、解法及其应用。
本节内容是学生对一元一次方程的基本概念、性质和解法进行复习,为后续的学习打下基础。
二. 学情分析学生在之前的学习中已经接触过一元一次方程,对基本概念、性质和解法有了一定的了解。
但部分学生对概念理解不深,解法运用不熟练,需要通过本节课的复习来加强掌握。
三. 教学目标1.知识与技能:使学生掌握一元一次方程的基本概念、性质和解法,能熟练运用一元一次方程解决实际问题。
2.过程与方法:通过复习,提高学生分析问题、解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:一元一次方程的基本概念、性质和解法。
2.难点:一元一次方程在实际问题中的应用。
五. 教学方法采用讲练结合、小组合作、情境教学等方法,引导学生主动参与,提高学生的学习兴趣和积极性。
六. 教学准备1.准备相关的一元一次方程题目,用于课堂练习和巩固。
2.准备一些实际问题,用于引导学生运用一元一次方程解决。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾一元一次方程的基本概念、性质和解法。
2.呈现(10分钟)呈现一些一元一次方程的题目,让学生独立解答。
然后讲解答案,引导学生总结解题方法。
3.操练(10分钟)学生分组合作,解决一些实际问题,运用一元一次方程进行求解。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)让学生在小组内互相出题,用一元一次方程解答。
然后互相评价,总结解题经验。
5.拓展(10分钟)引导学生思考:如何判断一个方程是否为一元一次方程?如何求解一元一次方程?让学生通过小组讨论,总结出一元一次方程的性质和解法。
6.小结(5分钟)让学生总结本节课所学内容,教师进行补充和总结。
7.家庭作业(5分钟)布置一些一元一次方程的题目,要求学生在课后完成。
第6章一元一次方程一、教学目标本章的主要内容是一元一次方程及其解法。
教材从实例出发,引入一元一次方程的有关概念,讨论一元一次方程的解法及其应用,并注重渗透数学建模思想,培养学生运用知识解决实际问题的意识和能力。
本章的教学目标是:1、经历从具体问题中的数量相等关系,列出方程的过程,体会并认识到方程是刻画现实世界的一个有效的数学模型。
2、了解方程、一元一次方程以及方程的解等基本概念,了解方程的基本变形及其在解方程中的作用。
3、会解一元一次方程,并经历和体会解方程中的“转化”的过程和思想,了解一元一次方程解法的一般步骤,并能正确、灵活应用。
4、会根据具体问题中的数量关系列出一元一次方程并能求解,能根据问题的实际意义检验所结果是否合理。
5、过实践与探索,经历“问题情境——建立数学模型——解释、应用与拓展”的过程,体会数学建模思想,提高分析和解决实际问题的能力。
6、在学习和探索一元一次方程的解法和应用中,通过自主学习,提高学习能力,增强合作意识。
二、教材分析一元一次方程是初等数学的基本知识,也是进一步学习二元一次方程组、一元一次不等式及一元二次方程的基础。
一元一次方程在实际问题中的应用,是中学阶段应用数学知识解决实际问题的开端,也是增强学数学、用数学意识的重要题材。
教材中渗透的数学建模思想和类比、归纳、化归等数学思想方法,都是学生今后学习和工作的必备的数学修养的素质。
本章内容主要有两个方面:(1)一元一次方程的概念及其解法;(2)一元一次方程在实际问题中的应用,包括实践与探索。
教材注重了两者的有机结合,让学生经历和体会从实际问题中抽象出数学模型,并回到实际问题中解释和检验的过程。
教学重点:一元一次方程的解法和一元一次方程在实际问题中的应用。
教学难点:增强学生学数学、用数学意识,体会数学建模思想,提高分析和解决实际问题的能力。
三、课时安排本章教学时间大约需17课时,具体分配如下:§6.1 从实际问题到方程-------------------------------1课时§6.2 解一元一次方程1、方程的简单变形------------------------------2课时2、解一元一次方程----------------------------5-6课时§6.3 实践与探索-----------------------------------5-6 课时复习小结---------------------------------------------2 课时第6章一元一次方程★★★第1课时▓课题:6.1 从实际问题到方程学习目标:1、 探索具体问题中的数量关系和变化规律,用方程进行描述,进而让学生初步体验:方程是刻画现实世界的一个有效的数学模型。
