【6套打包】武汉市中考第二次模拟考试数学试卷(1)
- 格式:docx
- 大小:549.50 KB
- 文档页数:43
【6套打包】南京市中考第二次模拟考试数学试卷中学数学二模模拟试卷一、单项选择题(本大题共12个小题,每小题3分,共36分)1.(3分)下列实数为无理数的是()A.B.C.D.02.(3分)2019年“五一”小长假有四天假期,长沙市共接待游客356万人次,称为新晋“网红城市”,356万人用科学记数法表示为()A.3.56×106人B.35.6×105人C.3.6×105人D.0.356×107人3.(3分)下列各式正确的是()A.(a2)3=a5B.2a2+2a3=2a5C.D.(x﹣1)(x+1)=x2﹣14.(3分)下列手机屏幕手势解锁图案中,是轴对称图形的是()A.B.C.D.5.(3分)在下列说法中不正确的是()A.两条对角线互相垂直的矩形是正方形B.两条对角线相等的菱形是正方形C.两条对角线垂直且相等的平行四边形是正方形D.两条对角线垂直且相等的四边形是正方形6.(3分)如图是一个由6个相同正方体组成的立体图形,它的主视图是()A.B.C.D.7.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.8.(3分)已知一次函数y=(3﹣a)x+3,如果y随自变量x的增大而增大,那么a的取值范围为()A.a<3B.a>3C.a<﹣3D.a>﹣3.9.(3分)将抛物线y=5x2先向右平移3个单位,再向上平移2个单位后,所得的抛物线的解析式为()A.y=5(x+3)2+2B.y=5(x+3)2﹣2C.y=5(x﹣3)2+2D.y=5(x﹣3)2﹣210.(3分)如图,已知CA、CB分别与⊙O相切于A、B两点,D是⊙O上的一点,连接AD、BD,若∠C=56°,则∠D等于()A.72°B.68°C.64°D.62°11.(3分)如图,考古队在A处测得古塔BC顶端C的仰角为45°,斜坡AD长10米,坡度i=3:4,BD长12米,请问古塔BC的高度为()米.A.25.5B.26C.28.5D.20.512.(3分)如图,在边长为1的正方形ABCD中,动点F、E分别以相同的速度从D、C两点同时出发向C、B运动(任何一个点到达即停止),BF、AE交于点P,连接CP,则线段CP的最小值为()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3分)分解因式:3a2﹣12=.14.(3分)如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O 为位似中心.位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E 的坐标是.15.(3分)在不透明的盒子中装有6个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同.任意摸出一个棋子,摸到黑色棋子的概率是,则白色棋子的个数是.16.(3分)小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,如图所示,则该扇形薄纸板的圆心角为.17.(3分)如图抛物线y=ax2+bx+c的对称轴是x=﹣1,与x轴的一个交点为(﹣5,0),则不等式ax2+bx+c>0的解集为.18.(3分)如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=27,则三角形ACD的面积等于.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分,解答时写出必要的文字说明、证明过程或演算步骤)19.(6分)计算:﹣2sin45°+||﹣()﹣2+()0.20.(6分)先化简,然后从﹣2≤a≤2的范围内选取一个你认为合适的整数作为a的值代入求值.21.(8分)某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整)(1)这次调查中,一共抽取了名学生;(2)补全条形统计图;(3)估计全校所有学生中有多少人乘坐公交车上学?(4)小明在上学的路上要经过2个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的,求小明在上学路上到第二个路口时第二次遇到红灯的概率,(请用“画树状图”或“列表”的方法写出分析过程)22.(8分)如图,在△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠DGB=60°,GC=4,求菱形DGCE的面积.23.(9分)某工厂,甲负责加工A型零件,乙负责加工B型零件.已知甲加工60个A型零件所用时间和乙加工80个B型零件所用时间相同,每天甲、乙两人共加工两种零件35个,设甲每天加工x个A型零件.(1)求甲、乙每天各加工多少个零件;(列分式方程解应用题)(2)根据市场预测估计,加工A型零件所获得的利润为m元/件(3≤m≤5),加工B型零件所获得的利润每件比A型少1元.求每天甲、乙加工两种零件所获得的总利润y(元)与m(元/件)的函数关系式,并求总利润y的最大值和最小值.24.(9分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H连接C.过弧BD上一点,过E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE (1)求证:EG是⊙O的切线;(2)求证:GF2=GD•GC;(3)延长AB交GE的延长线于点M.若tan G=,HC=4,求EM的值.25.(10分)如图1,在平面直角坐标系中,已知△ABC,∠ABC=90°,∠ACB=30°,顶点A在第二象限,B,C两点在x轴的负半轴上(点C在点B的右侧),BC=2,△ACD 与△ABC关于AC所在的直线对称.(1)当OC=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OC的长;(3)如图2,将第(2)题中的四边形ABCD向左平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交千点P,问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.26.(10分)在平面直角坐标系中,若点A、C同时在某函数的图象上(点A在点C的左侧),以AC为对角线作矩形ABCD,若矩形ABCD的各边都分别与坐标轴乘直,则称矩形ABCD 为该函数图象的“雅垂矩形”,如图1,矩形ABCD为直线l的“雅垂矩形”(1)若某正比例函数图象的“雅垂矩形”的两邻边比为1:4,则下列函数:①y=4x;②y=﹣4x;③y=2x;④y=x中,符合条件的是(只填写序号)(2)若二次函数y=x2﹣2x图象的“雅垂矩形”ABCD的顶点C的横坐标是顶点A横坐标的3倍,设顶点A的横坐标为m(0<m<0.5),矩形ABCD的周长为L,求L的最大值.(3)若二次函数y=x2﹣2nx的图象的“雅垂矩形”ABCD的顶点A、C的横坐标分别为﹣2,1,分别作点A、C关于此二次函数图象对称轴的对称点A、C,连接A'C',是否存在这样的一个n,使得线段A'C'将矩形ABCD两部分图形的面积比为2:7的两部分?若存在,请求出n的值;若不存在,请说明理由.参考答案与试题解析一、单项选择题(本大题共12个小题,每小题3分,共36分)1.(3分)下列实数为无理数的是()A.B.C.D.0【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=2是整数,是有理数,故选项不符合题意;B、是分数,是有理数,故选项不符合题意;C、是无理数,故选项符合题意;D、0是整数,是有理数,故选项不符合题意.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)2019年“五一”小长假有四天假期,长沙市共接待游客356万人次,称为新晋“网红城市”,356万人用科学记数法表示为()A.3.56×106人B.35.6×105人C.3.6×105人D.0.356×107人【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:356万=3.56×106.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列各式正确的是()A.(a2)3=a5B.2a2+2a3=2a5C.D.(x﹣1)(x+1)=x2﹣1【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a6,不符合题意;B、原式不能合并,不符合题意;C、原式=a3,不符合题意;D、原式=x2﹣1,符合题意,故选:D.【点评】此题考查了平方差公式,合并同类项,以及幂的乘方与积的乘方,熟练掌握公式及法则是解本题的关键.4.(3分)下列手机屏幕手势解锁图案中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.(3分)在下列说法中不正确的是()A.两条对角线互相垂直的矩形是正方形B.两条对角线相等的菱形是正方形C.两条对角线垂直且相等的平行四边形是正方形D.两条对角线垂直且相等的四边形是正方形【分析】根据既是矩形又是菱形的四边形是正方形进行判断.【解答】解:A、两条对角线互相垂直的矩形是正方形,故选项不符合题意;B、两条对角线相等的菱形是正方形,故选项不符合题意;C、两条对角线垂直且相等的平行四边形是正方形,故选项不符合题意;D、应是两条对角线垂直且相等的平行四边形是正方形,故选项符合题意.故选:D.【点评】本题考查了正方形的判定,通过这道题可以掌握正方形和矩形,菱形的关系.6.(3分)如图是一个由6个相同正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是3个小正方形,第二层右边2个小正方形,第三层右边2个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.7.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】求出不等式组的解集,表示在数轴上即可.【解答】解:不等式组整理得:,∴不等式组的解集为x<1,故选:A.【点评】此题考查了解一元一次方程组,熟练掌握运算法则是解本题的关键.8.(3分)已知一次函数y=(3﹣a)x+3,如果y随自变量x的增大而增大,那么a的取值范围为()A.a<3B.a>3C.a<﹣3D.a>﹣3.【分析】先根据一次函数的性质得出关于a的不等式,再解不等式即可求出a的取值范围.【解答】解:∵一次函数y=(3﹣a)x+3,函数值y随自变量x的增大而增大,∴3﹣a>0,解得a<3.故选:A.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数的增减性是解答此题的关键.9.(3分)将抛物线y=5x2先向右平移3个单位,再向上平移2个单位后,所得的抛物线的解析式为()A.y=5(x+3)2+2B.y=5(x+3)2﹣2C.y=5(x﹣3)2+2D.y=5(x﹣3)2﹣2【分析】根据向右平移横坐标加,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【解答】解:∵y=5x2先向右平移3个单位,再向上平移2个单位后的顶点坐标为(3,2),∴所得的抛物线的解析式为y=5(x﹣3)2+2.故选:C.【点评】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式求解更简便.10.(3分)如图,已知CA、CB分别与⊙O相切于A、B两点,D是⊙O上的一点,连接AD、BD,若∠C=56°,则∠D等于()A.72°B.68°C.64°D.62°【分析】连接OA,OB.根据圆周角定理和四边形内角和定理求解即可.【解答】解:连接OA,OB,∵CA、CB切⊙O于点A、B,∴∠CAO=∠CBO=90°,∵∠C=56°,∴∠AOB=360°﹣∠CAO﹣∠CBO﹣∠C=360°﹣90°﹣90°﹣56°=124°.由圆周角定理知,∠D=∠AOB=62°,故选:D.【点评】本题考查了切线的性质、圆周角定理、以及四边形的内角和为360度.熟练掌握:圆心与切点的连线垂直切线;过圆心垂直于切线的直线必过切点;过圆外一点引圆的两条切线,切线长相等等知识是解题的关键.11.(3分)如图,考古队在A处测得古塔BC顶端C的仰角为45°,斜坡AD长10米,坡度i=3:4,BD长12米,请问古塔BC的高度为()米.A.25.5B.26C.28.5D.20.5【分析】作AE⊥BC,AF⊥BD,由i=3:4,可设AF=3x,DF=4x,结合AD=10,利用勾股定理可求得x的值,解直角三角形即可得到结论.【解答】解:如图,过点A作AE⊥BC于点E,过点A作AF⊥BD,交BD延长线于点F,由i=3:4,可设AF=3x,DF=4x,∵AD=10,∴9x2+16x2=100,解得:x=2(负值舍去),则AF=BE=6,DF=8,∴AE=DF+BD=8+12=20,∵∠CAE=45°,∴CE=AE=20,则BC=CE+BE=20+6=26,故选:B.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题,解题的关键是能根据题意构造直角三角形并结合图形利用三角函数解直角三角形.12.(3分)如图,在边长为1的正方形ABCD中,动点F、E分别以相同的速度从D、C两点同时出发向C、B运动(任何一个点到达即停止),BF、AE交于点P,连接CP,则线段CP的最小值为()A.B.C.D.【分析】首先判断出△ABE≌△BCF,即可判断出∠BAE=∠CBF,再根据∠BAE+∠BEA =90°,可得∠CBF+∠BEA=90°,所以∠APB=90°;然后根据点P在运动中保持∠APB=90°,可得点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,最后在Rt△BCG中,根据勾股定理,求出CG的长度,再求出PG的长度,即可求出线段CP的最小值为多少.【解答】解:如图,∵动点F,E的速度相同,∴DF=CE,又∵CD=BC,∴CF=BE,在△ABE和△BCF中,∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠APB=90°,∵点P在运动中保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,在Rt△BCG中,CG===,∵PG=AB=,∴CP=CG﹣PG=﹣=,即线段CP的最小值为,故选:A.【点评】此题还考查了全等三角形的判定和性质的应用,正方形的性质和应用,直角三角形的性质和应用,以及勾股定理的应用,解答此题的关键是判断出什么情况下,CP的长度最小.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3分)分解因式:3a2﹣12=3(a+2)(a﹣2).【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3a2﹣12=3(a+2)(a﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后要继续利用平方差公式进行因式分解,分解因式要彻底,直到不能再分解为止.14.(3分)如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O 为位似中心.位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E 的坐标是(,).【分析】由题意可得OA:OD=2:3,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.【解答】解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为2:3,∴OA:OD=2:3,∵点A的坐标为(1,0),即OA=1,∴OD=,∵四边形ODEF是正方形,∴DE=OD=.∴E点的坐标为:(,).故答案是:(,).【点评】此题考查了位似变换的性质与正方形的性质,注意理解位似变换与相似比的定义是解此题的关键.15.(3分)在不透明的盒子中装有6个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同.任意摸出一个棋子,摸到黑色棋子的概率是,则白色棋子的个数是24.【分析】设盒子中白色棋子有x个,根据概率公式列出关于x的方程,解之可得.【解答】解:设盒子中白色棋子有x个,根据题意,得:=,解得:x=24,经检验:x=24是原分式方程的解,所以白色棋子有24个,故答案为:24.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,如图所示,则该扇形薄纸板的圆心角为216°.【分析】利用勾股定理计算出母线长=15,设该扇形薄纸板的圆心角为n°,利用弧长公式得到2π•9=,解得n=216.【解答】解:母线长==15,设该扇形薄纸板的圆心角为n°,所以2π•9=,解得n=216,即该扇形薄纸板的圆心角为216°.故答案为216°.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.(3分)如图抛物线y=ax2+bx+c的对称轴是x=﹣1,与x轴的一个交点为(﹣5,0),则不等式ax2+bx+c>0的解集为﹣5<x<3.【分析】先根据抛物线的对称性得到A点坐标(3,0),由y=ax2+bx+c>0得函数值为正数,即抛物线在x轴上方,然后找出对应的自变量的取值范围即可得到不等式ax2+bx+c >0的解集.【解答】解:根据图示知,抛物线y=ax2+bx+c图象的对称轴是x=﹣1,与x轴的一个交点坐标为(﹣5,0),根据抛物线的对称性知,抛物线y=ax2+bx+c图象与x轴的两个交点关于直线x=﹣1对称,即抛物线y=ax2+bx+c图象与x轴的另一个交点与(﹣5,0)关于直线x=﹣1对称,∴另一个交点的坐标为(3,0),∵不等式ax2+bx+c>0,即y=ax2+bx+c>0,∴抛物线y=ax2+bx+c的图形在x轴上方,∴不等式ax2+bx+c>0的解集是﹣5<x<3.故答案为:﹣5<x<3.【点评】此题主要考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,本题锻炼了学生数形结合的思想方法.18.(3分)如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=27,则三角形ACD的面积等于45.【分析】先证明△ADF∽△CEF,可知=,然后根据相似三角形的性质可知=()2,再根据,从而可求出三角形ACD的面积.【解答】解:在▱ABCD中,AD∥CE,AD=BC∴△ADF∽△CEF,∴,∵CE=2EB,∴CE=BC=AD,∴=,∴=()2=,∴S△CEF=12,∵,∴S△CFD=18,∴S△ACD=S△AFD+S△CDF=27+18=45,故答案为:45【点评】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分,解答时写出必要的文字说明、证明过程或演算步骤)19.(6分)计算:﹣2sin45°+||﹣()﹣2+()0.【分析】原式利用二次根式性质,特殊角的三角函数值,绝对值的代数意义,以及零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=2﹣2×+2﹣﹣4+1=﹣1.【点评】此题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.20.(6分)先化简,然后从﹣2≤a≤2的范围内选取一个你认为合适的整数作为a的值代入求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后从﹣2≤a≤2的范围内选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【解答】解:===,当a=1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.(8分)某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整)(1)这次调查中,一共抽取了80名学生;(2)补全条形统计图;(3)估计全校所有学生中有多少人乘坐公交车上学?