七年级数学下册一元一次方程复习教案 华东师大版学习目标:1、对前三节课所学的知识进行归纳、反思、总结。
2、能对各类一元一次方程作出正确的判断,选取适当的方法来解题。
教学重点、难点:重点:根据题目特点,灵活选择解题步骤,使解题过程简化。
难点:要注意解题过程及其表达的规范性,以避免不必要的错误。
方法设计:由方程的简单变形入手,到移项、系数化为1的一般解法,到去分母、小数化整的复杂方程解法的一路回顾,让学生对解一元一次方程有一个系统的概念,体会针对不同类型灵活合理解题的必要性。
教学过程 :一、 复习巩固:1、 在方程3151-=-x 的两边都______,得x=____,这个变形叫做_________。
2、 在解方程1232=-x 时,移项得___,合并同类项得___,系数化为1得___。
3、 将方程163242+-=+x x 去分母,得_______。
二、 实践与探索:实践1:解方程 2233166+--=+-+x x x x 反思小结:(1)去分母时,不要漏乘每一项;(2)小数化整时,只有分母是小数的才需变化,而且是这个分数的分子和分母同时变化,不需要每一项都变。
(3)去括号时,既要注意符号,又不能漏乘。
实践2:当x=3时,代数式5(x+4a)的值比4(x-a)的值的2倍多1,求a 的值。
反思小结:解这类问题通常是先根据题意列出方程,再求解。
实践3:在公式2021at t V S +=中,已知 S=80, t=4, a=5, 求0V 。
三、反馈训练:1、 填空:(1) 若3x-2=4,则3x= 4+____,这是根据等式基本性质___,在两边都________。
(2) 若4x=6,则x=___,这是根据等式基本性质___,在等式两边都________。
(3) 当x=____时,代数式2x+1与x-2的值相等。
(4) 在公式h b a S )(21+=中,当S=20 , a=2 , h= 4 时,b = ____。
第6章一元一次方程 (2)§6.1 从实际问题到方程 (2)§6.2 解一元一次方程 (4)1. 方程的简单变形 (4)2. 解一元一次方程 (6)阅读材料 (10)方程史话 (10)§6.3 实践与探索 (10)阅读材料 (14)2=3? (14)小结 (14)复习题 (15)第6章一元一次方程一队师生共328人,乘车外出旅游,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租多少辆客车?44×?+64=328§6.1 从实际问题到方程问题1某校初中一年级328名师生乘车外出春游,已有2辆校车可乘坐64人,还需租用44座的客车多少辆?回忆小学里已经学过列方程的解法,我们不妨回顾一下:设需租用客车x 辆,共可乘坐44x 人,加上乘坐校车的64人,就是全体 328人.可得44x +64=328.①解这个方程,就能得到所求的结果.问题2在课外活动中,X 老师发现同学们的年龄大多是13岁.就问同学:“我 今年45岁,几年以后你们的年龄是我年龄的三分之一?”“三年!”小敏同学很快发现了答案.他是这样算的:1年后,老师的年龄是46岁,同学的年龄是14岁,不是老师年龄的31; 2年后,老师的年龄是47岁,同学的年龄是15岁,也不是老师年龄的 31; 3年后,老师的年龄是48岁,同学的年龄是16岁,恰好是老师年龄的31. 也有的同学说,我们可以列出方程来解:设x 年后同学的年龄是老师年龄的31,而x 年后同学的年龄是(13+x ) 岁,老师的年龄是(45+x )岁,可得13+x =31(45+x ). ② 这个方程不像问题1中的方程①那样容易求出它的解.但小敏同学的方法 启发我们,可以用尝试、检验的方法找出方程②的解,即只要将x =1,2,3, 4,…代入方程②的左右两边,看哪个数能使两边的值相等.这样得到x =3是 方程的解.思 考如果未知数可能取到的数值较多,或者不一定是整数,该从何试起?如果 试验根本无法入手又该怎么办?练 习根据题意设未知数,并列出方程(不必求解):1. 某班原分成两个小组活动,第一组26人,第二组22人,根据学校活动器材的数量,要将第一组人数调整为第二组人数的一半,应从第一组调多少人到第二组去?2. 小明的爸爸三年前为小明存了一份3000元的教育储蓄.今年到期时取出,得到的本息和为3243元.请你帮小明算一算这种储蓄的年利率.1. 检验下列方程后面大括号内所列各数是否为相应方程的解:2. (1) 1815-=+x x ,⎭⎬⎫⎩⎨⎧-3,23; 3. (2) 2(y -2)-9(1-y )=3(4y -1), {-10,10}.4. 根据班级内男、女同学的人数编一道应用题,和同学交流一下.5. 小赵去商店买练习本,回来后问同学:“店主告诉我,如果多买一些就给我八折优惠.我就买了20本,结果便宜了 1.60元.你猜原来每本价格多少?”你能列出方程吗?§6.2 解一元一次方程1. 方程的简单变形联 想测量一些物体的质量时,我们经常将它们放在天平的左盘内,在右盘内放 上砝码,使天平处于平衡状态,这时两边的质量相等,我们就可测得该物体的 质量.如果我们在两边盘内同时添上(或取下)相同质量的物体,可以发现天平 依然平衡;如果我们将两边盘内物体的质量同时扩大到原来相同的倍数(或同时缩小到原来的几分之一),也会看到天平依然平衡.图~3反映了由天平联想到的几个方程的变形.x+2=5 ⇒x=5-2图3x=2x+2 ⇒3x-2x=2图2x=6 ⇒x=6÷2图归纳我们可以看到,方程能够这样变形:方程两边都加上或都减去同一个数或同一个整式,方程的解不变.方程两边都乘以或都除以同一个不为零的数,方程的解不变.通过对方程进行适当的变形,可以求得方程的解.例1解下列方程:(1)x-5=7;(2)4x=3x-4.解(1)由x-5=7,两边都加上5,得x=7+5 ,即x=12.(2)由4x=3x-4,两边都减去3x ,得 4x -3x =-4,即x =-4.概 括像这样,将方程中的某些项改变符号后,从方程的一边移到另一边的变形 叫做移项(transposition ).例2 解下列方程:(1) -5x =2; (2)23x =31. 解 (1) 方程两边都除以-5,得x =52-. (2) 方程两边都除以23(或乘以32),得 x =31×32 , 即 x =92. 这里的变形通常称作“将未知数的系数化为1”.概 括以上例1和例2解方程的过程,都是对方程进行适当的变形,得到x =a 的 形式.练 习1.列方程的变形是否正确?为什么?(1) 由3+x =5,得x =5+3; (2)由7x =-4,得x =-47; (3) 由021=y ,得y =2; (4)由3=x -2,得x =-2-3. 2. (口答)求下列方程的解:(1)x -6=6; (2)7x =6x -4;(3)-5x =60; (4)2141=y .§6.1中问题1所列出的方程.做一做利用方程的变形,求方程2x +3=1的解,并和同学讨论与交流.例3 解下列方程:(1) 8x =2x -7; (2) 6=8+2x ;(3) 321212-=-y y 解 (1) 8x =2x -7,8x -2x =-7,6x =-7,x =67-. (2) 6=8+2x ,8+2x =6,2x =-2,x =-1.(3) 321212-=-y y , 213212+-=-y y 2523-=y , y =35- 练 习解下列方程:1. 3x +4=0 .2. 7y +6=-6y3. 5x +2=7x +84. 3y -2=y +1+6y .5.x x 2.041852-=-. 6. 1-21x =x +31习题1. 解下列方程:(1)18=5-x ; (2)x x 413243-=+; (3)3x -7+4x =6x -2; (4)10y +5=11y -5-2y ;(5)a -1=5+2ax +1.2-2xx .2. 解下列方程:(1)2y +3=11-6y (2)2x -1=5x +7(3)31x -1-2x =-1; (4)21x -3=5x +41 3. 已知y 1=3x +2,y 2=4-x .(1)当x 取何值时,y 1=y 2? (2)当x 取何值时,y 1比y 2大4?2. 解一元一次方程前面我们遇到的一些方程,例如44x +64=328,13+x =31(45+x ) 等等,有一个共同特点,它们都只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程(linearequationwithoneunknown ).我们再一起来解几个一元一次方程.例4 解方程: 3(x -2)+1=x -(2x -1).