(4)小明在上学的路上要经过2个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的,求小明在上学路上到第二个路口时第二次遇到红灯的概率,(请用“画树状图”或“列表”的方法写出分析过程)【分析】(1)由给的图象解题,根据自行车所占比例为30%,而频数分布直方图知一共有24人骑自行车上学,从而求出总人数;(2)由扇形统计图知:步行占20%,而由(1)总人数已知,从而求出步行人数,补全频数分布直方图;(3)自行车、步行、公交车、私家车、其他交通工具所占比例之和为100%,再由直方图具体人数来相减求解.(4)画树状图列出所有等可能结果,从中找到到第二个路口时第二次遇到红灯的结果数,根据概率公式计算可得.【解答】解:(1)被抽到的学生中,骑自行车上学的学生有24人,占整个被抽到学生总数的30%,∴抽取学生的总数为24÷30%=80(人).故答案为:80;(2)被抽到的学生中,步行的人数为80×20%=16人,直方图:(3)被抽到的学生中,乘公交车的人数为80﹣(24+16+10+4)=26,∴全校所有学生中乘坐公交车上学的人数约为×2400=780人.(4)画树状图如下:由树状图知,共有9种等可能结果,其中到第二个路口时第二次遇到红灯的结果数为1,所以到第二个路口时第二次遇到红灯的概率为.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(8分)如图,在△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠DGB=60°,GC=4,求菱形DGCE的面积.【分析】(1)由角平分线的性质和中垂线性质可得∠EDC=∠DCG=∠ACD=∠GDC,可得CE∥DG,DE∥GC,DE=EC,可证四边形DGCE是菱形;(2)过点D作DH⊥BC,由锐角三角函数可求DH的长,即可求菱形DGCE的面积.【解答】证明:(1)∵CD平分∠ACB,∴∠ACD=∠DCG,∵EG垂直平分CD∴DG=CG,DE=EC,∴∠DCG=∠GDC,∠ACD=∠EDC∴∠EDC=∠DCG=∠ACD=∠GDC∴CE∥DG,DE∥GC∴四边形DECG是平行四边形,且DE=EC∴四边形DGCE是菱形(2)如图,过点D作DH⊥BC,∵四边形DGCE是菱形,∴DE=DG=GC=4,DG∥EC在Rt△DGH中,∠DGB=60°∴DH=DG cos30°=2∴菱形DGCE的面积=GC×DH=8【点评】本题考查了菱形的判定和性质,线段垂直平分线的性质,熟练掌握菱形的判定是关键.23.(9分)某工厂,甲负责加工A型零件,乙负责加工B型零件.已知甲加工60个A型零件所用时间和乙加工80个B型零件所用时间相同,每天甲、乙两人共加工两种零件35个,设甲每天加工x个A型零件.(1)求甲、乙每天各加工多少个零件;(列分式方程解应用题)(2)根据市场预测估计,加工A型零件所获得的利润为m元/件(3≤m≤5),加工B型零件所获得的利润每件比A型少1元.求每天甲、乙加工两种零件所获得的总利润y(元)与m(元/件)的函数关系式,并求总利润y的最大值和最小值.【分析】(1)根据题意,易得,解可得x的值,进而可得答案;(2)根据题意,可得关系式y=15m+20(m﹣1),化简可得y=35m﹣20,根据一次函数的性质分析可得答案.【解答】解:(1)根据题意,每天甲、乙两人共加工35个零件,设甲每天加工x个,则乙每天加工35﹣x;根据题意,易得,解得x=15,经检验,x=15是原方程的解,且符合题意.35﹣15=20,答:甲每天加工15个,乙每天加工20个;(2)y=15m+20(m﹣1),即y=35m﹣20,∵在y=35m﹣20中,y是m的一次函数,k=35>0,y随m的增大而增大,又由已知得:3≤m≤5,∴当m=5时,y最大值=155,当m=3时,y最小值=85.【点评】此题主要考查了分式方程的应用,能根据题意,列出关系式,进而结合一次函数的性质得到结论或求解方程是解题关键.24.(9分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H连接C.过弧BD上一点,过E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE (1)求证:EG是⊙O的切线;(2)求证:GF2=GD•GC;(3)延长AB交GE的延长线于点M.若tan G=,HC=4,求EM的值.【分析】(1)连接OE,证明∠GEO=90°,即GE⊥OE,于是EG是⊙O的切线;(2)连接DE,易得△GDE∽△GEC,得到GE2=GC•GD,又GF=GE,所以GF2=GC •GD;(3)如图,连接OC.设⊙O的半径为r.在Rt△AHC中,,,在Rt△HOC中,由勾股定理得,由△AHC∽△MEO,所以.【解答】解:(1)证明:如图,连接OE,∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠F AH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线;(2)连接DE,易得△GDE∽△GEC,∴,∴GE2=GC•GD,又∵GF=GE,∴GF2=GC•GD;(3)如图,连接OC.设⊙O的半径为r.在Rt△AHC中,,∵,∴,在Rt△HOC中,∵OC=r,,,∴,∴,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴,∴,∴.【点评】本题考查了圆,熟练运用圆的切线定理、相似三角形的性质以及勾股定理是解题的关键.25.(10分)如图1,在平面直角坐标系中,已知△ABC,∠ABC=90°,∠ACB=30°,顶点A在第二象限,B,C两点在x轴的负半轴上(点C在点B的右侧),BC=2,△ACD 与△ABC关于AC所在的直线对称.(1)当OC=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OC的长;(3)如图2,将第(2)题中的四边形ABCD向左平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交千点P,问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.【分析】(1)△ADC与△ABC关于AC所在的直线对称,则CD=BC=2,∠ACD=∠ACB =30°,过点D作DE⊥BC于点E,∠DCE=60°,则,即可求解;(2)求出A,D坐标,两个点在同一反比例函数上,则,即可求解;(3)分P为直角顶点、D为直角顶点,两种情况分别求解即可.【解答】解:(1)∵△ADC与△ABC关于AC所在的直线对称,∴CD=BC=2,∠ACD=∠ACB=30°,过点D作DE⊥BC于点E,∵∠DCE=60°,∴,∵OC=2,∴OE=3,∴;(2)设OC=m,则OE=m+1,OB=m+2在Rt△ABC中,∠ACB=30°,BC=2,∴,∴,∵A,D在同一反比例函数上,∴,解得:m=1,∴OC=1;(3)由(2)得:∴,∵四边形A1B1C1D1由四边形ABCD平移得到,∴,∵D1在反比例函数上,∴同理:,,∴,∴,∵x P=x A=﹣3,P在反比例函数上,∴,①若P为直角顶点,则A1P⊥DP,过点P作l1⊥y轴,过点A1作A1F⊥l1,过点D作DG⊥l1,则△A1PF~△PDG,,解得:;②若D为直角顶点,则A1D⊥DP,过点D作l2⊥x轴,过点A1作A1H⊥l2,则△A1DH~△DPG,,,解得:k=0(舍),综上:存在.【点评】本题考查的是反比例函数综合运用,涉及到一次函数、三角形相似等知识点,此类题目的关键是,通过设线段长度,确定图象上点的坐标,进而求解.26.(10分)在平面直角坐标系中,若点A、C同时在某函数的图象上(点A在点C的左侧),以AC为对角线作矩形ABCD,若矩形ABCD的各边都分别与坐标轴乘直,则称矩形ABCD 为该函数图象的“雅垂矩形”,如图1,矩形ABCD为直线l的“雅垂矩形”(1)若某正比例函数图象的“雅垂矩形”的两邻边比为1:4,则下列函数:①y=4x;②y=﹣4x;③y=2x;④y=x中,符合条件的是①②④(只填写序号)(2)若二次函数y=x2﹣2x图象的“雅垂矩形”ABCD的顶点C的横坐标是顶点A横坐标的3倍,设顶点A的横坐标为m(0<m<0.5),矩形ABCD的周长为L,求L的最大值.(3)若二次函数y=x2﹣2nx的图象的“雅垂矩形”ABCD的顶点A、C的横坐标分别为﹣2,1,分别作点A、C关于此二次函数图象对称轴的对称点A、C,连接A'C',是否存在这样的一个n,使得线段A'C'将矩形ABCD两部分图形的面积比为2:7的两部分?若存在,请求出n的值;若不存在,请说明理由.【分析】(1)由“雅垂矩形”的两邻边比为1:4可以得出正比例函数的系数k的值,从而得出答案;(2)由题意知A(m,m2﹣2m),C(3m,9m2﹣6m).由0<m<0.5知CD=3m﹣m=2m,BC=m2﹣2m﹣(9m2﹣6m)=4m2﹣8m,从而得L=2(CD+BC)=﹣16m2﹣12m=﹣16(m﹣0.375)2+2.25,据此可得答案;。
2024年湖北省武汉市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.【答案】C【分析】本题考查了轴对称图形的识别,根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A,B,D选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,C选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:C.2.小美和小好同学做“石头、剪刀、布”的游戏,两人同时出相同的手势,这个事件是()A.随机事件B.不可能事件C.必然事件D.确定性事件【答案】A【分析】本题考查的是必然事件、不可能事件、随机事件的概念.根据事件发生的可能性大小判断即可.【详解】解:两人同时出相同的手势,,这个事件是随机事件,故选:A.3.如图是由两个宽度相同的长方体组成的几何体,它的主视图是()A.B.C.D.【答案】B【分析】本题考查了三视图的知识,熟知主视图是从物体的正面看到的视图是解题的关键.按照主视图的定义逐项判断即可.【详解】解:从正面看该几何体,下面是一个大长方形,上面叠着一个小长方形,故选:B .4.国家统计局2024年4月16日发布数据,今年第一季度国内生产总值接近300000亿元,同比增长5.3%,国家高质量发展取得新成效.将数据300000用科学记数法表示是()A .50.310⨯B .60.310⨯C .5310⨯D .6310⨯5.下列计算正确的是()A .236a a a ⋅=B .()1432a a =C .()2236a a =D .()2211a a +=+【答案】B【分析】本题考查了完全平方公式,积的乘方,幂的乘方,同底数幂的乘法等,根据同底数幂的乘法,积的乘方,幂的乘方,完全平方公式运算法则分别判断即可.【详解】解:A.235a a a ⋅=,故该选项不正确,不符合题意;B.()4312a a =,故该选项正确,符合题意;C.()2239a a =,故该选项不正确,不符合题意;D.()22121a a a +=++,故该选项不正确,不符合题意;故选:B .6.如图,一个圆柱体水槽底部叠放两个底面半径不等的实心圆柱体,向水槽匀速注水.下列图象能大致反映水槽中水的深度h 与注水时间t 的函数关系的是()A.B.C.D.【答案】D【分析】本题考查了函数图象;根据题意,分3段分析,即可求解.【详解】解:下层圆柱底面半径大,水面上升块,上层圆柱底面半径稍小,水面上升稍慢,再往上则水面上升更慢,所以对应图象是第一段比较陡,第二段比第一段缓,第三段比第二段缓.故选:D.∠;②以点A为圆心,1个单位长为半7.小美同学按如下步骤作四边形ABCD:①画MAN径画弧,分别交AM,AN于点B,D;③分别以点B,D为圆心,1个单位长为半径画弧,∠的大小是()两弧交于点C;④连接BC,CD,BD.若44∠=︒,则CBDAA.64︒B.66︒C.68︒D.70︒【答案】C【分析】本题考查了基本作图,菱形的判定和性质,根据作图可得四边形ABCD是菱形,进而根据菱形的性质,即可求解.===【详解】解:作图可得AB AD BC DC8.经过某十字路口的汽车,可能直行,也可能向左转或向右转,这三种可能性大小相同.若两辆汽车经过这个十字路口,则至少一辆车向右转的概率是()A .19B .13C .49D .59共有9种情况,至少一辆车向右转有5种,∴至少一辆车向右转的概率是59,故选:D .9.如图,四边形ABCD 内接于O ,60ABC ∠=︒,45BAC CAD ∠=∠=︒,2AB AD +=,则O 的半径是()A B C D .2∵四边形ABCD 内接于 ∴ADC ABC ABC ∠+∠=∠∴ADC CBE∠=∠∵45BAC CAD ∠=∠=︒10.如图,小好同学用计算机软件绘制函数32331y x x x =-+-的图象,发现它关于点()1,0中心对称.若点()110.1,A y ,()220.2,A y ,()330.3,A y ,……,()19191.9,A y ,()20202,A y 都在函数图象上,这20个点的横坐标从0.1开始依次增加0.1,则1231920y y y y y +++++ 的值是()A .1-B .0.729-C .0D .1∵()0,1-关于点()1,0中心对称的点为()2,1,即当2x =时,201y =,∴12319201020011y y y y y y y +++++=+=+= ,故选:D .二、填空题11.中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作3+℃,则零下2℃记作℃.【答案】2-【分析】本题考查了正数和负数的意义,在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:零上3℃记作3+℃,则零下2℃记作2-℃.,故答案为:2-.12.某反比例函数k y x =具有下列性质:当0x >时,y 随x 的增大而减小,写出一个满足条件的k 的值是.【答案】1(答案不唯一)【分析】本题考查的是反比例函数的性质,反比例函数的图象是双曲线,当0k >,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小,当0k <,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.直接根据反比例函数的性质写出符合条件的的值即可.【详解】解:∵当0x >时,y 随x 的增大而减小,∴0k >故答案为:1(答案不唯一).13.分式方程131x x x x +=--的解是.【答案】3x =-【分析】本题主要考查了解分式方程,熟练掌握解分式方程的方法和步骤是解题关键.首先等号两边同时乘以()()31x x --完成去分母,再按照去括号,移项、合并同类项的步骤求解,检验即可获得答案.14.黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉.在一次综合实践活动中,某数学小组用无人机测量黄鹤楼AB 的高度,具体过程如下:如图,将无人机垂直上升至距水平地面102m 的C 处,测得黄鹤楼顶端A 的俯角为45︒,底端B 的俯角为63︒,则测得黄鹤楼的高度是m .(参考数据:tan632︒≈)【答案】51【分析】本题主要考查解直角三角形的应用,理解题意,作出辅助线是解题关键.延长BA 交距水平地面102m 的水平线于点D ,根据tan632︒≈,求出51m DC AD =≈,即可求解.【详解】解:延长BA 交距水平地面102m 的水平线于点D ,如图,由题可知,102m BD =,设AD x =,∵45DCA ∠=︒∴DC AD x==15.如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形和中间的小正方形MNPQ 拼成的一个大正方形ABCD .直线MP 交正方形ABCD 的两边于点E,F ,记正方形ABCD 的面积为1S ,正方形MNPQ 的面积为2S .若(1)BE kAE k =>,则用含k 的式子表示12S S 的值是. 45PMN ∴∠=︒45EMG PMN ∴∠=∠=1EG MG ∴==在AEG △和ABN 中,16.抛物线2y ax bx c =++(a ,b ,c 是常数,0a <)经过()1,1-,(),1m 两点,且01m <<.下列四个结论:①0b >;②若01x <<,则()()2111a x b x c -+-+>;③若1a =-,则关于x 的一元二次方程22ax bx c ++=无实数解;④点()11,A x y ,()22,B x y 在抛物线上,若1212x x +>-,12x x >,总有12y y <,则102m <≤.其中正确的是(填写序号).三、解答题17.求不等式组3121x x x +>⎧⎨-≤⎩①②的整数解.【答案】整数解为:1,0,1-【分析】本题考查了解一元一次不等式组,分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而求得整数解.【详解】解:3121x x x +>⎧⎨-≤⎩①②解不等式①得:2x >-解不等式②得:1x ≤∴不等式组的解集为:21x -<≤,∴整数解为:1,0,1-18.如图,在ABCD Y 中,点E ,F 分别在边BC ,AD 上,AF CE =.(1)求证:C ABE DF ≌△△;(2)连接EF .请添加一个与线段相关的条件,使四边形ABEF 是平行四边形.(不需要说明理由)【答案】(1)见解析(2)添加AF BE =(答案不唯一)【分析】本题考查了平行四边形的性质与判定,全等三角形的判定;(1)根据平行四边形的性质得出AB CD =,B D ∠=∠,结合已知条件可得DF BE =,即可证明C ABE DF ≌△△;(2)添加AF BE =,依据一组对边平行且相等的四边形是平行四边形,即可求解.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB CD =,AD BC =,B D ∠=∠,∵AF CE =,∴AD AF BC CE -=-即DF BE =,在ABE 与CDF 中,AB CD B D BE DF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE CDF ≌;(2)添加AF BE =(答案不唯一)如图所示,连接EF .∵四边形ABCD 是平行四边形,∴AD BC ∥,即AF BE ∥,当AF BE=时,四边形ABEF是平行四边形.19.为加强体育锻炼,增强学生体质,某校在“阳光体育一小时”活动中组织九年级学生定点投篮技能测试,每人投篮4次,投中一次计1分.随机抽取m名学生的成绩作为样本,将收集的数据整理并绘制成如下的统计图表.测试成绩频数分布表成绩/分频数4123a2151b06根据以上信息,解答下列问题:(1)直接写出m,n的值和样本的众数;(2)若该校九年级有900名学生参加测试,估计得分超过2分的学生人数.20.如图,ABC 为等腰三角形,O 是底边BC 的中点,腰AC 与半圆O 相切于点D ,底边BC 与半圆O 交于E ,F 两点.(1)求证:AB 与半圆O 相切;(2)连接OA .若4CD =,2CF =,求sin OAC ∠的值.AO BC ∴⊥,AO 平分BAC∠AC 与半圆O 相切于点DOD AC∴⊥由ON AB⊥ ON OD∴=21.如图是由小正方形组成的34⨯网格,每个小正方形的顶点叫做格点.ABC 三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD 交BC 于点D ,使AD 平分ABC 的面积;∠=∠;(2)在(1)的基础上,在射线AD上画点E,使ECB ACB(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90︒到点C,再画射线AF交BC于点G;(4)在(3)的基础上,将线段AB绕点G旋转180︒,画对应线段MN(点A与点M对应,点B与点N对应).(2)如图,作OP(4)如图,作OP MN 即为所求作.22.16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线2y ax x =+和直线12y x b =-+.其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离.(2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .23.问题背景:如图(1),在矩形ABCD 中,点E ,F 分别是AB ,BC 的中点,连接BD ,EF ,求证:BCD FBE ∽△△.问题探究:如图(2),在四边形ABCD 中,AD BC ∥,90BCD ∠=︒,点E 是AB 的中点,点F 在边BC 上,2AD CF =,EF 与BD 交于点G ,求证:BG FG =.问题拓展:如图(3),在“问题探究”的条件下,连接AG ,AD CD =,AG FG =,直接写出EG GF的值.∵E 是AB 的中点,H 是∴12EH AD =,EH AD ∥又∵2AD CF =,∴EH CF =,∵2AD CF CD ==,∴12AM MD FC AD ===设2AD a =,则MF CD =【点睛】本题考查了矩形的性质,相似三角形的性质与判定,平行四边形的性质与判定,直角三角形中斜边上的中线等于斜边的一半,全等三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.24.抛物线215222y x x =+-交x 轴于A ,B 两点(A 在B 的右边),交y 轴于点C .(1)直接写出点A ,B ,C 的坐标;(2)如图(1),连接AC ,BC ,过第三象限的抛物线上的点P 作直线PQ AC ∥,交y 轴于点Q .若BC 平分线段PQ ,求点P 的坐标;(3)如图(2),点D 与原点O 关于点C 对称,过原点的直线EF 交抛物线于E ,F 两点(点E 在x 轴下方),线段DE 交抛物线于另一点G ,连接FG .若90EGF ∠=︒,求直线DE 的解析式.∴90T S EGF ∠=∠=∠=∴90EGT FGS ∠=︒-∠=∴ETG GSF∽∴ET TG GS FS=即ET FS GS TG⋅=⋅。