解 原方程的两边分别去括号,得3x -6+1=x -2x +1,3x -5=-x +1,3x +x =1+5,4x =6, x =23. 练 习1.解下列方程:(1)5(x +2)=2(5x -1);(2)(x +1)-2(x -1)=1-3x ;(3)2(x -2)-(4x -1)=3(1-x ).2.列方程求解:(1)当x 取何值时,代数式3(2-x )和2(3+x )的值相等?(2)当y 取何值时,2(3y +4)的值比5(2y -7)的值3?3.解§6.1中问题2所列出的方程.例5 解方程:解 由原方程得3(x -3)-2(2x +1)=6,3x -9-4x -2=6,3x -4x =6+9+2,-x =17,x =-17.在上述解方程的过程中,第一步是方程的两边都乘以同一个数6,使方程中的系数不出现分数.这样的变形通常称为“去分母”.讨 论在以上各例解一元一次方程时,主要进行了哪些变形?如何灵活运用这些变形合理、简洁地解一元一次方程?练 习1.指出下列方程求解过程中的错误,并给予纠正:(1)解方程:1524213-+=-x x (2)解方程:246231x x x -=+-- 解: 15x -5=8x +4-1, 解: 2x -2-x +2=12-3x15x -8x=4-1+5, 2x-x +3x =12+2+27x =8 4x =1687=x x =4.2.解下列方程:(1);47815=-a (2)15334--=-x x 例6 如图,天平的两个盘内分别盛有51 g 、45 g 盐,问应该从盘A 内拿出多少盐放到盘B 内,才能使两者所盛盐的质量相等?图6.2.4分析 设应从盘A 内拿出盐xg ,可列出表.表6.2.1解 设应从盘A 内拿出盐x g 放到盘B 内,则根据题意,得 51-x =45+x .解这个方程,得x =3.经检验,符合题意.答: 应从盘A 内拿出盐3 g 放到盘B 内.例7 学校团委组织65名新团员为学校建花坛搬砖.女同学每人搬6块,男同学每人搬8块,每人搬了4次,共搬了1800块.问这些新团员中有多少名男同学?分析 设新团员中有x 名男同学,可列出表.解设新团员中有x名男同学,则根据题意,得32x+24(65-x)=1800.解这个方程,得x=30.经检验,符合题意.答:新团员中有30名男同学.练习1. 学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分路程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒,问小刚在冲刺阶段花了多少时间?2. 将上题的分析和列得的方程与例7相比较,看看是否相似.将你的想法和同学交流一下.3.第1题中,若问“小刚在离终点多远时开始冲刺”,你该如何求解?归纳用一元一次方程解答实际问题,关键在于抓住问题中有关数量的相等关系,列出方程.求得方程的解后,经过检验,就可得到实际问题的解答.这一过程也可以简单地表述为:其中分析和抽象的过程通常包括:(1)弄清题意和其中的数量关系,用字母表示适当的未知数;(2)找出能表示问题含义的一个主要的等量关系;(3)对这个等量关系中涉及的量,列出所需的表达式,根据等量关系,得 到方程.在设未知数和解答时,应注意量的单位.习题1.解下列方程:(1))4(213x +-=; (2)1)34(2)52(3++=+x x2.解下列方程:(1)353235x x -=-; (2)x x 613211-=-; (3)161242=--+y y . 3.(1)在等式S =2)(b a n +中,已知S =279,b =7,n =18,求a 的值. (2)已知梯形上底a =3,高h =5,面积S =20,根据梯形的面积公式S =h b a )(21+,求下底b 的长. 4.球的表面是由一些呈多边形的黑、白皮块缝合而成的,共计有32块,已知黑色块数比白色块数的一半多2,问两种皮块各有多少?5.学校大扫除,某班原分成两个小组,第一组26人打扫教室,第二组22人打扫包干区.这次根据工作需要,要使第二组人数是第一组人数的2倍,那么应从第一组调多少人到第二组去?6.学校所在地的出租车计价规则如下:行程不超过3千米李老师和三位学生去探望一位病假的学生,坐出租车付了17.60元,他们共乘坐了多少路程?阅读材料方程史话你知道吗?现存世界上最古老的方程出现在英国考古学家兰德1858年找到的一份古埃及人的“纸草书”“啊哈,它的全部,它的71,是19”;“一堆,它的71,21,32,居然是33”.译得更明白一点就是:.33712132;1971=+++=+x x x x x x 在我国,“方程”一词最早出现于东汉初年(公元前后)的数学经典著作《九章算术》的第八章“方程”“天元术”解题,从设未知数到列方程都和现代数学十分相似.也就是在这段时期,方程的知识从中国传入日本.古希腊数学家丢番图(Diophantus ),是以研究一类方程(不定方程)著称于世的数学家.在他的墓碑上,刻写着这样一段墓志铭:坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路.上帝给予的童年占六分之一,又过十二分之一,两颊长胡,再过七分之一,点燃起结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途.请你列出方程算一算,丢番图去世时的年龄.§6.3 实践与探索问题1用一根长60厘米的铁丝围成一个长方形.(1) 使长方形的宽是长的32,求这个长方形的长和宽. (2) 使长方形的宽比长少4厘米,求这个长方形的面积.(3) 比较(1)、(2)所得两个长方形面积的大小.还能围出面积更大的 长方形吗?讨 论每小题中如何设未知数?在第(2)小题中,能不能直接设面积为x 平方 厘米?如不能,该怎么办?探 索将题(2)中的宽比长少4厘米改为3厘米、2厘米、1厘米、0厘米(即 长与宽相等),长方形的面积有什么变化?练 习1.一块长、宽、高分别为4厘米、3厘米、2厘米的长方体橡皮泥,要用它来捏一个底面半径为的圆柱,它的高是多少?(精确到,π取3.14)2.在一个底面直径5厘米、高18厘米的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径6厘米、高10厘米的圆柱形玻璃中,能否完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口的距离.读一读本节问题1中,通过探索我们发现,长方形的周长一定的情况下,它的长 和宽越接近,面积就越大.当长和宽相等,即成为正方形时,面积最大,通过以后的学习,我们就会知道其中的道理.有趣的是:若把这根铁丝围成任何封闭的平面图形(包括随意七凹八凸的不规则图形),面积最大的是圆.这里面的道理需要较为高深的学问.将来你有兴趣去认识它吗?小常识本章§6.1练习中讨论过的教育储蓄,是我国目前暂不征收利息税的一种储蓄.国家对其他储蓄所产生的利息,征收20%的个人所得税,即利息税.问题2小明爸爸前年存了年利率为2.43%的二年期定期储蓄.今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.60元的计算器.问小明爸爸前年存了多少元?讨论扣除利息的20%,那么实际得到利息的多少?你能否列出较简单的方程?练习填空:1. (1)学校图书馆原有图书a册,最近增加了20%,则现在有图书_______册;(2)某煤矿预计今年比去年增产15%,达到年产煤60万吨,设去年产煤x万吨,则可列方程__________________;(3)某商品按定价的八折出售,售价14.80元,则原定价是_________元.2.肖青的妈妈前年买了某公司的二年期债4500元,今年到期,扣除利息税后,共得本利和约4700元.问这种债券的年利率是多少(精确到0.01%)?习题1. 一个角的余角比这个角的补角的一半小40°,求这个角的度数.2. 一X覆盖在圆柱形罐头侧面的商标纸,展开是一个周长为88厘米的正方形(不计接口部分),求这个罐头的容积(精确到1立方厘米,π取3.14).3. 有一批截面是长11厘米、宽10厘米的长方形铁锭,现要铸造一个42. 9千克的零件,应截取多长的铁锭(铁锭每立方厘米重)?4. 某市去年年底人均居住面积为11平方米平方米.求今年的住房年增长率(精确到0.1%).5. 某银行设立大学生助学贷款,分3~4年期,5~7年期两种.贷款年利率分别为6.03%、6.21%,贷款利息的50%由国家财政贴补.某大学生预计6年 后能一次性偿还2万元,问他现在大约可以贷款多少(精确到0.1万元)?问题3小X 和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了一半路程时,小X 向司机询问行车时间,司机估计继续乘公共汽车到火车站时火车将正好开出.