2019-2020学年数学中考模拟试卷一、选择题1.如图,点A 在反比例函数ky x=(x <0)的图象上,过点A 的直线与x 轴、y 轴分别交于点B 、C ,且AB BC =,若BOC ∆的面积为1.5,则k 的值为( )A .3-B . 4.5-C .6D .6-2.如图,AB 是☉O 的直径,弦CD ⊥AB 于点E,点P 在☉O 上,PB 与CD 交于点F,∠PBC=∠C.若∠PBC=22.5°,☉O 的半径R=2,则劣弧AC 的长度为 ( )A.πB.C.2πD.π3.已知关于的一元二次方程有两个不相等的实数根,则的取值范围为( )A.B.C.D.4.一个几何体的三视图如图所示,则这个几何体是( )A.B. C. D.5.如图,与的平分线相交于点P ,,PB 与CE 交于点H ,交BC 于F ,交AB 于G ,下列结论:①;②;③ BP 垂直平分CE ;④,其中正确的判断有( )A.①②B.③④C.①③④D.①②③④6.如图,为了保证道路交通安全,某段高速公路在A 处设立观测点,与高速公路的距离AC 为20米.现测得一辆小轿车从B 处行驶到C 处所用的时间为4秒.若∠BAC =α,则此车的速度为( )A.5tanα米/秒B.80tanα米/秒C.米/秒D.米/秒7.如图,双曲线y =6x(x >0)经过线段AB 的中点M ,则△AOB 的面积为( )A .18B .24C .6D .128.某中学为了了解同学们平均每月阅读课外书籍的情况,在某年级随机抽查了20名同学,结果如下表所示:平均每月阅读本数 4 5 6 7 8 人数26543A .5,5B .6,6C .5,6D .6,59.已知命题A :“若a 为实数,则2a a =”.在下列选项中,可以作为“命题A 是假命题”的反例的是( ) A .a =1 B .a =0C .a =﹣1﹣k (k 为实数)D .a =﹣1﹣k 2(k 为实数)10.下列计算中,正确的是( ) A .4=2±B .2323+=C .a 2•a 4=a 8D .(a 3)2=a 611.如图,已知圆锥的母线长为6,圆锥的高与母线所夹的角为θ,且sin θ=13,则该圆锥的侧面积是( )A .242πB .24πC .16πD .12π12.在平面直角坐标系内,若点P (3﹣m ,m ﹣1)在第二象限,那么m 的取值范围是( )A .m >1B .m >3C .m <1D .1<m <3二、填空题13.已知二元一次方程组5351x y x y -=⎧⎨+=⎩的解是方程kx -8y -2k +4=0的解,则k 的值为____.14.命题:“若a=b ,则a 2=b 2”,写出它的逆命题:______.15.若一次函数的图象与直线3y x =-平行,且经过点()1,2,则一次函数的表达式为___________. 16.边长为a 、b 的长方形,它的周长为14,面积为10,则a 2b+ab 2的值为_____.17.若a+b =3,a 2+b 2=7,则ab =_____. 18.分解因式:3x 2﹣6x ﹣9=_____. 三、解答题19.先化简代数式:222111a a a a a +⎛⎫-÷⎪---⎝⎭,再代入一个你喜欢的数求值. 20.某中学欲开设A 实心球、B 立定跳远、C 跑步、D 足球四种体育活动,为了了解学生们对这些项目的选择意向,随机抽取了部分学生,并将调查结果绘制成图1、图2,请结合图中的信,解答下列问题:(1)本次共调查了 名学生; (2)将条形统计图圉补充完整; (3)求扇形C 的圆心角的度数;(4)随机抽取了3名喜欢“跑步”的学生,其中有1名男生,2名女生,现从这3名学生中选取2名,请用画辩状图或列表的方法,求出刚好抽到一名男生一名女生的概率.21.某公司推出一款产品,经市场调查发现,该产品的日销售量y (个)与销售单价x (元)之间满足一次函数关系,关于销售单价,日销售量,日销售利润的几组对应值如表: 销售单价x (元) 85 95 105 115 日销售量y (个) 175 125 75 25 日销售利润w (元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价)) (1)求y 与x 的函数关系式;(2)当销售单价x 为多少元时,日销售利润w 最大?最大利润是多少元?(3)当销售单价x 为多少元时,日销售利润w 在1500元以上?(请直接写出x 的范围) 22.初三某班同学小代想根据学习函数的经验,探究函数32y x =-的图象和性质,下面是他的探究过程,请补充完整: (1)函数32y x =-的自变量的取值范围是 ; (2)下表是函数y 与自变量x 的几组对应值:-3 -2 -1 0 1 3 4 5 6 7 0.6m11.53n1.510.750.6m= ,n= ;(3)在平面直角坐标系xoy 中,补全此函数的图象:(4)根据函数图象,直接写出不等式322x x >--的解集 ; (5)若函数32y x =-与函数y =x +k 图象有三个不同的交点,则k 的取值范围是 . 23.如图,在等腰△ABC 中,AB =AC ,以AB 为直径的圆O 交BC 于点D ,过点C 作CF ∥AB ,与⊙O 的切线BE 交于点E ,连接DE . (1)求证:BD =CD ; (2)求证:△CAB ∽△CDE ;(3)设△ABC 的面积为S 1,△CDE 的面积为S 2,直径AB 的长为x ,若∠ABC =30°,S 1、S 2 满足S 1+S 2=283,试求x 的值.24.已知等腰ABC ∆中,AB AC =,EDF ∠的顶点D 在线段BC 上,不与,B C 重合. (1)如图①,若,DE AC DF AB ∥∥且点D 在BC 中点时,四边形AEDF 是什么四边形并证明?(2)将EDF ∠绕点D 旋转至如图②所示位置,若,,B C EDF BD m CD n α∠=∠=∠===,设BDE ∆的面积为1S ;CDF ∆的面积为2S ,求12S S ⋅的值(用含有,,m n α的代数式表示).图① 图②25.已知,如图,在△ABC 和△A'B'C'中,AD ,A'D'分别是△ABC 和△A'B'C'的中线,AB =A'B',BC =B'C',AD =A'D'.求证:△ABC ≌△A'B'C'.【参考答案】*** 一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D B C C D A D D D D DB13.4 14.如果,那么a=b .15.35y x =-+ 16.70 17.118.3(x ﹣3)(x+1). 三、解答题 19.13【解析】 【分析】先根据分式的运算法则进行化简,再代入使分式有意义的值计算. 【详解】 解:原式2211(1)(1)a a a a a a ⎡⎤+-=-⋅⎢⎥-+-⎣⎦2(1)21(1)(1)a a a a a a +---=⋅+-11a =+. 使原分式有意义的a 值可取2, 当2a =时,原式11213==+. 【点睛】考核知识点:分式的化简求值.掌握分式的运算法则是关键. 20.(1)150(2)60(3)144°(4)23【解析】 【分析】(1)用B项目的人数除以它所占的百分比可得到调查的总人数;(2)先计算出C项目人数,然后补全条件统计图;(3)用360°乘以C项目所占的百分比得到扇形C的圆心角的度数;(4)画树状图展示所有6种等可能的结果数,找出抽到一名男生一名女生的结果数,然后根据概率公式求解.【详解】解:(1)调查的总人数为45÷30%=150(人);故答案为150;(2)C项目的人数为150﹣15﹣45﹣30=60(人),条形统计图圉补充为:(3)扇形C的圆心角的度数=360°×(1﹣20%﹣30%﹣10%)=144°;(4)画树状图为:共有6种等可能的结果数,其中抽到一名男生一名女生的结果数为4,所以抽到一名男生一名女生的概率=42 63 =.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21.(1)y=﹣5x+600;(2)当销售单价x为100元时,日销售利润w最大,最大利润是2000元;(3)当销售单价x在90元和110元之间时,日销售利润w在1500元以上.【解析】【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意列不等式即可得到结论.【详解】解:(1)设y关于x的函数解析式为y=kx+b,8517595125k bk b+=⎧⎨+=⎩,得k5b600=-⎧⎨=⎩,即y关于x的函数解析式是y=﹣5x+600,(2)设成本价为a元/个当x=85时,875=175⨯(85-a),得a=80,根据题意得,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x =100时,w 取得最大值,此时w =2000,答:当销售单价x 为100元时,日销售利润w 最大,最大利润是2000元; (3)根据题意得,﹣5(x ﹣100)2+2000>1500, 解得90<x <110,答:当销售单价x 在90元和110元之间时,日销售利润w 在1500元以上. 【点睛】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.22.(1)x 2≠;(2)m=0.75,n= 3;(3)在平面直角坐标系xoy 中,补全此函数的图象见解析;(4)2223x x 或<<<+;(5)232k >-. 【解析】 【分析】(1)根据分母不能为0确定自变量的取值范围; (2)把x=-2,3分别代入32y x =-可求得m,n 的值; (3)把两组点分别顺次连接可得图象; (4)作出函数y=x-2的图象,得直线与32y x =-的交点的横坐标为x=2+3.根据图象可得到不等式的解集;(5)直线y=x+k 与右边曲线总有一个交点,故可求当直线与左边曲线有一个交点时k 的值,将直线向上平移就会满足题中有三个交点的条件,从而得到k 的取值范围. 【详解】(1)根据分母不能为0得│x -2│≠0,解得: x 2≠ ; (2)将x=-2代入32y x =-,得y=0.75,即m=0.75; 将x=3代入32y x =-,得y=3,即n=3; 故答案为:m= 0.75 ,n= 3 ; (3)如图所示:(4)如图,作出函数y=x-2的图象,这条直线与32y x =-的交点的横坐标为3观察图象可得,不等式322x x >--的解集为2x <或223x <<+. (5)由(4)的结论可知,直线y=x+k 与32y x =-的图象的右边的曲线总有一个交点,故考虑当x <2时,直线y=x+k 与32y x =-的图象的左边的曲线的交点情况. ∵x <2,∴32y x =-,列方程32x-=x+k , 整理得2(2)(32)0x k x k +-+-=,当240b ac =-=V 时,方程有唯一解,直线与左边曲线有一个交点,直线继续往上平移,会有两个交点. ∴()2(2)4320k k ---=解得12232,232k k ==- (由图像知2k 不合题意舍去)所以当232k >-时,直线y=x+k 与32y x =-共有三个不同的交点.故答案为:32k >. 【点睛】本题主要考查函数与方程的结合,根的判别式的应用,根据定义作出函数的图象,利用数形结合思想是解决本题的关键.23.(1)详见解析;(2)详见解析;(3)x =8.. 【解析】 【分析】(1)因为AB =AC ,欲证明BD =DC ,只要证明AD ⊥BC 即可. (2)可以根据两角对应相等的两个三角形相似进行证明. (3)分别用x 表示S 1、S 2,列出方程即可解决问题. 【详解】(1)证明:∵AB 是直径, ∴∠ADB =90°, ∴AD ⊥BC , ∵AB =AC , ∴BD =CD . (2)∵AB ∥CE , ∴∠2=∠1, ∵AB =AC , ∴∠1=∠3,∵BE 是⊙O 切线, ∴∠ABE =90°, ∵AB ∥CE ,∴∠BEC+∠ABE =90°, ∴∠BEC =90°, ∵BD =DC , ∴DE =DB =DC , ∴∠2=∠4,∴∠3=∠2,∠1=∠4, ∴△CAB ∽△CDE . (3)∵S 1=21133x x x 224⋅⋅=. ∵△CAB ∽△CDE ,∴2124()33S S x ==, ∴S 2=23316x , 由题意:22333283416x x +=, ∴x =±8, ∵x >0, ∴x =8.【点睛】本题考查圆的综合题、等腰三角形的判定和性质、相似三角形的判定和性质、平行线的性质等知识,解题的关键是灵活运用这些知识解决问题,属于基础题目,难度不大,是中考常考题型. 24.(1)菱形;(2)2221sin 4n m α. 【解析】 【分析】(1)根据菱形的判定方法进行证明即可;(2)首先证明△EBD ∽△DCF ,设BE=x ,CF=y ,可得xy=mn ,由S 1=12•mx•sinα,S 2=12nysinα,可得S 1•S 2=14(mn )2sin 2α; 【详解】(1)菱形,∵点D 为BC 的中点,且,DE AC DF AB ∥∥ ∴,DE DF 为三角形中位线, ∴11,,22DE AC DF AB == ∵,AB AC = ∴DE=DF∵,DE AF DF AE P P , ∴AEDF 是平行四边形, ∴AEDF 是菱形. (2)设BE=x ,CF=y .∵∠EDC=∠EDF+∠FDC=∠B+∠BEF ,∠MDN=∠B , ∴∠BED=∠FDC , ∵∠B=∠C , ∴△BED ∽△CDF ,∴BE BDCD CF =, ∴x m n y =, ∴xy mn =∵S 1=12•BD•BE•sinα=12mxsinα,S 2=12CD•CF•sinα=12ysinα, ∴1211sin sin 22S S mx ny αα⋅=⋅=2221sin 4n m α 【点睛】本题考查几何变换综合题、等边三角形的性质、等腰三角形的性质、相似三角形的判定和性质、三角形的面积公式.锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题. 25.见解析. 【解析】 【分析】依据BD =B'D',AB =A'B',AD =A'D',即可判定△ABD ≌△A'B'D',再根据∠B =∠B',AB =A'B',BC =B'C',即可得判定△ABC ≌△A'B'C'. 【详解】∵AD ,A'D'分别是△ABC 和△A'B'C'的中线,BC =B'C', ∴BD =B'D',又∵AB =A'B',AD =A'D', ∴△ABD ≌△A'B'D'(SSS ), ∴∠B =∠B',又∵AB =A'B',BC =B'C', ∴△ABC ≌△A'B'C'(SAS ). 【点睛】本题考查了全等三角形的性质和判定的应用,能求出△ABD ≌△A′B′D′是解此题的关键.2019-2020学年数学中考模拟试卷一、选择题1.目前世界上能制造的芯片最小工艺水平是5纳米,国产芯片的最小工艺水平理论上是12纳米,已知1纳米910-=米,用科学记数法将12纳米表示为( )米 A.91210-⨯B.101.210-⨯C.81.210-⨯D.80.1210-⨯2.欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其扣,徐以杓酌油沥之,自钱孔入,而钱不湿.因曰:‘我亦无他,唯手熟尔.’”可见技能都能透过反复苦练而达至熟能生巧之境的.若铜钱是直径为4cm 的圆,中间有边长为1cm 的正方形孔,你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率为( )A.13B.14C.1πD.14π3.某花卉培育基地2018年郁金香产量为4万株,预计2020年郁金香产量达到6万株,求郁金香产量的年平均增长率.设郁金香产量的年平均增长率为x ,则可列方程为( ) A .4(1+x)2=6 B .4(1-x)2=6 C .4(1+2x)=6 D .4(1+x 2)=6 4.若数轴上表示﹣2和3的两点分别是点A 和点B ,则点A 和点B 之间的距离是( ) A .﹣4B .﹣2C .3D .55.一元二次方程(x ﹣1)(x+5)=3x+2的根的情况是( )A.方程没有实数根B.方程有两个相等的实数根C.方程有两个不相等的实数根D.方程的根是1、﹣5和 6.最小的素数是( ) A .1B .2C .3D .47.反比例函数my x=的图像在第二、四象限内,则点(,1)m -在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 8.若方程4x 2+(a 2﹣3a ﹣10)x+4a =0的两根互为相反数,则a 的值是( ) A .5或﹣2B .5C .﹣2D .非以上答案9.在下列图形中,既是轴对称图形又是中心对称图形的是( ) A .B .C .D .10.某班同学从学校出发去太阳岛春游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.大客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的107继续行驶,小轿车保持速度不变.两车距学校的路程S (单位:km )和大客车行驶的时间t (单位:min )之间的函数关系如图所示.下列说法中正确的个数是( ) ①学校到景点的路程为40km ;②小轿车的速度是lkm/min ; ③a =15;④当小轿车驶到景点入口时,大客车还需要10分钟才能到达景点入口.A .1个B .2个C .3个D .4个11.将方程x +5=1-2x 移项,得( )A .x +2x =1-5B .x -2x =1+5C .x +2x =1+5D .x +2x =-1+512.如图,菱形ABCD 的边长为4,∠DAB=60°,E 为BC 的中点,在对角线AC 上存在一点P ,使△PBE 的周长最小,则△PBE 的周长的最小值为( )A .3+1B .23C .23+1D .23+2二、填空题13.分解因式:ax 2-a=______.14.如图,作等边△ABC ,取AC 的中点D ,以AD 为边向△ABC 形外作等边△ADE ,取AE 的中点G ,再以EG 为边作等边△EFG ,如此反复,当作出第6个三角形时,若AB=4,整个图形的外围周长是______.15.化简:()23-=________16.已知:()521x x ++=,则x =______________.17.如图,直线l 与⊙相切于点D ,过圆心O 作EF ∥l 交⊙O 于E 、F 两点,点A 是⊙O 上一点,连接AE ,AF ,并分别延长交直线于B 、C 两点;若⊙的半径R=5,BD=12,则∠ACB 的正切值为______.18.点P (2,4)与点Q (-3,4)之间的距离是____.三、解答题19.如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若DE=4,AD=6,求⊙O半径.20.某学校准备购买A、B两种型号篮球,询问了甲、乙两间学校了解这两款篮球的价格,下表是甲、乙两间学校购买A、B两种型号篮球的情况:购买学校购买型号及数量(个)购买支出款项(元) A B甲 3 8 622乙 5 4 402(2)若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,且A种型号的篮球数量小于B 种型号的篮球,问A种型号的篮球采购多少个?21.学校组织“校园诗词大会”,全校学生参加初赛,为了更好地了解本次大赛的成绩分布情况,随机抽取了部分学生的成绩(满分100分),整理得到如下不完整的统计图表:组别成绩x分频数(人数)频率第1组50≤x<60 6 0.12第2组60≤x<70 0.16第3组70≤x<80 14 a第4组80≤x<90 b第5组90≤x<100 10(1)统计表中a=,b=;(2)请将统计图表补充完整;(3)根据调查结果,请估计该校1200名学生中,成绩不低于80分的人数.22.