根据司机的建议小X 和父亲随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站.已知公共汽车的平均速度是30千米/时,问小X 家到火车站有多远?吴小红同学给出了一种解法:设小X 家到火车站的路程是x 千米,由实际乘车时间比原计划乘公共汽车提前了41小时,可列出方程 4160230230=⎪⎪⎪⎪⎭⎫ ⎝⎛+-x x x 解这个方程:411206030=--x x x , 4x -2x -x =30,x =30.经检验,它符合题意.答: 小X 家到火车站的路程是30千米.X 勇同学又提出另外一种解法:设实际上乘公共汽车行驶了x 千米,则从小X 家到火车站的路程是2x 千米,乘出租车行驶了x 千米.注意到提前的41小时是由于乘出租车而少用的,可列出方程416030=-x x 解这个方程,得x =15.2x =30.所得的答案与解法一相同.讨 论试比较以上两种解法,它们各是如何设未知数的?哪一种比较方便?是不是还有其他设未知数的方法?试试看.练 习加制作,每天制作40面.完成了三分之一以后,全班同学一起参加,结果比原计划提前一天半完成任务,假设每人的制作效率相同,问共制作小旗多少面?2. 将上题与问题3比较,你发现了什么?3. 编一道联系实际的数学问题,使所列的方程是3x +4(45-x )=150.并与同学交流、比较一下.习题1. 师徒两人检修一条长180米的自来水管道,师傅每小时检修15米,徒弟每小时检修10米.现两人合作,多少时间可以完成整条管道的检修?2. 学校准备添置一批课桌椅,原订购60套,每套100元.店方表示:如果多购,可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.3. 师徒两人检修一条煤气管道,师傅单独完成要10小时,徒弟单独完成要15小时.现两人合作,需多少小时完成?4. 中国民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票.一名旅客带了35千克行李乘机,机票连同行李费共付1 323元,求该旅客的机票价.5. 小王每天去体育场晨练,都见到一位田径队的叔叔也在锻炼.两人沿400米跑道跑步,每次总是小王跑2圈的时间,叔叔跑3圈.一天,两人在同地反向而跑,小明看了一下记时表,发现隔了32秒钟两人第一次相遇.求两人的速度.第二天小王打算和叔叔在同地同向而跑,看叔叔隔多少时间再次与他相遇.你能先给小王预测一下吗?问题4课外活动时李老师来教室布置作业,有一道题只写了“学校校办厂需制作一块广告牌,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天”,就因校长叫他听一个而离开教室.调皮的小X说:“让我试一试.”上去添了“两人合作需几天完成?”有同学反对:“这太简单了!”但也引起了大家的兴趣,于是各自试了起来:有添上一人先做几天再让另一人做的,有两人先合作再一人离开的,有考虑两人合作完成后的报酬问题的……李老师回教室后选了两位同学的问题,合起来在黑板上写出:现由徒弟先做1天,再两人合作,完成后共得到报酬450元.如果按各人完成的工作量计算报酬,那么该如何分配?试解答这一问题,并与同学们一起交流各自的做法.习题1.试将下题内容改为与我们日常生活、学习有关的问题,使所列得的方程相同或相似:食堂存煤若干吨,原来每天烧煤3吨,用去15吨后,改进设备,耗煤量改为原来的一半,结果多烧了10天,求原存煤量.2.试对以下情境提出问题,并讨论解答(必要时可对情境作适当补充):3.某班级组织去风景区春游,大部分同学先坐公共汽车前往,平均速度为24千米/时;4名负责后勤的同学晚半小时坐校车出发,速度为60千米/时,同时到达山脚下.到达后发现乘坐缆车上山费用较大,且不能游览沿途风景.于是商定:大部队步行上山,4名后勤改为先遣队,乘缆车上山,做好在山顶举行活动的准备.缆车速度是步行的3倍,步行同学中途在一个景点逗留了10分钟,到达山顶时比先遣队晚了半小时.阅读材料2=3?小红和小兵一起讨论方程2+xx的解法.=332+小红说,移项求解:+xx=22+33-xx=322-3-x1-=x=1小兵边听边想,只见他写下了如下的式子:+x=x3232+-x3=x2-32-xx=(3)1)1(2-2=3小红一看,怎么,2=3?!你能帮助他们解开这个谜吗?小结一、知识结构二、注意事项1.对一元一次方程的认识,要联系生活实际,在学习中体会:方程是反映现实世界中数量相等关系的一个有效的数学模型.2.解一元一次方程时,要注意合理地进行方程的变形,也要注意根据方程的特点灵活运用.3.意,将实际问题转化为数学问题,特别是寻求主要的数量相等关系,列出方程.求得方程的解后,要注意检验所得结果是否符合实际问题的要求.复习题A组1.解下列方程:(1);321132+=-x x (2);0)12(2)5(5=-+-x x (3)4x +3=2(x -1)+1; (4);3221y y -=+ (5);232)73(72x x -=+ (6).1823652=--+x x 2.(1)x 取何值时,代数式4x -5与3x -6的值互为相反数?(2)k 取何值时,代数式31+k 的值比213+k 的值小1? 3.课外活动中一些学生分组参加活动,原来每组8人,后来重新编组,每组12人,这样比原来减少2组.问这些学生共有多少人?4.一种药品现在售价每盒56.10元,比原来降低了15%,问原售价多少元?5.用一根直径12厘米的圆柱形铅柱,铸造10只直径12厘米的铅球,问应截取多长的铅柱(球的体积为π34R 3)? 6.一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1 171,求这个三位数.7.一年级三个班为希望小学捐赠图书.1班捐了152册,2班捐书数是三个班级的平均数,3班捐书数是年级总数的40%,三个班共捐了多少册?B 组8.(1);532)21(223x x =⎥⎦⎤⎢⎣⎡+- (2);5174732+-=--x x (3);535.244.2x x =--(4).22)141(34=---x x 9.已知x =32是方程x x x m 523)43(3=+-的解,求m 的值. 10.当k 取何值时,方程2(2x -3)=1-2x 和 8-k =2(x +1)的解相同?11.(1) 阅读以下例题:解方程 |3x |=1.解:① 当3x ≥0时,原方程可化为一元一次方程3x =1,它的解是 31=x ; ② 当3x <0时,原方程可化为一元一次方程-3x =1,它的解是 31-=x . 所以原方程的解是311=x ,312-=x . (2) 解下列方程:① |x -3|=2; ② |2x +1|=5.12.学校在植树活动中种了杨树和杉树两类树种,已知种植杨树的棵数比总数的一半多56棵,杉树的棵数比总数的三分之一少14棵.两类树各种了多少棵?13.一家商店将某型号彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投诉后,执法部门按已得非法收入的10倍处以每台2 700元的罚款.求每台彩电的原售价.C 组14.从甲地到乙地公共汽车原需行驶7个小时,开通高速公路后,路程近了30千米,而车速平均每小时增加了30千米,只需4个小时即可到达。
课题:第六章《一元一次方程》复习课本节课共1课时版本:华东师范大学出版社【教材分析】:本节一元一次方程的学习,是七年级下册的第六单元,是代数基础,是学好方程的关键。
通过数学故事引出一元一次方程,结合教材中的练习和学案进行巩固提高,让学生在自主学习与交流学习中,巩固对一元一次方程的认识,使学生初步形成学习方程的模式,对后面一元二次方程组、一元一次不等式(组)的研究学习做类比,所以这节课是学生学习方程与不等式的切入口,起着承上启下的作用,具有重要意义。
【学情分析】:由于本章从实际问题到方程,这对本班学生知识水平来说,理解概念和解法不算太难。
但从学生的年龄心理特点来说,要激发学生保持一定的学习热情有难度,毕竟是一节复习课,先从简单而又有新意的实际问题开始,从而逐渐深入探究,学生会更乐意去接受,去学习。
【教学目标】:1. 对本章所学知识及其间的关系有一个总体认识,深刻体会数学建模思想和解方程中的化归思想在解题中的作用;2.准确理解方程、方程的解、解方程和一元一次方程等概念,并能综合运用它们进行计算、推理、判断;3.熟练掌握等式性质及一元一次方程的解法。
4.通过数学家的故事激发学生学习兴趣,树立学习信心,渗透数学史,培养学生数学素养。
【教学重难点】:重点:等式性质及一元一次方程的解法及简单应用难点:一元一次方程的解法及简单应用【教法分析】:由于七年级学生的理解能力和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