图①,图②,图③均是44的正方形网格,每个小正方形的项点称为格点,线段的端点均在格点上,在图①,图②,图③恰当的网格中按要求画图.(1)在图①中,画出格点C ,使AC BC =,用黑色实心圆点标出点C 所有可能的位置. (2)在图②中,在线段AB 上画出点M ,使3AM BM =.(3)在图③中,在线段AB 上画出点P ,使2AP BP =.(保留作图痕迹) 要求:借助网格,只用无刻度的直尺,不要求写出画法.23.如图1,AB 为半圆O 的直径,D 为BA 的延长线上一点,DC 为半圆O 的切线,切点为C .(1)求证:ACD B ∠=∠;(2)如图2,BDC ∠的平分线分别交AC ,BC 于点E ,F .①求tan CFE ∠的值;②若3AC =,4BC =,求CE 的长. 24.解方程组:23545x y x y +=-⎧⎨+=⎩25.2014年11月,某市某中学结合语文阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图①和图②提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生? (2)请把折线统计图(图①)补充完整;(3)求出扇形统计图(图②)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生3600名,那么请你估计最喜爱科普类书籍的学生人数.【参考答案】*** 一、选择题13.(1)(1)a x x +- 14.127815.316.-5或-1或-3 17.7518.5 三、解答题19.(1)证明见解析;(2)⊙O 是半径为4.5. 【解析】 【分析】(1)证明OA ⊥AE 就能得到AE 是⊙O 的切线;(2)通过证明Rt △BAD ∽Rt △AED ,再利用对应边成比例关系从而求出⊙O 半径的长. 【详解】(1)证明:连接OA . ∵AO =DO , ∴∠OAD =∠ODA . ∵DA 平分∠BDE , ∴∠ODA =∠EDA , ∴∠OAD =∠EDA . ∵∠EAD+∠EDA =90°,∴∠EAD+∠OAD =90°,即∠OAE =90°. ∴OA ⊥AE , ∴AE 是⊙O 的切线.(2)解:∵BD 是⊙O 的直径, ∴∠BAD =90°,∵∠AED =90°,∠ADE =∠ADB , ∴Rt △BAD ∽Rt △AED . ∴DE ADAD BD= . ∴22694AD BD DE === ,即⊙O是半径为4.5.【点睛】主要考查学生对相似三角形的判定及性质的运用,及切线的求法等知识点的掌握情况.20.(1)A种型号的篮球的销售单价为26元/个,B种型号的篮球的销售单价为68元/个;(2)A种型号的篮球采购9个.【解析】【分析】(1)设A种型号的篮球的销售单价为x元/个,B种型号的篮球的销售单价为y元/个,根据总价=单价×数量结合甲、乙两校购买篮球所花费用及购买数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购买m个A种型号的篮球,则购买(20-m)个B种型号的篮球,根据A种型号的篮球数量小于B 种型号的篮球及购买总费用不多于1000元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可求出结论.【详解】(1)设A种型号的篮球的销售单价为x元/个,B种型号的篮球的销售单价为y元/个,根据题意得:38622 54402 x yx y+=⎧⎨+=⎩,解得:2668 xy=⎧⎨=⎩.答:A种型号的篮球的销售单价为26元/个,B种型号的篮球的销售单价为68元/个.(2)设购买m个A种型号的篮球,则购买(20﹣m)个B种型号的篮球,根据题意得:202668(20)1000 m mm m<-⎧⎨+-⎩…,解得:607≤m<10.又∵m为整数,∴m=9.答:A种型号的篮球采购9个.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.21.(1)0.28,12;(2)补全的统计图如图所示;见解析;(3)成绩不低于80分的有528人.【解析】【分析】(1)先计算出此次的总人数,用数据总数减去其他四组即可得到第四组b的值,用第三组频数除以数据总数可得a的值;(2)根据(1)的计算结果即可补全频数分布直方(3)利用总数1200乘以80分以上(包括80分)的学生的所占的频率即可【详解】(1)本次调查的学生有:6÷0.12=50(人),a=14÷50=0.28,b=50﹣6﹣8﹣14﹣10=12,故答案为:0.28,12;(2)由频数分布表可知70≤x<80有14人,80≤x<90有12人,补全的统计图如图所示;(3)1200×12+1050=528(人),答:成绩不低于80分的有528人.【点睛】此题考查了频数分布直方图,用样本估计总体,频数分布表,解题关键在于熟练掌握各种表的计算方法22.(1)详见解析;(2)详见解析;(3)详见解析【解析】【分析】(1)做出AB的垂直平分线,落在垂直平分线上的格点即可;(2)利用相似三角形性质找到M点即可(3)利用相似三角形相似比找出P点即可【详解】(1) 如图所示:(2)如图:(3)如图:【点睛】本题考查在方格纸上作图,第二三问的关键在于利用相似三角形找出点23.(1)见解析;(2)①1;②127CE = 【解析】 【分析】(1)连接OC ,由切线性质得OC CD ⊥,根据直径所对的圆周角为直角得90ACB ︒∠=,由“三角形中等角对等边”得OCB OBC ∠=∠,根据角的等量代换即可证得ACD B ∠=∠。
2019年湖北省武汉市武昌区中考模拟数学试卷(二)一.选择题(共10小题)1.有理数3的相反数是()A.﹣3B.﹣C.3D.2.式子在实数范围内有意义,则x的取值范围是()A.x>﹣2B.x≥﹣2C.x<﹣2D.x≤﹣23.不透明的袋子中装有形状、大小、质地完全相同的5个球,其中3个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是2个白球、1个黑球B.摸出的是3个黑球C.摸出的是3个白球D.摸出的是2个黑球、1个白球4.若点A(1,2),B(﹣1,2),则点A与点B的关系是()A.关于x轴对称B.关于y轴对称C.关于直线x=1对称D.关于直线y=1对称5.如图所示的几何体的俯视图是()A.B.C.D.6.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x张甲种票,y张乙种票,则所列方程组正确的是()A.B.C.D.7.把八个完全相同的小球平分为两组,每组中每个分别写上1,2,3,4四个数字,然后分别装入不透明的口袋内搅匀,从第一个口袋内取出一个数记下数字后作为点P的横坐标x,然后再从第二个口袋中取出一个球记下数字后作为点P的纵坐标,则点P(x,y)落在直线y=﹣x+5上的概率是()A.B.C.D.8.如图,甲处表示2街6巷的十字路口,乙处表示6街1巷的十字路口.如果用(2,6)表示甲处的位置,那么“(2,6)→(3,6)→(4,6)→(5,6)→(6,6)→(6,5)→(6,4)→(6,3)→(6,2)→(6,1)”表示从甲处到乙处的一种路线(规定:只能沿线向下和向右运动),则从甲处到乙处的路线中经过丙处的走法共有()A.38种B.39种C.40种D.41种9.已知a,b,c满足a+b+c=0,4a+c=2b,则二次函数y=ax2+bx+c(a≠0)的图象的对称轴为()A.直线x=1B.直线x=﹣1C.直线x=D.直线x=﹣10.如图,在等腰三角形△ABC中,O为底边BC的中点,以O为圆心作半圆与AB,AC 相切,切点分别为D,E.过半圆上一点F作半圆的切线,分别交AB,AC于M,N.那么的值等于()A.B.C.D.1二.填空题(共6小题)11.化简的结果是.12.某校举行“中国诗词大会”的比赛每班限报一名选手,九(1)班甲、乙、丙、丁四位选手在班级选拔赛时的数据如表:甲乙丙丁平均分9.89.39.29.8方差 1.5 3.2 3.3 6.8根据表中数据,要从四个同学中选择一个成绩好且发挥稳定的参加比赛,应该选择是(填“甲”或“乙”或“丙”或“丁”)13.化简的结果是.14.如图,在矩形ABCD中,边AD沿DF折叠,点A恰好落在矩形的对称中心E处,则cos∠ADF=.15.如图,一次函数y=3x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣3,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为2,则k的值为.16.如图,在△ABC中,点D,E分别为AB,AC边上一点,且BE=CD,CD⊥BE.若∠A=30°,BD=1,CE=2,则四边形CEDB的面积为.三.解答题(共8小题)17.计算:(2a2)2﹣a•3a3+a5÷a.18.如图,AB∥CD,∠ADC=∠ABC.求证:∠E=∠F.19.“长跑”是中考体育考试项目之一,某中学为了解九年级学生“长跑”的情况,随机抽取部分九年级学生,测试其长跑成绩(男子1000米,女子800米),按长跑的时间的长短依次分为A,B,C,D四个等级进行统计,并绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)在这次调查中共抽取了名学生,扇形统计图中,D类所对应的扇形圆心角大小为;(2)补全条形统计图,所抽取学生“长跑”测试成绩的中位数会落在等级;(3)若该校九年级共有900名学生,请你估计该校C等级的学生约在多少人?20.如图,在下列10×10的网格中,横、纵坐标均为整数的点叫做格点,例如A(3,0),B(4,3)都是格点.将△AOB绕点O顺时针旋转90°得到△COD(点A,B的对应点分别为点C,D).(1)作出△COD;(2)下面仅用无刻度的直尺画△AOD的内心I,操作如下:第一步:在x轴上找一格点E,连接DE,使OE=OD;第二步:在DE上找一点F,连接OF,使OF平分∠AOD;第三步:找格点G,得到正方形OAGC,连接AC,则AC与OF的交点I是△OAD的内心.请你按步骤完成作图,并直接写出E,F,I三点的坐标.21.如图,AB是⊙O的直径,过圆外一点E作EF与⊙O相切于G,交AB的延长线于F,EC⊥AB于H,交⊙O于D,C两点,连接AG交DC于K.(1)求证:EG=EK;(2)连接AC,若AC∥EF,cos C=,AK=,求BF的长.22.随着《流浪地球》的热播,其同名科幻小说的销量也急剧上升.为应对这种变化,某网店分别花20000元和30000元先后两次增购该小说,第二次的数量比第一次多500套,且两次进价相同.(1)该科幻小说第一次购进多少套?(2)根据以往经验:当销售单价是25元时,每天的销售量是250套;销售单价每上涨1元,每天的销售量就减少10套.网店要求每套书的利润不低于10元且不高于18元.①直接写出网店销售该科幻小说每天的销售量y(套)与销售单价x(元)之间的函数关系式及自变量x的取值范围;②网店决定每销售1套该科幻小说,就捐赠a(0<a<7)元给困难职工,每天扣除捐赠后可获得的最大利润为1960元,求a的值.23.在△ABC中,∠ACB=90°,CD为高,BC=nAC(1)如图1,当n=时,则的值为;(直接写出结果)(2)如图2,点P是BC的中点,过点P作PF⊥AP交AB于F,求的值;(用含n 的代数式表示)(3)在(2)的条件下,若PF=BF,则n=.(直接写出结果)24.在平面直角坐标系xOy中,抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,0),B两点,与y轴交于C(0,3),对称轴为直线x=2.(1)请直接写出该抛物线的解析式;(2)设直线l与抛物线的对称轴的交点为F,在对称轴右侧的抛物线上有一点G,若=,且S△BAG=6,求点G的坐标;(3)若在直线y=上有且只有一点P,使∠APB=90°,求k的值.参考答案与试题解析一.选择题(共10小题)1.有理数3的相反数是()A.﹣3B.﹣C.3D.【分析】依据相反数的定义求解即可.【解答】解:3的相反数是﹣3.故选:A.2.式子在实数范围内有意义,则x的取值范围是()A.x>﹣2B.x≥﹣2C.x<﹣2D.x≤﹣2【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x+2≥0,解得x≥﹣2.故选:B.3.不透明的袋子中装有形状、大小、质地完全相同的5个球,其中3个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是2个白球、1个黑球B.摸出的是3个黑球C.摸出的是3个白球D.摸出的是2个黑球、1个白球【分析】根据白色的只有两个,不可能摸出三个进行解答.【解答】解:A.摸出的是2个白球、1个黑球是随机事件;B.摸出的是3个黑球是随机事件;C.摸出的是3个白球是不可能事件;D.摸出的是2个黑球、1个白球是随机事件,故选:C.4.若点A(1,2),B(﹣1,2),则点A与点B的关系是()A.关于x轴对称B.关于y轴对称C.关于直线x=1对称D.关于直线y=1对称【分析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【解答】解:∵点A(1,2),B(﹣1,2),∴点A与点B关于y轴对称,故选:B.5.如图所示的几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上往下看,易得一个长方形,且其正中有一条纵向实线,故选:B.6.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x张甲种票,y张乙种票,则所列方程组正确的是()A.B.C.D.【分析】分别利用有35名学生以及购票恰好用去750元,得出等式求出答案.【解答】解:设买了x张甲种票,y张乙种票,根据题意可得:.故选:B.7.把八个完全相同的小球平分为两组,每组中每个分别写上1,2,3,4四个数字,然后分别装入不透明的口袋内搅匀,从第一个口袋内取出一个数记下数字后作为点P的横坐标x,然后再从第二个口袋中取出一个球记下数字后作为点P的纵坐标,则点P(x,y)落在直线y=﹣x+5上的概率是()A.B.C.D.【分析】首先根据题意画出表格,然后由表格求得所有等可能的结果与数字x、y满足y =﹣x+5的情况,再利用概率公式求解即可求得答案.【解答】解:列表得:12341(1,1)(1,2)(1,3)(1,4)2(2,1)(2,2)(2,3)(2,4)3(3,1)(3,2)(3,3)(3,4)4(4,1)(4,2)(4,3)(4,4)∵共有16种等可能的结果,数字x、y满足y=﹣x+5的有(1,4),(2,3),(3,2),(4,1),∴数字x、y满足y=﹣x+5的概率为:.故选:B.8.如图,甲处表示2街6巷的十字路口,乙处表示6街1巷的十字路口.如果用(2,6)表示甲处的位置,那么“(2,6)→(3,6)→(4,6)→(5,6)→(6,6)→(6,5)→(6,4)→(6,3)→(6,2)→(6,1)”表示从甲处到乙处的一种路线(规定:只能沿线向下和向右运动),则从甲处到乙处的路线中经过丙处的走法共有()A.38种B.39种C.40种D.41种【分析】先确定从甲到丙的路线,再确定从丙到乙的路线,两种路线的乘积即为所求;【解答】解:从甲到丙有4条路线,从丙到乙有10条路线,∴从甲处到乙处经过丙处的走法共有4×10=40种,故选:C.9.已知a,b,c满足a+b+c=0,4a+c=2b,则二次函数y=ax2+bx+c(a≠0)的图象的对称轴为()A.直线x=1B.直线x=﹣1C.直线x=D.直线x=﹣【分析】根据a+b+c=0,4a+c=2b,可以求得a、b、c之间的关系,从而可以求得该函数的对称轴,本题得以解决.【解答】解:∵a+b+c=0,4a+c=2b,∴c=﹣2a,a=b,∵二次函数y=ax2+bx+c(a≠0),∴对称轴是直线x==,故选:D.10.如图,在等腰三角形△ABC中,O为底边BC的中点,以O为圆心作半圆与AB,AC 相切,切点分别为D,E.过半圆上一点F作半圆的切线,分别交AB,AC于M,N.那么的值等于()A.B.C.D.1【分析】连OM,ON,利用切线长定理知OM,ON分别平分角BMN,角CNM,再利用三角形和四边形的内角和可求得△OBM与△NOC还有一组角相等,由此得到它们相似,通过相似比可解决问题.【解答】解:连OM,ON,如图∵MD,MF与⊙O相切,∴∠1=∠2,同理得∠3=∠4,而∠1+∠2+∠3+∠4+∠B+∠C=360°,AB=AC∴∠2+∠3+∠B=180°;而∠1+∠MOB+∠B=180°,∴∠3=∠MOB,即有∠4=∠MOB,∴△OMB∽△NOC,∴=,∴BM•CN=BC2,∴=.故选:B.二.填空题(共6小题)11.化简的结果是.【分析】根据二次根式的性质解答.【解答】解:==.12.某校举行“中国诗词大会”的比赛每班限报一名选手,九(1)班甲、乙、丙、丁四位选手在班级选拔赛时的数据如表:甲乙丙丁平均分9.89.39.29.8方差 1.5 3.2 3.3 6.8根据表中数据,要从四个同学中选择一个成绩好且发挥稳定的参加比赛,应该选择是甲(填“甲”或“乙”或“丙”或“丁”)【分析】首先比较平均数,平均数相同时选择方差较小的参加比赛即可.【解答】解:∵=>>,∴从甲和丁中选择一人参加比赛,∵S甲2<S乙2<S丙2<S丁2,∴选择甲参赛;故答案为:甲.13.化简的结果是.【分析】首先通分,然后根据分式加减法的运算方法,求出算式的值是多少即可.【解答】解:,=+,=,=.14.如图,在矩形ABCD中,边AD沿DF折叠,点A恰好落在矩形的对称中心E处,则cos∠ADF=.【分析】根据折叠的性质得到AD=ED=AE,∠ADF=∠EDF=∠ADE,推出△DAE 的等边三角形,根据等边三角形的性质得到∠ADE=60°,求得∠ADF=30°,于是得到结论.【解答】解:如图,连接AE,∵把∠A沿DF折叠,点A恰好落在矩形的对称中心E处,∴AD=ED=AE,∠ADF=∠EDF=ADE,∴△DAE的等边三角形,∴∠ADE=60°,∴∠ADF=30°,∴cos∠ADF=,故答案为:.15.如图,一次函数y=3x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣3,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为2,则k的值为.【分析】作辅助线,先确定OQ长的最大时,点P的位置,当BP过圆心C时,BP最长,设B(t,3t),则CD=t﹣(﹣3)=t+3,BD=﹣3t,根据勾股定理计算t的值,可得k 的值.【解答】解:如图,连接BP,由对称性得:OA=OB,∵Q是AP的中点,∴OQ=BP,∵OQ长的最大值为2,∴BP长的最大值为2×2=4,如图,当BP过圆心C时,BP最长,过B作BD⊥x轴于D,∵CP=1,∴BC=3,∵B在直线y=3x上,设B(t,3t),则CD=t﹣(﹣3)=t+3,BD=﹣3t,在Rt△BCD中,由勾股定理得:BC2=CD2+BD2,∴32=(t+3)2+(﹣3t)2,解得t=0(舍)或﹣,∴B(﹣,﹣),∵点B在反比例函数y=(k>0)的图象上,∴k=(﹣)×(﹣)=.故答案为:.16.如图,在△ABC中,点D,E分别为AB,AC边上一点,且BE=CD,CD⊥BE.若∠A=30°,BD=1,CE=2,则四边形CEDB的面积为.【分析】作辅助线CK⊥AB,EH⊥AB,由两直线垂直得∠BMD=∠CKD=∠BHE=90°,角角边证明△CKD≌△BHE,其性质得DK=EH;设CK=x,根据直角三角的性质,线段的和差得AK=,EH=DK=x﹣,BH=4+﹣x;建立等量关系4+﹣x=x,求得CK=,DK═,最后由勾股定理,面积公式求得四边形CEDB的面积为.【解答】解:分别过点C、E两点作CK⊥AB,EH⊥AB交AB于点K和点H,设CK=x,如图所示:∵CD⊥BE,∴∠BMD=90°,∴∠EBH+∠CDB=90°,同理可得:∠EBH+∠BEH=90°,∴∠CDB=∠BEH,又∵CK⊥AB,EH⊥AB,∴∠CKD=∠BHE=90°,在△CKD和△BHE中,,∴△CKD≌△BHE(AAS),∴DK=EH,又∵Rt△AKC中,∠A=30°,∴AC=2x,AK=,又∵AC=AE+EC,CE=2,∴AE=2x﹣2,∴EH=DK=x﹣,又∵DK=DB+BK,BD=1,∴BK=x﹣﹣1,又∵AK=AH+BH+BK,∴BH=4+﹣x,又∵BH=CK,∴4+﹣x=x,解得:x=,∴DK=x﹣=,在Rt△CDK中,由勾股定理得:CD2=CK2+DK2==,∴===.故答案为.三.解答题(共8小题)17.计算:(2a2)2﹣a•3a3+a5÷a.【分析】分别求出每(2a2)2a=4a4;a•3a3=3a4;a5÷a=a4;再运算即可;【解答】解:(2a2)2﹣a•3a3+a5÷a=4a4﹣3a4+a4=2a4;18.如图,AB∥CD,∠ADC=∠ABC.求证:∠E=∠F.【分析】直接利用平行线的性质得出∠ABC=∠DCF,再利用已知得出∠E=∠F.