同时培养学生独立思考问题,解决问题的能力。
同时教师在课堂上注重的是教会学生如何学习、如何发现问题和解决问题,因此,本节课,在教法上仍采用指导-自学-小组合作交流的方式,让学生在教师的引导下进行自主学习。
【学习要求】:1.阅读教材P2到P18回顾要点;(课前完成)2.课前在组内交流展示;3.组长根据组员完成的情况进行等级评定【教学过程】:一、创设情境:讲数学家欧拉的故事,创设问题,从而引出《一元一次方程》。
第六章 一元一次方程复习教学设计 教学目标:
1、理解并掌握一元一次方程概念、和各种不同形式的一元一次方程的合适解法。
2、经历不同形式的一元一次方程的合适解法选择、体会研究数学问题的方法。
教学重点:一元一次方程的解法和列方程解决实际问题 教学难点:应用方程的思想解决实际问题
教学过程:
一、梳理知识,形成系统
1、出示本章知识结构图
方程 方程的概念 等式的性质
一元一次方程
概念
解法 一元一次方程的应用
二、引导活动、探究知识
活动一:
1、一元一次方程概念
满足心下三个条件的方程即为一元一次方程 ①方程两边都是整式
②只含有一个未知数
③未知数的指数是一次
2、巩固练习
判断下列各式中哪些是一元一次方程?
(1) 5x=0 (2)1+3x (3)y ²=4+y
(4)x+y=5 (5)
X X 41= (6) 3m+2=1–m
若方程 3x
4m-7+5=0 是一元一次方程,则 m=
活动二:
1、解一元一次方程的一般步骤及注意事项
2、例题讲解(注意结合步骤)
140)2(8404=++x x 解:去分母得:40)2(84=++x x
去括号得:401684=++x x
移项 得:164084-=+x x
合并同类项得:2412=x
系数化为1得:2=x
3、巩固练习
看谁最快最准确
1. 1823652=--+x x
2. 41321--=+x x x
3. x x x 53212=-- 分层作业、夯实基础
1、巩固性练习
解方程: 52221+-=--y y y ())4(2
1312--=-x x x。
第四课时
教学目标:
理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简单应用题。
重点、难点
1、重点:弄清应用题题意列出方程。
2、难点:弄清应用题题意列出方程。
教学过程
一、复习
1、什么叫一元一次方程?
2、解一元一次方程的理论根据是什么?
二、新授。
例1、如图(课本第10页)天平的两个盘内分别盛有51克,45克食盐,问应该从盘A内拿出多少盐放到月盘内,才能两盘所盛的盐的质量相等?
先让学生思考,引导学生结合填表,体会解决实际问题,重在学会探索:已知量和未知量的关系,主要的等量关系,建立方程,转化为数学问题。
分析:设应从A盘内拿出盐x,可列表帮助分析。
等量关系;A盘现有盐=B盘现有盐
完成后,可让学生反思,检验所求出的解是否合理。
(盘A现有盐为5l-3=48,盘B现有盐为45+3=48。
)
培养学生自觉反思求解过程和自觉检验方程的解是否正确的良好习惯。
例2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?
引导学生弄清题意,疏理已知量和未知量:
1.题目中有哪些已知量? (1)参加搬砖的初一同学和其他年级同学共65名。
(2)初一同学每人搬6块,其他年级同学每人搬8块。
(3)初一和其他年级同学一共搬了400块。
2.求什么? 初一同学有多少人参加搬砖?
3.等量关系是什么?
初一同学搬砖的块数十其他年级同学的搬砖数=400
如果设初一同学有工人参加搬砖,那么由已知量(1)可得,其他年级同学有(65-x)人参加搬砖;再由已知量(2)和等量关系可列出方程
6x+8(65-x)=400 也可以按照教科书上的列表法分析
三、巩固练习
教科书第12页练习1、2、3
第l题:可引导学生画线图分析等量关系是:AC十CB=400
若设小刚在冲刺阶段花了x秒,即t1=x秒,则t2(65-x)秒,再
由等量关系就可列出方程: 6(65-x)+8x=400
四、小结
本节课我们学习了用一元一次方程解答实际问题,列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未知数的值,并检验是否合理。
最后写出答案。
五、作业
12页:4、5、6题。