【解答】证明:∵AB∥CD,∴∠ABC=∠DCF.又∵∠ADC=∠ABC∴∠ADC=∠DCF.∴DE∥BF.∴∠E=∠F.19.“长跑”是中考体育考试项目之一,某中学为了解九年级学生“长跑”的情况,随机抽取部分九年级学生,测试其长跑成绩(男子1000米,女子800米),按长跑的时间的长短依次分为A,B,C,D四个等级进行统计,并绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)在这次调查中共抽取了45名学生,扇形统计图中,D类所对应的扇形圆心角大小为104°;(2)补全条形统计图,所抽取学生“长跑”测试成绩的中位数会落在C等级;(3)若该校九年级共有900名学生,请你估计该校C等级的学生约在多少人?【分析】(1)这次调查中共抽取学生:8÷=45(名),D类所对应的扇形圆心角360°×=104(度);(2)B等级学生:45﹣8﹣20﹣13=4,据此补全条形统计图;(3)该校九年级900名学生中估计C等级的学生约有:900×=400(名).【解答】解:(1)这次调查中共抽取学生:8÷=45(名),D类所对应的扇形圆心角360°×=104(度),故答案为45,104°;(2)B等级学生:45﹣8﹣20﹣13=4补全条形统计图如下共有45名学生,因此中位数为第23,落在C等级.故答案为C;(3)该校九年级900名学生中估计C等级的学生约有:900×=400(名).答:该校九年级900名学生中估计C等级的学生约有400人.20.如图,在下列10×10的网格中,横、纵坐标均为整数的点叫做格点,例如A(3,0),B(4,3)都是格点.将△AOB绕点O顺时针旋转90°得到△COD(点A,B的对应点分别为点C,D).(1)作出△COD;(2)下面仅用无刻度的直尺画△AOD的内心I,操作如下:第一步:在x轴上找一格点E,连接DE,使OE=OD;第二步:在DE上找一点F,连接OF,使OF平分∠AOD;第三步:找格点G,得到正方形OAGC,连接AC,则AC与OF的交点I是△OAD的内心.请你按步骤完成作图,并直接写出E,F,I三点的坐标.【分析】(1)根据要求作图即可(2)根据要求作图即可【解答】解:(1)如图所示(2)如图所示,每格单位长度都为1,即可得E(5,0),F(4,﹣2),I(2,﹣1)21.如图,AB是⊙O的直径,过圆外一点E作EF与⊙O相切于G,交AB的延长线于F,EC⊥AB于H,交⊙O于D,C两点,连接AG交DC于K.(1)求证:EG=EK;(2)连接AC,若AC∥EF,cos C=,AK=,求BF的长.【分析】(1)连接OG.根据切线的性质得到∠OGE=90°,证明∠EKG=∠AGE,根据等腰三角形的判定定理证明结论;(2)连接OC,设CH=4k,根据余弦的定义、勾股定理用k表示出AC、AH,根据勾股定理列式求出k,设⊙O半径为R,根据勾股定理列式求出R,根据余弦的定义求出OF,计算即可.【解答】(1)证明:连接OG.∵EF是⊙O的切线,∴∠OGE=90°,即∠OGA+∠AGE=90°.∵OA=OG,∴∠OGA=∠OAG,∴∠OAG+∠AGE=90°.∵CD⊥AB,∴∠AHK=90°,则∠OAG+∠AKH=90°.∴∠AKH=∠AGE.∵∠AKH=∠EKG,∴∠EKG=∠AGE,∴EG=EK;(2)如图,连接OC,设CH=4k,∵cos∠ACH==,∴AC=5k,由勾股定理得,AH==3k,∵AC∥EF,∴∠CAK=∠EGA,又∠AKC=∠EKG,而由(1)知∠EKG=∠EGA,∴∠CAK=∠CKA,∴CK=AC=5k,HK=CK﹣CH=k.在Rt△AHK中,AH2+HK2=AK2,即(3k)2+k2=()2,解得,k=1,则CH=4,AC=5,AH=3,设⊙O半径为R,在Rt△OCH中,OH2+CH2=OC2,即(R﹣3)2+42=R2,解得,R=,由AC∥EF知,∠CAH=∠F,则∠ACH=∠GOF,在Rt△OGF中,cos∠ACH=cos∠GOF==,解得,OF=,∴BF=OF﹣OB=.22.随着《流浪地球》的热播,其同名科幻小说的销量也急剧上升.为应对这种变化,某网店分别花20000元和30000元先后两次增购该小说,第二次的数量比第一次多500套,且两次进价相同.(1)该科幻小说第一次购进多少套?(2)根据以往经验:当销售单价是25元时,每天的销售量是250套;销售单价每上涨1元,每天的销售量就减少10套.网店要求每套书的利润不低于10元且不高于18元.①直接写出网店销售该科幻小说每天的销售量y(套)与销售单价x(元)之间的函数关系式及自变量x的取值范围;②网店决定每销售1套该科幻小说,就捐赠a(0<a<7)元给困难职工,每天扣除捐赠后可获得的最大利润为1960元,求a的值.【分析】(1)设该科幻小说第一次购进m套,根据题意列方程即可得到结论;(2)根据题意列函数关系式即可;(3)设每天扣除捐赠后可获得利润为w元.根据题意得到w=(x﹣20﹣a)(﹣10x+500)=﹣10x2+(10a+700)x﹣500a﹣10000(30≤x≤38)求得对称轴为x=35+a,①若0<a<6,则30,则当x=35+a时,w取得最大值,解方程得到a1=2,a2=58,于是得到a=2;②若6<a<7,则38<35a,则当30≤x≤38时,w随x的增大而增大;解方程得到a=,但6<a<7,故舍去.于是得到结论.【解答】解:(1)设该科幻小说第一次购进m套,则=,∴m=1000,经检验,当m=1000时,m(m+500)≠0,则m=1000是原方程的解,答:该科幻小说第一次购进1000套;(2)根据题意得,y=250﹣10(x﹣25)=﹣10x+500(30≤x≤38);(3)设每天扣除捐赠后可获得利润为w元.w=(x﹣20﹣a)(﹣10x+500)=﹣10x2+(10a+700)x﹣500a﹣10000(30≤x≤38)对称轴为x=35+a,①若0<a<6,则30,则当x=35+a时,w取得最大值,∴(35+a﹣20﹣a)[﹣10x(35+a)+500]=1960∴a1=2,a2=58,又0<a≤6,则a=2;②若6<a<7,则38<35a,则当30≤x≤38时,w随x的增大而增大;∴当x=38时,w取得最大值,则(38﹣20﹣a)(﹣10×38+500)=1960,∴a=,但6<a<7,故舍去.综上所述,a=2.23.在△ABC中,∠ACB=90°,CD为高,BC=nAC(1)如图1,当n=时,则的值为;(直接写出结果)(2)如图2,点P是BC的中点,过点P作PF⊥AP交AB于F,求的值;(用含n 的代数式表示)(3)在(2)的条件下,若PF=BF,则n=.(直接写出结果)【分析】(1)设AC=2k,BC=3k,求出AD,BD即可解决问题.(2)过点P作PG∥AC交AB于点G.证明△PCE∽△PGF,即可解决问题.(3)设PF=x,AP=2nx,利用勾股定理构建方程求出n即可.【解答】解:(1)如图1中,∵BC=AC,∴可以假设AC=2k,BC=3k,∵∠ACB=∠ADC=90°,∴AB=k,∵•AC•BC=•AB•CD,∴CD=k,∴AD==k,BD=k,∴=,故答案为.(2)过点P作PG∥AC交AB于点G.∴∠PGF=∠CAD,∠GPC=90°,∵CD⊥AB,∠ACB=90°,∴∠CAD+∠ACD=90°,∠ACD+∠PCE=90°,∴∠PCE=∠CAD,∴∠PCE=∠PGF,又∵PF⊥AP,∴∠CPE+∠APG=∠FPG+∠APG=90°,∴∠CPE=∠GPF,∴△PCE∽△PGF,∴=,又∵点P是BC的中点,∴AC=2PG,∴==n.(3)由(2)可知=n,则可以假设PF=x,PE=nx,∵∠GPB=90°,PF=BF,则PF=BF=GF=x,则AG=2x,∵△PCE∽△PGF,∴==n,则CE=nGF=nx,又∵∠ACB=90°,则AE=PE=nx,在Rt△APF中,AP2+PF2=AF2,则x2+(2nx)2=(3x)2,∴n=,故答案为.24.在平面直角坐标系xOy中,抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,0),B两点,与y轴交于C(0,3),对称轴为直线x=2.(1)请直接写出该抛物线的解析式;(2)设直线l与抛物线的对称轴的交点为F,在对称轴右侧的抛物线上有一点G,若=,且S△BAG=6,求点G的坐标;(3)若在直线y=上有且只有一点P,使∠APB=90°,求k的值.【分析】(1)抛物线与x轴另外一个交点坐标为(3,0),则函数的表达式为:y=a(x ﹣1)(x﹣3)=a(x2﹣4x+3),即:3a=3,即可求解;(2)分点G在点B下方、点G在点B上方两种情况,分别求解即可;(3)由△P AS∽△BPT,则,即可求解.【解答】解:(1)∵抛物线过点A(1,0),且对成轴为直线x=2,则抛物线与x轴另外一个交点坐标为(3,0),则函数的表达式为:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),令x=0则3a=3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3…①;(2)过点B作BM∥x轴交对称轴于点M,设对称轴与x轴交于点N.∴,又AN=1,则BM=2,点B的坐标为(4,3),∵直线AB的解析式为y=kx+m,则,则,则y=x﹣1,①若点G在点B下方,则过点G作GQ∥y轴交AB于Q,则设点G(t,t2﹣4t+3),Q (t,t﹣1),∴S△BAG=6=S△AQG+S△BGQ=GQ×3=(t﹣1﹣t2+4t﹣3),即:t2﹣5t+8=0,△<0,无解;②若点G在点B上方,则过点G作GH∥AB交x轴于H,则S△BAG=6=S△ABH,即:AH×3=6,则AH=4,则H(﹣3,0),则可设直线GH的解析式为:y=x+t,将H(﹣3,0)代入得,t=3.∴直线GH的解析式为y=x+3…②,联立①②并解得:x=0或5(舍去0),∴G(5,8);(3)分别过点A,B作直线y=﹣的垂线,垂足分别为S,T,则△P AS∽△BPT,则,直线l的解析式为y=kx﹣k…③,联立①③并解得:x=1或k+3,则点B(k+3,k2+2k),设:PS=x,则x(k+2﹣x)=(k2+2k+)有两个相等实数根,△=(k+2)2﹣2k2﹣4k﹣1=0,解得:k=(舍去负值),故:k=.。
第二学期第二次模拟考试初三年级(考试时间:120分钟 满分:150分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.气温由﹣1℃上升2℃后是(▲)A .3℃B .2℃C .1℃D .﹣1℃ 2.下列运算正确的是(▲)A .B .C .D .3.在式子31-x ,41-x ,3-x ,4-x 中,x 可以取到3和4的是(▲) A .31-x B .41-x C .3-x D .4-x 4.如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是(▲) A .主视图 B .左视图 C .俯视图 D .主视图和俯视图(第4题) (第8题)5.为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是(▲)中位数 众数 平均数 方差 9.29.39.10.3A .中位数B .众数C .平均数D .方差6.若一个正比例函数的图象经过不同象限的两点A (﹣2,m ),B (n ,3),那么一定有(▲) A .m >0,n >0 B .m >0,n <0 C .m <0,n >0 D .m <0,n <07.如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项正确的是(▲)A .B .C .D .8.如图,Rt △ABC 中,∠ACB =90°,CM 为AB 边上的中线,AN ⊥CM ,交BC 于点N .若 CM =3,AN =4,则tan ∠CAN 的值为(▲) A .23B .34C .35D .45二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.在实数范围内分解因式:2x 2-32= ▲ .10.扬州市梅岭中学图书馆藏书12000本,数据“12000”用科学记数法可表示为 ▲ . 11.关于x 的一元二次方程2x 2+2x ﹣m=0有实根,则m 的取值范围是 ▲ .12.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD ,∠BAE=87°,∠DCE=121°,则∠E 的度数是 ▲ .(第12题) (第14题) (第16题)PCB AP C B A P CBA P CB A13.如果圆锥的母线长为5cm,底面半径为2cm ,那么这个圆锥的侧面积为▲.14.如图,四边形ABCD是平行四边形,其中边AD是⊙O的直径,BC与⊙O相切于点B,若⊙O的周长是12π,则四边形ABCD的面积为▲.15.某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式为y=﹣1.5x2+60x,该型号飞机着陆后滑行▲ m才能停下来.16.如图,点A是反比例函数y=图象上的任意一点,过点A做AB∥x轴,AC∥y轴,分别交反比例函数y=的图象于点B,C,连接BC,E是BC上一点,连接并延长AE交y轴于点D,连接CD,则S△DEC﹣S△BEA= ▲.(第17题)(第18题)17.如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=8,E、F分别为AB、AC上的点,沿直线EF将∠B折叠,使点B恰好落在AC上的D处,当△ADE恰好为直角三角形时,BE的长为▲.18.如图:已知矩形ABCD,AB=8,BC=6,以点A为圆心,5为半径作圆,点M为圆A上一动点,连接CM,DM,则12CM+MD的最小值为▲.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(本题满分8分)(1)计算:22160sin2123-⎪⎭⎫⎝⎛--++)(π(2),并求出它的所有整数解的和.20.(本题满分8分)先化简再求值:,其中.21.(本题满分8分)梅岭中学初三年级要举行一场毕业联欢会,主持人同时转动下图中的两个转盘(每个转盘分别被四等分和三等分),由一名同学在转动前来判断两个转盘上指针所指的两个数字之和是奇数还是偶数,如果判断错误,他就要为大家表演一个节目;如果判断正确,他可以指派别人替自己表演节目.现在轮到小明来选择,小明不想自己表演,于是他选择了偶数.小明的选择合理吗?从概率的角度进行分析(要求用树状图或列表方法求解)某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩m(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为,扇形统计图中A类所对的圆心角是度;(2)请补全条形统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?23.(本题满分10分)列.方程解...:....应用题几个小伙伴打算去音乐厅看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话中的信息,请你求出这些小伙伴的人数.如图,在□ABCD 中,AE 平分∠BAD,交BC 于点E ,BF 平分∠ABC,交AD 于点F ,AE 与BF 交于点P ,连接EF ,PD .(1)求证:四边形ABEF 是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP .25. (本题满分10分)如图,山坡AB 的坡度i=1:,AB=10米,AE=15米.在高楼的顶端竖立一块倒计时牌CD ,在点B 处测量计时牌的顶端C 的仰角是45°,在点A 处测量计时牌的底端D 的仰角是60°,求这块倒计时牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:≈1.414,≈1.732)26. (本题满分10分)如图,⊙O 与Rt △ABC 的直角边AC 和斜边AB 分别相切于点C 、D ,与边BC 相交于点F ,OA 与CD 相交于点E ,连接FE 并延长交AC 边于点G . (1)求证:DF ∥AO ; (2)当AC=6,AB=10时①求⊙O 的半径 ②求CG 的长. 323如图,在平面直角坐标系中,给出如下定义:已知点A(2,3),点B(6,3),连接AB.如果线段AB上有一个点与点P的距离不大于1,那么称点P是线段AB的“环绕点”.(1)已知点C(3,1.5),D(4,3.5),E(1,3),则是线段AB的“环绕点”的点是;(2)已知点P(m,n)在反比例函数y=的图象上,且点P是线段AB的“环绕点”,求出点P的横坐标m的取值范围;(3)已知⊙M上有一点P是线段AB的“环绕点”,且点M(4,1),求⊙M的半径r的取值范围.28.(本题满分12分)如图,直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P为抛物线在第二象限内一点,过点P作x轴的垂线,垂足为点M,与直线AB交于点C,过点P作x轴的平行线交抛物线于点Q,过点Q作x轴的垂线,垂足为点N,若点P在点Q左边,设点P的横坐标为m.①当矩形PQNM的周长最大时,求△ACM的面积;②在①的条件下,当矩形PMNQ的周长最大时,G是直线AC上一点,F是抛物线上一点,是否存在点G,使得以点P、C、G、F为顶点的四边形是平行四边形?若存在,请求出G点的坐标;若不存在,请说明理由.九年级中考二模考试数学试题参考答案及评分建议说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神酌情给分.一、选择题(本大题共有8小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8 选项CBCBACDA二、填空题(本大题共有10小题,每小题3分,共30分)9.)4)(4(2-+x x 10.4102.1⨯11.21-≥m 12.34° 13.π10 14.72 15.600 16.8317.730415或 18.297三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)19.①33- ② 31<≤-x 和为2 20.11+a 22 21.解:小明的选择不合理;列表得∴共出现12中等可能的结果, 其中出现奇数的次数是7次,概率为,出现偶数的次数为5次,概率为,2 3 4 6 3 5 6 7 9 5789118 10 11 12 14∵,即出现奇数的概率较大,∴小明的选择不合理.22.解:(1)由题意可得,抽取的学生数为:10÷20%=50,扇形统计图中A类所对的圆心角是:360°×20%=72°,故答案为:50,72;(2)C类学生数为:50﹣10﹣22﹣3=15,C类占抽取样本的百分比为:15÷50×100%=30%,D类占抽取样本的百分比为:3÷50×100%=6%,补全的统计图如右图所示,(3)300×30%=90(名)即该校九年级男生“引体向上”项目成绩为C类的有90名.23.解:设票价为每张x元,根据题意,得+2=.解得x=60.经检验x=60是原方程的根且符合题意,小伙伴的人数为+2=8人答:小伙伴的人数为8人.24.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAE=∠AEB.∵AE是角平分线,∴∠DAE=∠BAE.∴∠BAE=∠AEB.∴AB=BE.同理AB=AF.∴AF=BE.∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形.(2)解:作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,∴AP=AB=2,∴PH=,DH=5,∴tan∠ADP==.25.解:作BF⊥DE于点F,BG⊥AE于点G,∵CE⊥AE,∴四边形BGEF为矩形,∴BG=EF,BF=GE,在Rt△ADE中,∵tan∠ADE=,∴DE=AE•tan∠ADE=15,∵山坡AB的坡度i=1:,AB=10,∴BG=5,AG=5,∴EF=BG=5,BF=AG+AE=5+15,∵∠CBF=45°∴CF=BF=5+15,∴CD=CF+EF﹣DE=20﹣10≈20﹣10×1.732=2.68≈2.7(m),答:这块宣传牌CD的高度为2.7米.26.(1)证明:连接OD.∵AB与⊙O相切于点D,又AC与⊙O相切于点C,∴AC=AD,OC⊥CA.∴CF是⊙O的直径,∵OC=OD,∴OA⊥CD,∵CF是直径,∴∠CDF=90°,∴DF⊥CD,∴DF∥AO.(2)过点作EM⊥OC于M,∵AC=6,AB=10,∴BC==8,∴AD=AC=6,∴BD=AB﹣AD=4,∵AB是切线,∴OD⊥AB,∴∠ODB=90°,∵CF是直径,∴∠CDF=90°,∵∠BDF+∠ODF=90°,∠CDO+∠ODF=90°,∴∠BDF=∠CDO,∵OC=OD,∴∠ODC=∠OCD,∴∠BDF=∠BCD,∴△BDF∽△BCD,可得BD2=BF•BC,∴BF=2,∴CF=BC﹣BF=6.OC=CF=3,∴OA==3,∵OC2=OE•OA,∴OE=,∵EM∥AC,∴===,∴OM=,EM=,FM=OF+OM=,∴===,∴CG=EM=2.27.解:(1)由“环绕点”的定义可知:点P到直线AB的距离d应满足:d≤1,∵A、B两点的纵坐标都是3,∴AB∥x轴,∴点C到直线AB的距离为|1.5﹣3|=1.5>1,点D到直线AB的距离为|3.5﹣3|=0.5<1,点E到直线AB的距离为|3﹣3|=0<1,∴点D和E是线段AB的环绕点;故答案为:点D和E;(2)当点P在线段AB的上方,点P到线段AB的距离为1时,m=2;当点P在线段AB的下方,点P到线段AB的距离为1时,m=4;所以点P的横坐标m的取值范围为:2≤m≤4;(3)当点P在线段AB的下方时,且到线段AB的最小距离是1时,r=1;当点P在线段AB的上方时,且到点A的距离是1时,如图,过M作MC⊥AB,则CM=2,AC=2,连接MA并延长交⊙M于P,则PA=1,∴MP=2+1,即r=2+1.∴⊙M的半径r的取值范围是1≤r≤2+1.28.(1)∵直线y=x+3与x轴交于点A,与y轴交于点B,∴A(﹣3,0),B(0,3).∵抛物线y=﹣x2+bx+c经过A、B两点,∴,解得,∴抛物线的解析式为y=﹣x2﹣2x+3;(2)①∵点P的横坐标为m,∴P(m,﹣m2﹣2m+3),PM=﹣m2﹣2m+3.∵抛物线y=﹣x2﹣2x+3的对称轴为x=﹣=﹣=﹣1,∴PQ=2(﹣1﹣m)=﹣2m﹣2.∴矩形PQMN的周长=2(PM+PQ)=2(﹣m2﹣2m+3﹣2m﹣2)=﹣2m2﹣8m+2=﹣2(m+2)2+10,当m=﹣2时,矩形PQMN的周长最大,此时点C的坐标为(﹣2,1),CM=AM=1,=×1×1=;∴S△ACM②∵C(﹣2,1),∴P(﹣2,3),∴PC=3﹣1=2.∵点P、C、G、F为顶点的四边形是平行四边形,GF∥y轴,∴GF∥PC,且GF=PC.设G(x,x+3),则F(x,﹣x2﹣2x+3),当点F在点G的上方时,﹣x2﹣2x+3﹣(x+3)=2,解得x=﹣1或x=﹣2(舍去),当x=﹣1时,﹣x2﹣2x+3=4,即F1(﹣1,4);当点F在点G的下方时,x+3﹣(﹣x2﹣2x+3)=2,解得x=或x=,当x=时,﹣x2﹣2x+3=;当x=时,﹣x2﹣2x+3=,故F2(,),F3(,).综上所示,点F的坐标为F1(﹣1,4),F2(,),F3(,).G1(﹣1,2),G2(,2173+),G3(,2173-).当GF为对角线时G4(﹣3,0)。
2021年武汉市中考数学模拟试题2勤学早(二)及答案《勤学早》2021年武汉市四月调考逼真模拟试题(二)一、选择置l共10小置,每小题3分,共30分l 1.在-4,O,3,-8这四个数中,最大的数是( ) A.-4 B.O C.3 D.-8 210x+有意义的x的取值范围是( ) 7***-*****Ax B x≤- C_x≥ Dx≥77773不等式8-2x0的解集在数轴上表示正确的是( )4.下列事件是随机事件的是( ) A.购买一张福利彩票,中奖.B.在-个标准大气压下,加热到l00°C,水沸腾.C.有一名运动员奔跑的速度是50米/秒.D.在一个仅装着白球和黑球的袋中摸球,摸出红球.25.已知一元二次方程x-4x+3=0两根为x1、x2则x1+x2的值是( ) A.4 B.3 C.-4 D.-36.如图,空心圆柱的主视图是( )7.如图所示,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC.∠EBC= ∠E=60°, 若BE=6,DE=2,则BC的长度是( ) A.6 B.8 C.9 D.108.下列图形都是由同样大小的矩形按一定的规律组成,其中,第①个图形中一共有6个矩形,第②个图形中一共有11个矩形,……,按此规律,第⑥个图形中矩形的个数一共有()A.30个B.25个C.28个D.31个9.某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按四个等级进行统计,其中A级:90分-100分;B级:75分-89分;c级:60分-74分;D级:60分以T(D级为不合格),将统计结果绘制如下两幅统计图,则以下四个结论:①D级学生的人数占全班总人数的百分比为4%;②扇形统计图中c级所在的扇形圆心角的度数为72。
;③该班学生体育测试成绩的中位数落在c等级内;④若该校九年级学生共有500人,估计这次考试中合格的学生共有480人,其中结论正确的个数有( ) A.1个B.2个C.3个D.4个10.如图,梯形ABCD中,AB//DC,AB上BC,AB=2cm,CD=4cm .以BC上一点0为圆心的圆经过A、D两点,且∠AOD=90°.则圆心O 到弦AD的距离是( )A.6cm B10 cm C.23 cm D.25cm二、填空题(共6小分,每小题3分,共18分)11。
2021年湖北省武汉市中考数学模拟试卷一、选择题(共10小题).1.实数﹣2020的相反数是()A.2020B.﹣2020C.2021D.﹣20212.下列x的值能使二次根式有意义的是()A.﹣2B.﹣1C.0D.13.下列事件中,是必然事件的是()A.从一个只有红球的盒子里摸出一个球是红球B.买一张电影票,座位号是5的倍数C.掷一枚质地均匀的硬币,正面向上D.走过一个红绿灯路口时,前方正好是红灯4.下列微信表情图标属于轴对称图形的是()A.B.C.D.5.如图是一个空心圆柱体,其主视图是()A.B.C.D.6.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.B.C.D.7.若两个点(x1,﹣2),(x2,4)均在反比例函数y=的图象上,且x1>x2,则k的值可以是()A.4B.3C.2D.18.某快递公司每天上午7:00﹣8:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,下列说法正确的个数为:()①15分钟后,甲仓库内快件数量为180件;②乙仓库每分钟派送快件数量为4件;③8:00时,甲仓库内快件数为400件;④7:20时,两仓库快递件数相同.A.1个B.2个C.3个D.4个9.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.410.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成.第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图形有10个正三角形,…依此规律,若第n个图案有2020个三角形,则n=()A.670B.672C.673D.676二、填空题(共6小题).11.化简二次根式的结果是.12.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是.13.计算:=.14.在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=1,BC=5,则对角线BD =.15.抛物线y=ax2+bx﹣3(a≠0)与x轴有两个交点,且交点位于y轴两侧,则下列关于这个二次函数的说法正确的有.(填序号)①a>0;②若b>0,则当x>0时,y随x的增大而增大;③a+b<3;④一元二次方程ax2+bx﹣1=0的两根异号.16.如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是.三、解答题(本大题共8小题,共72分,解答应写出必要的演算步骤、文字说明或证明过程)17.计算:[a3•a5+(3a4)2]÷a2.18.如图,已知AD⊥BC于点D,E是延长线BA上一点,且EC⊥BC于点C,若∠ACE=∠E.求证:AD平分∠BAC.19.为了解本校九年级学生期末数学考试情况,小亮在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如图统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有人?在如图扇形统计图中A等级所对应的圆心角度数为度.(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?20.如图,在平面直角坐标系中,每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)画出△ABC关于x轴对称的△A1B1C1,并写出C1点的坐标;(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,并写出B2点的坐标.21.如图,在△ABC中,AB=BC,以AB为直径的⊙O交BC于点D,交AC于点F,过点C作CE∥AB,与过点A的切线相交于点E,连接AD.(1)求证:AD=AE.(2)若AB=10,sin∠DAC=,求AD的长.22.某超市购进一批时令水果,成本为10元/千克,根据市场调研发现,这种水果在未来30天的销售单价m(元/千克)与时间x(天)之间的函数关系式为m=x+20(1≤x≤30,x为整数),且其日销售量y(千克)与时间x(天)之间的函数关系如图所示:(1)求每天销售这种水果的利润W(元)与x(天)之间的函数关系式;(2)问哪一天销售这种水果的利润最大?最大日销售利润为多少?23.在平行四边形ABCD中,点E、F分别在边AB、BC上,DE、AF交于点M.(1)如图1,E为AB的中点,AF⊥BC交BC于点F,过点E作EN⊥AF交AF于点N,,直接写出的值是;(2)如图2,∠B=90°,∠ADE=∠BAF,求证:△AEM∽△AFB;(3)如图3,∠B=60°,AB=AD,∠ADE=∠BAF,求证:.24.如图1,直线L:y=﹣x+1与x轴,y轴分别交于点B,点E,抛物线L1:y=ax2+bx+c 经过点B,点A(﹣3,0)和点C(0,﹣3),并与直线L交于另一点D.(1)求抛物线L1的解析式;(2)如图2,点P为x轴上一动点,连接AD,AC,CP,当∠PCA=∠ADB时,求点P 的坐标;(3)如图3,将抛物线L1平移,使其顶点是坐标原点O,得到抛物线L2,将直线DB向下平移经过坐标原点O,交抛物线L2于另一点F,点M(,0),点N是L2上且位于第一象限内一动点,MN交L2于Q点,QR∥x轴分别交OF,ON于S,R,试说明:QS与SR存在一个确定的数量关系.参考答案一、选择题(共10小题).1.实数﹣2020的相反数是()A.2020B.﹣2020C.2021D.﹣2021解:实数﹣2020的相反数是:2020.故选:A.2.下列x的值能使二次根式有意义的是()A.﹣2B.﹣1C.0D.1解:由题意得,x﹣1≥0,解得,x≥1,故x的值可以为1,故选:D.3.下列事件中,是必然事件的是()A.从一个只有红球的盒子里摸出一个球是红球B.买一张电影票,座位号是5的倍数C.掷一枚质地均匀的硬币,正面向上D.走过一个红绿灯路口时,前方正好是红灯解:A、从一个只有红球的盒子里摸出一个球是红球,是必然事件;B、买一张电影票,座位号是5的倍数,是随机事件;C、掷一枚质地均匀的硬币,正面向上,是随机事件;D、走过一个红绿灯路口时,前方正好是红灯,是随机事件.故选:A.4.下列微信表情图标属于轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,本选项不合题意;B、不是轴对称图形,本选项不合题意;C、是轴对称图形,本选项符合题意;D、不是轴对称图形,本选项不合题意.故选:C.5.如图是一个空心圆柱体,其主视图是()A.B.C.D.解:从前面观察物体可以发现:它的主视图应为矩形,又因为该几何体为空心圆柱体,故中间的两条棱在主视图中应为虚线,故选:D.6.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.B.C.D.解:根据题意画图如下:共有12种等可能数,其中恰好选中甲、乙两位选手的有2种,则恰好选中甲、乙两位选手的概率是=;故选:C.7.若两个点(x1,﹣2),(x2,4)均在反比例函数y=的图象上,且x1>x2,则k的值可以是()A.4B.3C.2D.1解:∵两个点(x1,﹣2),(x2,4)中的﹣2<4,x1>x2,∴反比例函数y=的图象经过第二、四象限,∴k﹣2<0,解得k<2.观察各选项,只有选项D符合题意.故选:D.8.某快递公司每天上午7:00﹣8:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,下列说法正确的个数为:()①15分钟后,甲仓库内快件数量为180件;②乙仓库每分钟派送快件数量为4件;③8:00时,甲仓库内快件数为400件;④7:20时,两仓库快递件数相同.A.1个B.2个C.3个D.4个解:由题意结合图象可知:15分钟后,甲仓库内快件数量为130件,故①说法错误;甲仓库揽收快件的速度为:(130﹣40)÷15=6(件/分),所以8:00时,甲仓库内快件数为:40+6×60=400(件),故③说法正确;60﹣15=45(分),即45分钟乙仓库派送快件数量为180件,所以乙仓库每分钟派送快件的数量为:180÷45=4(件),故②说法正确;所以乙仓库快件的总数量为:60×4=240(件),设x分钟后,两仓库快递件数相同,根据题意得:240﹣4x=40+6x,解得x=20,即7:20时,两仓库快递件数相同,故④说法正确.所以说法正确的有②③④共3个.故选:C.9.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.4解:连接OD,交AC于F,∵D是的中点,∴OD⊥AC,AF=CF,∴∠DFE=90°,∵OA=OB,AF=CF,∴OF=BC,∵AB是直径,∴∠ACB=90°,在△EFD和△ECB中∴△EFD≌△ECB(AAS),∴DF=BC,∴OF=DF,∵OD=3,∴OF=1,∴BC=2,在Rt△ABC中,AC2=AB2﹣BC2,∴AC===4,故选:D.10.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成.第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图形有10个正三角形,…依此规律,若第n个图案有2020个三角形,则n=()A.670B.672C.673D.676解:∵第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+1=10个三角形,…∴第n个图案有(3n+1)个三角形.根据题意可得:3n+1=2020,解得:n=673,故选:C.二、填空题(本大题共有6小题,每小题3分,共18分,只需要将结果直接填写在答题卡对应题号处的横线上)11.化简二次根式的结果是3.解:==3.故答案为:3.12.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是 4.5h.解:将数据重新排列为:3,3,4,5,5,6,所以这组数据的中位数为=4.5(h),故答案为:4.5h.13.计算:=﹣1.解:=﹣==﹣1.故答案为:﹣1.14.在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=1,BC=5,则对角线BD =2.解:∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵AB⊥AC,∴∠BAC=90°,∴AC===2,∴OA=AC=,∴OB===,∴BD=2OB=2;故答案为:2.15.抛物线y=ax2+bx﹣3(a≠0)与x轴有两个交点,且交点位于y轴两侧,则下列关于这个二次函数的说法正确的有①②④.(填序号)①a>0;②若b>0,则当x>0时,y随x的增大而增大;③a+b<3;④一元二次方程ax2+bx﹣1=0的两根异号.解:设抛物线与x轴的交点为(x1,0)、(x2,0),∵两个交点在y轴两侧,∴x1•x2<0,即<0,∴a>0,因此①符合题意;当x=0时,y=﹣3,抛物线与y轴交点为(0,﹣3),当b>0时,而a>0,对称轴在y轴的左侧,在对称轴右侧,y随x的增大而增大,因此②符合题意;当x=1时,y=a+b﹣3的值无法确定,故③不符合题意,一元二次方程ax2+bx﹣1=0的两根就是一元二次方程ax2+bx﹣3=﹣2的两根,实际上就是抛物线y=ax2+bx﹣3,与直线y=﹣2的两个交点的横坐标,当抛物线的对称轴位于y 轴的左侧时,a、b同号,此时一元二次方程ax2+bx﹣1=0的两根异号,故④符合题意;故答案是:①②④.16.如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是.解:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2﹣x,∵AE2+AM2=EM2,∴(2﹣x)2+t2=x2,解得x=+1,∴DE=+1,∵折叠矩形纸片ABCD,使点D落在AB边的点M处,∴EF⊥DM,∠ADM+∠DEF=90°,∵EG⊥AD,∴∠DEF+∠FEG=90°,∴∠ADM=∠FEG,∴tan∠ADM=,∴FG=,∵CG=DE=+1,∴CF=+1,∴S四边形CDEF=(CF+DE)×1=t+1.故答案为:t+1.三、解答题(本大题共8小题,共72分,解答应写出必要的演算步骤、文字说明或证明过程)17.计算:[a3•a5+(3a4)2]÷a2.解:原式=(a8+9a8)÷a2=10a8÷a2=10a6.18.如图,已知AD⊥BC于点D,E是延长线BA上一点,且EC⊥BC于点C,若∠ACE=∠E.求证:AD平分∠BAC.【解答】证明:∵AD⊥BC于点D,EC⊥BC于点C,∴AD∥EC,∴∠BAD=∠E,∠DAC=∠ACE,∵∠ACE=∠E,∴∠BAD=∠DAC,即AD平分∠BAC.19.为了解本校九年级学生期末数学考试情况,小亮在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如图统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有40人?在如图扇形统计图中A等级所对应的圆心角度数为45度.(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?解:(1)这次随机抽取的学生共有20÷50%=40(人),扇形统计图中A等级所对应的圆心角度数为360°×=45°,故答案为:40、45;(2)B等级人数为40×27.5%=11(人),补全图形如下:(3)这次九年级学生期末数学考试成绩为优秀的学生人数大约有1200×=480(人).20.如图,在平面直角坐标系中,每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)画出△ABC关于x轴对称的△A1B1C1,并写出C1点的坐标;(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,并写出B2点的坐标.解:(1)如图,△A1B1C1,即为所求,C1点的坐标为(3,﹣1);(2)如图,△A2B2C2,即为所求,B2点的坐标为(0,1).21.如图,在△ABC中,AB=BC,以AB为直径的⊙O交BC于点D,交AC于点F,过点C作CE∥AB,与过点A的切线相交于点E,连接AD.(1)求证:AD=AE.(2)若AB=10,sin∠DAC=,求AD的长.【解答】(1)证明:∵AE与⊙O相切,AB是⊙O的直径∴∠BAE=90°,∠ADB=90°,∴∠ADC=90°,∵CE∥AB,∴∠BAE+∠E=180°,∴∠E=90°,∴∠E=∠ADB,∵在△ABC中,AB=BC,∴∠BAC=∠BCA,∵∠BAC+∠EAC=90°,∠ACE+∠EAC=90°,∴∠BAC=∠ACE,∴∠BCA=∠ACE,在△ADC和△AEC中,,∴△ADC≌△AEC(AAS),∴AD=AE;(2)解:连接BF,如图所示:∵∠CBF=∠DAC,∠AFB=90°,∴∠CFB=90°,sin∠CBF==sin∠DAC=,∵AB=BC=10,∴CF=2,∵BF⊥AC,∴AC=2CF=4,在Rt△ACD中,sin∠DAC==,∴CD=×4=4,∴AD===8.22.某超市购进一批时令水果,成本为10元/千克,根据市场调研发现,这种水果在未来30天的销售单价m(元/千克)与时间x(天)之间的函数关系式为m=x+20(1≤x≤30,x为整数),且其日销售量y(千克)与时间x(天)之间的函数关系如图所示:(1)求每天销售这种水果的利润W(元)与x(天)之间的函数关系式;(2)问哪一天销售这种水果的利润最大?最大日销售利润为多少?解:(1)由题意设销售数量y=kx+b(k≠0),把(10,55),(26,39)代入函数解析式得:,解得:,∴y=﹣x+65,∴W=y(m﹣10)=(﹣x+65)(x+20﹣10)=﹣x2+x+650(1≤x≤30,x为整数).∴每天销售这种水果的利润W(元)与x(天)之间的函数关系式为W=﹣x2+x+650(1≤x≤30,x为整数);(2)∵W=﹣x2+x+650,∴抛物线的对称轴为直线x=﹣=22.5,∵a=﹣<0,1≤x≤30,x为整数,∴当x=22或x=23时,W取得最大值,最大值为:(﹣22+65)(×22+10)=43×21=903(元).∴第22或23天销售这种水果的利润最大,最大日销售利润为903元.23.在平行四边形ABCD中,点E、F分别在边AB、BC上,DE、AF交于点M.(1)如图1,E为AB的中点,AF⊥BC交BC于点F,过点E作EN⊥AF交AF于点N,,直接写出的值是;(2)如图2,∠B=90°,∠ADE=∠BAF,求证:△AEM∽△AFB;(3)如图3,∠B=60°,AB=AD,∠ADE=∠BAF,求证:.解:(1)∵EN⊥AF,BF⊥AF,∴EN∥BF,又∵E为AB的中点,∴BF=2EN,∵,∴,∴,故答案为:;(2)证明:∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,∴∠BAD=∠ABC=90°,∵∠ADE=∠BAF,∴∠BAD﹣∠ADE=∠ABC﹣∠BAF,∴∠AED=∠AFB,又∵∠BAF=∠MAE,∴△AEM∽△AFB;(3)证明:如图,连接AC,过点B作BP∥AC交AF的延长线于点P,∴△BFP∽△CFA,∴,∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,∵∠ABC=60°,∴∠PBC=∠ACB=60°,∴∠ABP=120°,∴∠DAE=∠ABP,在△ADE与△BAP中,,∴△ADE≌△BAP(ASA),∴AE=BP,又∵AC=AD,∴.24.如图1,直线L:y=﹣x+1与x轴,y轴分别交于点B,点E,抛物线L1:y=ax2+bx+c 经过点B,点A(﹣3,0)和点C(0,﹣3),并与直线L交于另一点D.(1)求抛物线L1的解析式;(2)如图2,点P为x轴上一动点,连接AD,AC,CP,当∠PCA=∠ADB时,求点P 的坐标;(3)如图3,将抛物线L1平移,使其顶点是坐标原点O,得到抛物线L2,将直线DB向下平移经过坐标原点O,交抛物线L2于另一点F,点M(,0),点N是L2上且位于第一象限内一动点,MN交L2于Q点,QR∥x轴分别交OF,ON于S,R,试说明:QS与SR存在一个确定的数量关系.解:(1)令y=0,有y=﹣x+1=0,得x=1,∴B(1,0),把点A(﹣3,0)、B(1,0)和点C(0,﹣3)代入y=ax2+bx+c中,得,解得,,∴抛物线L1的解析式为:y=x2+2x﹣3;(2)由,得,,∴D(﹣4,5),∵y=﹣x+1,∴E(0,1),B(1,0),∴OB=OE,∴∠OBD=45°.∴BD=5.∵A(﹣3,0),C(0,﹣3),∴OA=OC,AC=3,AB=4.∴∠OAC=45°,∴∠OBD=∠OAC.如图2,①当点P在点A的右边,∠PCA=∠ADB时,△PAC∽△ABD.∴,∴,∴AP=,∴;②当点P在点A的左边,∠PCA=∠ADB时,记此时的点P为P2,则有∠P2CA=∠P1CA.过点A作x轴的垂线,交P2C于点K,则∠CAK=∠CAP1,又AC公共边,∴△CAK≌△CAP1(ASA)∴AK=AP1=,∴K(﹣3,﹣),∴直线CK:y=﹣x﹣3,∴P2(﹣15,0).P的坐标:(﹣,0)或(﹣15,0);(3)QS=SR.理由如下:∵将抛物线L1平移,使其顶点是坐标原点O,得到抛物线L2,将直线DB向下平移经过坐标原点O,交抛物线L2于另一点F,∴抛物线L2的解析式为y=x2,直线OF的解析式为:y=﹣x,不妨设N(n,n2),∵点M(,0),∴直线MN的解析式为:y=,同理,直线ON的解析式为y=nx,∵MN交L2于Q点,∴Q(,),∵QR∥x轴分别交OF,ON于S,R,∴S(﹣,),R(,),∴QS=,SR=,∴QS=SR.。
【6套打包】南昌市中考第二次模拟考试数学试卷(1)中学数学二模模拟试卷一、选择题(每小题4分,共40分):每小题有四个答案,其中有且只有一个答案是正侧的,请往答题卡上相应题目的答题区域内作答,答对的得4分,答错或不答一律得0分. 1.(4分)﹣2019的绝对值是()A.2019B.﹣2019C.0D.12.(4分)下面是几何体中,主视图是矩形的()A.B.C.D.3.(4分)下列事件是必然事件的是()A.随意翻到一本书的某页,页码是奇数B.抛掷一枚普通硬币,正面朝下C.抛得一枚普通正方体般子所得点数大于3D.太阳每天从东方升起4.(4分)目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为()A.4×108B.4×10﹣8C.0.4×108D.﹣4×108 5.(4分)在函数y=中,自变量x的取值范围是()A.x≥0B.x>0且x≠3C.x≥0且x≠3D.x>06.(4分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=55°,则∠3的度数等于()A.20°B.25°C.30°D.55°7.(4分)关于x的一元二次方程ax2+4x+2=0有两个相等的实数根,则a的值是()A.﹣2B.0C.1D.28.(4分)平面直角坐标系中,直线1:y=3x﹣1平移后得到新直线y=3x+1.则直线l的平移方式是()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位9.(4分)已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5B.﹣1或5C.1或﹣3D.1或310.(4分)如图,矩形ABCD长与宽的比为5:3,点E、F分别在边BC、CD上,tan∠1=,tan∠2=,则cos(∠1+∠2)的值为()A.B.C.D.二、填空题(每小题4分,共24分):在答题卡上相应题目的答题区域内作答.11.(4分)计算:()﹣1+20190=.12.(4分)已知a2﹣b2=8,且a﹣b=﹣4,则a+b=.13.(4分)如图,已知△ABC,D,E分别在AB,AC边上,且DE∥BC,AD=2,DB=3,△ADE面积是4,则四边形DBCE的面积是.14.(4分)生命在于运动,小张同学用手机软件记录了4月份每天行走的步数(单位:万步),将记录结果绘制成如下图所示的统计图.在这组数据中,众数是万步.15.(4分)若整数a使关于x的分式方程+=的解为正数,使关于y的不等式组无解,则所有满足条件的整数a的值之和是.16.(4分)如图,在平面直角坐标系xOy中,已知⊙A经过点E、B、0、C,点C在y轴上,点E在x轴上,点A的坐标为(﹣2,1),则sin∠OBC的值是.三、解答题(共86分):在答题卡上相应题目的答题区域内作答.17.(8分)解不等式:8﹣(x﹣3)≤2(x+1),并把解集在数轴上表示出来;18.(8分)先化简,再求值:(1﹣)÷,其中a=4.19.(8分)如图,已知△ABC.(1)用圆规和直尺作∠A的平分线AD(保留作图痕迹,不必证明).(2)在(1)的条件下,E是AB边上一点,连结DE,若∠AED=∠C.求证:AC=AE.20.(8分)《九章算术》是中国古代第一部数学专著,该书中记载了一个问题,“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价格是多少?21.(8分)如图,在平面直角坐标系中,一次函数为y1=﹣x+2与反比例函数y2=的图象交于A(﹣3.a)和B(b,﹣2)两点.(1)求a,b的值;(2)结合图象,当y1<y2时,直接写出x的取值范围.22.(10分)某校在一次大课间活动中,采用了三种活动形式:A跑步,B跳绳,C做操,该校学生都选择了一种形式参与活动.(1)小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,列出了两幅不完整的统计图,利用图中所提供的信息解决以下问题:①小杰共调查统计了人;②请将图1补充完整;③图2中C所占的圆心角的度数是;(2)假设被调查的甲、乙两名同学对这三项活动的选择是等可能的,请你用列表格或画树状图的方法求一下两人中至少有一个选择“A”的概率.23.(10分)如图,二次函数y=﹣(x﹣2)2+b的图象与x轴分别相交于A、B两点,点A 的坐标为(﹣1,0),与y轴交于点C.(1)求b的值;(2)抛物线顶点为E,EF⊥x轴于F点,点P(2,m)是线段EF上一动点,Q(n,0)在x轴上,且n<2,若∠QPC=90°,求n的最小值.24.(13分)如图,在直角三角形ABC中,∠C=90°,AC=2,BC=2,点O是边AB 上的一个动点,以点O为圆心,OA为半径作⊙O,与边AC交于点M.(1)如图1,当⊙O经过点C时,⊙O的直径是;(2)如图2,当⊙O与边BC相切时,切点为点N,试求⊙O与△ABC重合部分的面积;(3)如图3,当⊙O与边BC相交时,交点为E、F,设CM=x,就判断AE•AF是否为定值,若是,求出这个定值;若不是,请用含x的代数式表示.25.(13分)矩形ABCO,O(0,0),C(0.3),A(a.0),(a≥3),以A为旋转中心顺时针旋转矩形ABCO,得到矩形AFED.(1)如图1,当点D落在边BC上时,求BD的长;(2)如图2,当a=3时,矩形AFEO的对角线A任交矩形ABCO的边BC于点G,连结CE.若△CGE是等腰三角形,求直线BE的解析式.(3)如图3,当a=4时,矩形ABCD的对称中心为点M,△MED的面积为s,求s的取值范围.参考答案与试题解析一、选择题(每小题4分,共40分):每小题有四个答案,其中有且只有一个答案是正侧的,请往答题卡上相应题目的答题区域内作答,答对的得4分,答错或不答一律得0分. 1.(4分)﹣2019的绝对值是()A.2019B.﹣2019C.0D.1【分析】直接利用绝对值的性质得出答案.【解答】解:﹣2019的绝对值是:2019.故选:A.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.(4分)下面是几何体中,主视图是矩形的()A.B.C.D.【分析】先得到相应的几何体,找到从正面看所得到的图形即可.【解答】解:A、圆柱的主视图为矩形,符合题意;B、球体的主视图为圆,不合题意;C、圆锥的主视图为三角形,不合题意;D、圆台的主视图为等腰梯形,不合题意.故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(4分)下列事件是必然事件的是()A.随意翻到一本书的某页,页码是奇数B.抛掷一枚普通硬币,正面朝下C.抛得一枚普通正方体般子所得点数大于3D.太阳每天从东方升起【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A.随意翻到一本书的某页,页码是奇数,属于随机事件;B.抛掷一枚普通硬币,正面朝下,属于随机事件;C.抛得一枚普通正方体般子所得点数大于3,属于随机事件;D.太阳每天从东方升起,属于必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(4分)目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为()A.4×108B.4×10﹣8C.0.4×108D.﹣4×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:0.000 000 04=4×10﹣8,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(4分)在函数y=中,自变量x的取值范围是()A.x≥0B.x>0且x≠3C.x≥0且x≠3D.x>0【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x≥0且x﹣3≠0,解得:x≥0且x≠3.故选:C.【点评】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(4分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=55°,则∠3的度数等于()A.20°B.25°C.30°D.55°【分析】如图,由平行线的性质可求得∠4,结合三角形外角的性质可求得∠3.【解答】解:如图,∵a∥b,∴∠4=∠2=55°,又∵∠4=∠1+∠3,∴∠3=∠4﹣∠1=55°﹣30°=25°.故选:B.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.7.(4分)关于x的一元二次方程ax2+4x+2=0有两个相等的实数根,则a的值是()A.﹣2B.0C.1D.2【分析】方程ax2+4x+2=0有两个相等的实数根,利用一元二次方程根的判别式△=b2﹣4ac=0即可求解【解答】解:依题意,方程ax2+4x+2=0有两个相等的实数根∴△=b2﹣4ac=16﹣8a=0,得a=2故选:D.【点评】此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2﹣4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0 时,方程有两个相等的实数根;③当△<0 时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.8.(4分)平面直角坐标系中,直线1:y=3x﹣1平移后得到新直线y=3x+1.则直线l的平移方式是()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位【分析】利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【解答】解:∵将直线l:y=3x﹣1平移后,得到直线:y=3x+1,∴3x﹣1+a=3x+1,解得:a=2,故将l向上平移2个单位长度.故选:C.【点评】此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.9.(4分)已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5B.﹣1或5C.1或﹣3D.1或3【分析】由解析式可知该函数在x=h时取得最小值1,x>h时,y随x的增大而增大;当x<h时,y随x的增大而减小;根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍);③若1<h<3时,当x=h时,y取得最小值为1,不是5,∴此种情况不符合题意,舍去.综上,h的值为﹣1或5,故选:B.【点评】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.10.(4分)如图,矩形ABCD长与宽的比为5:3,点E、F分别在边BC、CD上,tan∠1=,tan∠2=,则cos(∠1+∠2)的值为()A.B.C.D.【分析】设AB=3a=CD,AD=BC=5a,可求CF=2a=BE,EC=AB=3a,由“SAS”可证△ABE≌△ECF,可得AE=EF,∠1=∠FEC,可求∠EAF=45°,即可求cos(∠1+∠2)的值.【解答】解:连接EF∵矩形ABCD长与宽的比为5:3,∴设AB=3a=CD,AD=BC=5a,∵tan∠1==,tan∠2==,∴BE=2a,DF=a,∴CF=2a=BE,EC=AB=3a,且∠B=∠C=90°∴△ABE≌△ECF(SAS)∴AE=EF,∠1=∠FEC∵∠1+∠AEB=90°∴∠AEB+∠FEC=90°∴∠AEF=90°,且AE=EF∴∠EAF=45°∴∠1+∠2=45°∴cos(∠1+∠2)=故选:B.【点评】本题考查了矩形的性质,全等三角形的性质和判定,锐角三角函数,证明△ABE ≌△ECF是本题的关键.二、填空题(每小题4分,共24分):在答题卡上相应题目的答题区域内作答.11.(4分)计算:()﹣1+20190=4.【分析】直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案.【解答】解:原式=3+1=4.故答案为:4.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(4分)已知a2﹣b2=8,且a﹣b=﹣4,则a+b=﹣2.【分析】已知第一个等于左边利用平方差公式化简,将第二个等式代入计算即可求出所求.【解答】解:∵a2﹣b2=(a+b)(a﹣b)=8,且a﹣b=﹣4,∴a+b=﹣2,故答案为:﹣2【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.13.(4分)如图,已知△ABC,D,E分别在AB,AC边上,且DE∥BC,AD=2,DB=3,△ADE面积是4,则四边形DBCE的面积是21.【分析】证明△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方计算即可.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=()2,即=,解得,S△ABC=25,∴四边形DBCE的面积=25﹣4=21,故答案为:21.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.14.(4分)生命在于运动,小张同学用手机软件记录了4月份每天行走的步数(单位:万步),将记录结果绘制成如下图所示的统计图.在这组数据中,众数是 1.4万步.【分析】根据众数的定义求解可得.【解答】解:这组数据的众数是1.4万步,故答案为:1.4.【点评】本题考查的是众数的定义及其求法,牢记定义是关键.15.(4分)若整数a使关于x的分式方程+=的解为正数,使关于y的不等式组无解,则所有满足条件的整数a的值之和是7.【分析】表示出分式方程的解,由分式方程解为正数,得到a的取值范围;不等式组变形后,根据不等式组无解,确定出a的范围,进而求出a的值,得到所有满足条件的整数a的值之和.【解答】解:分式方程去分母得:2a﹣4=x﹣2解得:x=2a﹣2由分式方程的解为正数,得到:2a﹣2>0,2a﹣2≠2∴a>1且a≠2不等式组整理得:∵不等式组无解,∴3﹣2a≥﹣5∴a≤4∴综上,a的范围为1<a≤4且a≠2∴整数a=3,4∴所有满足条件的整数a的值之和是7故答案为:7【点评】本题考查了分式方程的解以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.解题时注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.16.(4分)如图,在平面直角坐标系xOy中,已知⊙A经过点E、B、0、C,点C在y轴上,点E在x轴上,点A的坐标为(﹣2,1),则sin∠OBC的值是.【分析】连接EC,由∠COE=90°,根据圆周角定理可得:EC是⊙A的直径,求出OE 和OC,根据勾股定理求出EC,解直角三角形求出即可.【解答】解:过A作AM⊥x轴于M,AN⊥y轴于N,连接EC,∵∠COE=90°,∴EC是⊙A的直径,即EC过O,∵A(﹣2,1),∴OM=2,ON=1,∵AM⊥x轴,x轴⊥y轴,∴AM∥OC,同理AN∥OE,∴N为OC中点,M为OE中点,∴OE=2AN=4,OC=2AM=2,由勾股定理得:EC==2,∵∠OBC=∠OEC,∴sin∠OBC=sin∠OEC===.故答案为.【点评】此题考查了圆周角定理,勾股定理,坐标与图形性质,以及锐角三角函数定义,熟练掌握定理是解本题的关键.三、解答题(共86分):在答题卡上相应题目的答题区域内作答.17.(8分)解不等式:8﹣(x﹣3)≤2(x+1),并把解集在数轴上表示出来;【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:8﹣(x﹣3)≤2(x+1),8﹣x+3≤2x+2﹣3x≤﹣9∴原不等式的解集为:x≥3,在数轴上表示不等式的解集:【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能根据不等式的性质求出不等式的解集是解此题的关键.18.(8分)先化简,再求值:(1﹣)÷,其中a=4.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:(1﹣)÷===,当a=4时,原式==4.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.(8分)如图,已知△ABC.(1)用圆规和直尺作∠A的平分线AD(保留作图痕迹,不必证明).(2)在(1)的条件下,E是AB边上一点,连结DE,若∠AED=∠C.求证:AC=AE.【分析】(1)利用基本作图作AD平分∠BAC;(2)利用“ASA”证明△ACD≌△AED得到AC=AE.【解答】解:(1)如图,AD为求作;(2)如图,∵AD平分∠CAB,∴∠CAD=∠EAD,在△ACD和△AED中,∴△ACD≌△AED(ASA),∴AC=AE.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形全等的判定与性质.20.(8分)《九章算术》是中国古代第一部数学专著,该书中记载了一个问题,“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价格是多少?【分析】设有x人,物品价值y元,根据题意可得,8×人数﹣3=物品价值,7×人数+4=物品价值,据此列方程组求解.【解答】解:设共有x人,每件物品的价格为y元,依题意得:解得答:共有7人,每件物品的价格为53元.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.21.(8分)如图,在平面直角坐标系中,一次函数为y1=﹣x+2与反比例函数y2=的图象交于A(﹣3.a)和B(b,﹣2)两点.(1)求a,b的值;(2)结合图象,当y1<y2时,直接写出x的取值范围.【分析】(1)将A、B点坐标代入y1=﹣x+2即可求得a、b的值;(2)根据解得A、B的坐标,结合图象即可求得.【解答】解:(1)把A(﹣3.a)和B(b,﹣2)代入y1=﹣x+2得,a=﹣×(﹣3)+2=4,﹣2=﹣b+2,则b=6;(2)∵A(﹣3,4),B(6,﹣2),∴当y1<y2时,x的取值范围是﹣3<x<0或x>6.【点评】本题主要考查了一次函数与反比例函数交点问题,解题时注意:一次函数与反比例函数交点坐标同时满足一次函数与反比例函数解析式.22.(10分)某校在一次大课间活动中,采用了三种活动形式:A跑步,B跳绳,C做操,该校学生都选择了一种形式参与活动.(1)小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,列出了两幅不完整的统计图,利用图中所提供的信息解决以下问题:①小杰共调查统计了160人;②请将图1补充完整;③图2中C所占的圆心角的度数是45°;(2)假设被调查的甲、乙两名同学对这三项活动的选择是等可能的,请你用列表格或画树状图的方法求一下两人中至少有一个选择“A”的概率.【分析】(1)①用参与B项目的人数除以它所占的百分比得到调查的总人数;②用总人数乘以参加A项目的人数的百分比得到参与A项目的人数,然后补全条形统计图;③用360度乘参与C项目的百分比得到以图2中C所占的圆心角的度数;(2)画树状图展示9种等可能的结果数,找出两人中至少有一个选择“A”的结果数,然后根据概率公式求解.【解答】解:(1)①40÷25%=160,所以小杰共调查统计了160人;②参加A项目的人数为160×62.5%=100(人),图1补充完整为:③图2中C所占的圆心角的度数=360°×=45°;故答案为160;45°;(2)画树状图为:共有9种等可能的结果数,其中两人中至少有一个选择“A”的结果数为5,所以两人中至少有一个选择“A”的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.23.(10分)如图,二次函数y=﹣(x﹣2)2+b的图象与x轴分别相交于A、B两点,点A 的坐标为(﹣1,0),与y轴交于点C.(1)求b的值;(2)抛物线顶点为E,EF⊥x轴于F点,点P(2,m)是线段EF上一动点,Q(n,0)在x轴上,且n<2,若∠QPC=90°,求n的最小值.【分析】(1)将点A的坐标代入二次函数表达式,即可求解;(2)利用tan∠MCP=tan∠QPF,则,即可求解.【解答】解:(1)将点A的坐标代入二次函数表达式得:0=﹣(﹣1﹣2)2+b,解得:b=9;(2)过点C作CM⊥EF,垂足为M,∴∠CMP=∠CPQ=∠PFQ=90°∴∠MCP=∠QPF,∴tan∠MCP=tan∠QPF,∴,∴n=m2﹣m+2=(m﹣)2﹣,∵n<2,∴0≤m<5,∴当时,n的最小值为﹣.【点评】本题考查的是二次函数综合运用,涉及到函数最值、解直角三角形等知识,难度不大.24.(13分)如图,在直角三角形ABC中,∠C=90°,AC=2,BC=2,点O是边AB 上的一个动点,以点O为圆心,OA为半径作⊙O,与边AC交于点M.(1)如图1,当⊙O经过点C时,⊙O的直径是4;(2)如图2,当⊙O与边BC相切时,切点为点N,试求⊙O与△ABC重合部分的面积;(3)如图3,当⊙O与边BC相交时,交点为E、F,设CM=x,就判断AE•AF是否为定值,若是,求出这个定值;若不是,请用含x的代数式表示.【分析】(1)由AB是圆的直径知∠C=90°,再根据勾股定理求解可得;(2)连结ON,OM,先证tan∠B==知∠B=30°,∠A=60°,∠BON=60°,∠AON=120°,设ON=OA=r,证△OBN∽△ABC得=,据此求出r的值,再计算出2S扇形MON和S△AOM,从而得出答案;(3)设⊙O与AB的另一交点为G,连结GE,OM,证△AGE∽△AFC得=,由AC=2,CM=x知AM=2﹣x,再证∠AOM=60°得OA=AM=2﹣x,AG=2AO=4﹣2x,从而知AE•AF=AC•AG=8﹣4x,据此得出答案.【解答】解:(1)∵AB是圆的直径,∴∠C=90°,∵AC=2,BC=2,∴AB=4故答案为4;(2)如图2,连结ON,OM,∵⊙O与边BC相切于点N,∴ON⊥BC在Rt△ABC中,∠C=90°,AC=2,BC=2,∴tan∠B==,∴∠B=30°,∠A=60°,∠BON=60°,∠AON=120°,∵OA=OM,∴∠OMA=∠A=60°,∴∠AOM=60°,∠MON=60°,设ON=OA=r,∵∠BNO=∠C=90°,∠B=∠B,∴△OBN∽△ABC,∴=,即=,解得r=,∴2S扇形MON=2×=,∵S△AOM=×()2=,∴⊙O与△ABC重合部分的面积是+.(3)AE•AF不为定值,理由如下:如图3,设⊙O与AB的另一交点为G,连结GE,OM,∵AG是⊙O的直径,∴∠GEA=90°=∠C,在圆内接四边形AGEF中,∠AGE+∠AFE=180°,∵∠AFC+∠AFE=180°,∴∠AGE=∠AFC,∴△AGE∽△AFC,∴=,∵AC=2,CM=x,∴AM=2﹣x,∵∠OMA=∠OAM=60°,∴∠AOM=60°,∴OA=AM=2﹣x,AG=2AO=4﹣2x,∴AE•AF=AC•AG=8﹣4x,∵x不是定值∴AE•AF不是定值.【点评】本题是圆的综合问题,解题的关键是掌握圆周角定理、勾股定理、三角函数的运用、相似三角形的判定与性质及切线的性质等知识点.25.(13分)矩形ABCO,O(0,0),C(0.3),A(a.0),(a≥3),以A为旋转中心顺时针旋转矩形ABCO,得到矩形AFED.(1)如图1,当点D落在边BC上时,求BD的长;(2)如图2,当a=3时,矩形AFEO的对角线A任交矩形ABCO的边BC于点G,连结CE.若△CGE是等腰三角形,求直线BE的解析式.(3)如图3,当a=4时,矩形ABCD的对称中心为点M,△MED的面积为s,求s的取值范围.【分析】(1)如图1,当点D落在边BC上时,BD2=AD2﹣AB2,即可求解;(2)分CG=EG、CE=GE、CE=CG三种情况分别求解;(3)MN≤MA+AD,当射线DA经过点M时,MN=MA+AD=,当边AD经过点M,即P与M重合时,MN=PD,MN=PD=AD﹣AP=4﹣=,即可求解.【解答】解:(1)如图1,在矩形ABCO中,∠B=90°当点D落在边BC上时,BD2=AD2﹣AB2,∵C(0,3),A(a,0)∴AB=OC=3,AD=AO=a,∴BD=;(2)如图2,连结AC,∵a=3,∴OA=OC=3,∴矩形ABCO是正方形,∴∠BCA=45°,设∠ECG的度数为x,∴AE=AC,∴∠AEC=∠ACE=45°+x,①当CG=EG时,x=45°+x,解得x=0,不合题意,舍去;②当CE=GE时,如图2,∠ECG=∠EGC=x∵∠ECG+∠EGC+∠CEG=180°,∴x+x+(45°+x)=180°,解得x=45°,∴∠AEC=∠ACE=90°,不合题意,舍去;③当CE=CG时,∠CEG=∠CGE=45°+x,∵∠ECG+∠EGC+∠CEG=180°,∴x+(45°+x)+(45°+x)=180°,解得x=30°,∴∠AEC=∠ACE=75°,∠CAE=30°如图3,连结OB,交AC于点Q,过E作EH⊥AC于H,连结BE,∴EH=AE=AC,BQ=AC,∴EH=BQ,EH∥BQ且∠EHQ=90°∴四边形EHQB是矩形∴BE∥AC,设直线BE的解析式为y=﹣x+b,∵点B(3,3)在直线上,则b=6,∴直线BE的解析式为y=﹣x+6;(3)如图4,∵a=4,点M是矩形ABCO的对称中心∴AO=4,AM=,以A为圆心,分别以AO、AM为半径作圆,AD交小圆于P,过M作MN⊥ED于N∴DE切大圆于D∴MN≥PD根据“垂线段最短”,MN≤MA+AD,如图5,当射线DA经过点M时,MN=MA+AD=,∴s的最大值是ED×(MA+AD)=;如图6,当边AD经过点M,即P与M重合时,MN=PD,MN=PD=AD﹣AP=4﹣=,∴s的最小值是ED×PD=,s的取值范围是.【点评】本题考查的是一次函数综合运用,涉及到正方形和等腰三角形性质、圆的基本知识,其中(2),要注意分类求解,避免遗漏.中学数学二模模拟试卷一、选择题(每小题4分,共40分):每小题有四个答案,其中有且只有一个答案是正侧的,请往答题卡上相应题目的答题区域内作答,答对的得4分,答错或不答一律得0分. 1.(4分)﹣2019的绝对值是()A.2019B.﹣2019C.0D.12.(4分)下面是几何体中,主视图是矩形的()A.B.C.D.3.(4分)下列事件是必然事件的是()A.随意翻到一本书的某页,页码是奇数B.抛掷一枚普通硬币,正面朝下C.抛得一枚普通正方体般子所得点数大于3D.太阳每天从东方升起4.(4分)目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为()A.4×108B.4×10﹣8C.0.4×108D.﹣4×1085.(4分)在函数y=中,自变量x的取值范围是()A.x≥0B.x>0且x≠3C.x≥0且x≠3D.x>06.(4分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=55°,则∠3的度数等于()A.20°B.25°C.30°D.55°7.(4分)关于x的一元二次方程ax2+4x+2=0有两个相等的实数根,则a的值是()A.﹣2B.0C.1D.28.(4分)平面直角坐标系中,直线1:y=3x﹣1平移后得到新直线y=3x+1.则直线l的平移方式是()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位9.(4分)已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5B.﹣1或5C.1或﹣3D.1或310.(4分)如图,矩形ABCD长与宽的比为5:3,点E、F分别在边BC、CD上,tan∠1=,tan∠2=,则cos(∠1+∠2)的值为()A.B.C.D.二、填空题(每小题4分,共24分):在答题卡上相应题目的答题区域内作答.11.(4分)计算:()﹣1+20190=.12.(4分)已知a2﹣b2=8,且a﹣b=﹣4,则a+b=.13.(4分)如图,已知△ABC,D,E分别在AB,AC边上,且DE∥BC,AD=2,DB=3,△ADE面积是4,则四边形DBCE的面积是.14.(4分)生命在于运动,小张同学用手机软件记录了4月份每天行走的步数(单位:万步),将记录结果绘制成如下图所示的统计图.在这组数据中,众数是万步.15.(4分)若整数a使关于x的分式方程+=的解为正数,使关于y的不等式组无解,则所有满足条件的整数a的值之和是.16.(4分)如图,在平面直角坐标系xOy中,已知⊙A经过点E、B、0、C,点C在y轴上,点E在x轴上,点A的坐标为(﹣2,1),则sin∠OBC的值是.三、解答题(共86分):在答题卡上相应题目的答题区域内作答.17.(8分)解不等式:8﹣(x﹣3)≤2(x+1),并把解集在数轴上表示出来;18.(8分)先化简,再求值:(1﹣)÷,其中a=4.19.(8分)如图,已知△ABC.(1)用圆规和直尺作∠A的平分线AD(保留作图痕迹,不必证明).(2)在(1)的条件下,E是AB边上一点,连结DE,若∠AED=∠C.求证:AC=AE.20.(8分)《九章算术》是中国古代第一部数学专著,该书中记载了一个问题,“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价格是多少?21.(8分)如图,在平面直角坐标系中,一次函数为y1=﹣x+2与反比例函数y2=的图象交于A(﹣3.a)和B(b,﹣2)两点.(1)求a,b的值;(2)结合图象,当y1<y2时,直接写出x的取值范围.22.(10分)某校在一次大课间活动中,采用了三种活动形式:A跑步,B跳绳,C做操,该校学生都选择了一种形式参与活动.(1)小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,列出了两幅不完整的统计图,利用图中所提供的信息解决以下问题:①小杰共调查统计了人;②请将图1补充完整;③图2中C所占的圆心角的度数是;(2)假设被调查的甲、乙两名同学对这三项活动的选择是等可能的,请你用列表格或画树状图的方法求一下两人中至少有一个选择“A”的概率.23.(10分)如图,二次函数y=﹣(x﹣2)2+b的图象与x轴分别相交于A、B两点,点A 的坐标为(﹣1,0),与y轴交于点C.(1)求b的值;(2)抛物线顶点为E,EF⊥x轴于F点,点P(2,m)是线段EF上一动点,Q(n,0)在x轴上,且n<2,若∠QPC=90°,求n的最小值.。
2020年湖北省中考数学各地区模拟试题分类(武汉市专版)(二)——《圆》一.选择题1.(2020•江岸区校级模拟)已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O的位置关系是()A.相离B.相交C.相切D.不确定2.(2020•武汉模拟)如图,AB是⊙O的直径,AB=a,点P在半径OA上,AP=b,过P 作PC⊥AB交⊙O于点C,在半径OB上取点Q,使得OQ=CP,DQ⊥AB交⊙O于点D,点C,D位于AB两侧,则弧AC与弧BD的弧长之和为()A.B.C.D.3.(2020•武汉模拟)在⊙O中内接四边形ABCD,其中A,C为定点,AC=8,B在⊙O 上运动,BD⊥AC,过O作AD的垂线,若⊙O的直径为10,则OE的最大值接近于()A.B.C.4 D.5 4.(2020•武昌区模拟)如图,正方形ABCD的边长为1,点E是AB边上的一点,将△BCE 沿着CE折叠得△FCE.若CF,CE恰好都与正方形ABCD的中心O为圆心的⊙O相切,则折痕CE的长为()A.2B.C.D.5.(2020•武汉模拟)如图,在等腰直角△ABC中,斜边AB的长度为8,以AC为直径作圆,点P为半圆上的动点,连接BP,取BP的中点M,则CM的最小值为()A.3B.2﹣C.﹣D.3﹣6.(2020•武汉模拟)如图,PA、PB为⊙O的切线,直线MN切⊙O且MN⊥PA.若PM =5,PN=4,则OM的长为()A.2 B.C.D.7.(2020•青山区模拟)如图,A,B,C,D为一直线上4个点,BC=3,△BCE为等边三角形,⊙O过A,D,E三点,且∠AOD=120°,设AB=x,CD=y,则y与x的函数关系式是()A.y=B.y=x C.y=3x+3 D.y=8.(2020•硚口区模拟)平面直角坐标系中,M点坐标为(﹣2,3),以2为半径画⊙M,则以下结论正确的是()A.⊙M与x轴相交,与y轴相切B.⊙M与x轴相切,与y轴相离C.⊙M与x轴相离,与y轴相交D.⊙M与x轴相离,与y轴相切9.(2020•武汉模拟)如图,在⊙O中,AB是直径,且AB=10,点D是⊙O上一点,点C 是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC,OP,CO.关于下列结论:①∠BAD=∠ABC;②GP =GD;③点P是△ACQ的外心;④点P是△AOC的内心;⑤若CB∥GD,则OP=.正确的个数有()A.2 B.3 C.4 D.0 10.(2020•武汉模拟)如图,BC为⊙O直径,弦AC=2,弦AB=4,D为⊙O上一点,I 为AD上一点,且DC=DB=DI,AI长为()A.B.C.D.二.填空题11.(2020•武汉模拟)如图,在⊙O中,弦AB=4,点C是上的动点(不为A,B),且∠ACB=120°,则CA+CB的最大值为.12.(2020•武汉模拟)如图,正方形的边长为8,剪去四个角后成为一个正八边形,则这个正八边形的面积为.13.(2020•武汉模拟)圆锥的侧面展开图是一个扇形,扇形的弧长为10πcm,扇形面积为65πcm2,则圆锥的高为.14.(2020•武汉模拟)正八边形半径为2,则正八边形的面积为.15.(2020•武汉模拟)如图,正方形ABCD中,AB=4,E,F分别是边AB,AD上的动点,AE=DF,连接DE,CF交于点P,过点P作PK∥BC,且PK=2,若∠CBK的度数最大时,则BK长为.16.(2020•武汉模拟)已知一个圆锥的高为6cm,半径为8cm,则这个圆锥的侧面积为.17.(2020•武汉模拟)正n边形内接于半径为R的圆,这个n边形的面积为3R2,则n等于.18.(2020•武汉模拟)如图,PA,PB分别与⊙O相切于A,B两点,∠P=70°,点C在劣弧AB上,则∠C=.19.(2020•武汉模拟)我国魏晋时期的数学家刘徽首创“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的周长,进而确定圆周率.某圆的半径为R,其内接正十二边形的周长为C.若R=,则C=,≈(结果精确到0.01,参考数据:≈2.449,≈1.414).三.解答题20.(2020•武汉模拟)如图,AB是⊙O的直径,CD与⊙O相切于D,作CH⊥AB于H,交⊙O于E,交AD于F,若AE∥CD.(1)求证:AE=EF;(2)若cos C=,AB=,求AF的长.21.(2020•青山区模拟)已知,⊙O过矩形ABCD的顶点D,且与AB相切于点E,⊙O 分别交BC,CD于H,F,G三点.(1)如图1,求证:BE﹣AE=CG;(2)如图2,连接DF,DE.若AE=3,AD=9,tan∠EDF=,求FC的值.22.(2020•武汉模拟)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E.F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,BF=2,求⊙O的半径.23.(2020•硚口区二模)如图,在Rt△ABC中,∠ACB=90°,以AB上的一点O为圆心,OA为半径作圆O,与BC相切于点D,交AB于点E,交AC于点F.(1)求证:DE=DF;(2)若CF:BE=4:5,求tan∠BDE的值.24.(2020•洛江区一模)如图①,AB为⊙O的直径,C为⊙O上一点,D为BC延长线一点,且BC=CD,直线CE与⊙O相切于点C,与AD相交于点E.(1)求证:CE⊥AD;(2)如图②,设BE与⊙O交于点F,AF的延长线与CE交于点P.①求证:∠PCF=∠CBF;②若PF=6,tan∠PEF=,求PC的长.参考答案一.选择题1.解:∵d=3<半径=4,∴直线与圆相交,故选:B.2.解:连接OC、OD,如图,∵CP⊥OA,DQ⊥OB,∴∠OPC=∠OQD=90°,在Rt△OPC和Rt△DQO中,∴Rt△OPC≌Rt△DQO(HL),∴∠POC=∠ODQ,而∠ODQ+∠DOQ=90°,∴∠POC+∠DOQ=90°,∴弧AC与弧BD的弧长之和==aπ.故选:B.3.解:如图,当点B与A重合时,连接CD.∵BD⊥AC,∴∠DAC=90°,∴CD是直径,∵OE⊥AD,∴AE=ED,∵OC=OD,∴OE=AC=4,此时OE的值最大,最大值为4∴OE的最大值为4,故选:C.4.解:连接OC,∵O为正方形ABCD的中心,∴∠DCO=∠BCO,∵CF与CE都为⊙O的切线,∴CO平分∠ECF,即∠FCO=∠ECO,∴∠DCO﹣∠FCO=∠BCO﹣∠ECO,即∠DCF=∠BCE,∵△BCE沿着CE折叠至△FCE,∴∠BCE=∠ECF,∴∠BCE=∠ECF=∠DCF=∠BCD=30°,在Rt△BEC中,cos∠ECB=,∴CE===,故选:B.5.解:如图,连接PA、PC,取AB、BC的中点E、F,连接EF、EM、FM,取EF的中点O,连接OM,OC,CM.∵AC是直径,∴∠APC=90°,∵BE=EA,BM=MP,∴EM∥PA,同理FM∥PC,∴∠BME=∠BPA,∠BMF=∠BPC,∴∠BME+∠BMF=∠BPA+∠BPC=90°,∴∠EMF=90°,∴点M的轨迹是,(EF为直径的半圆,图中红线部分)∵BC=AC,∠ACB=90°,AB=8,∴AC=BC=4,∵AE=EB,BF=CF=2,∴EF=AC=2,EF∥AC,∴∠EFB=∠EFC=∠ACB=90°,OE=OF=OM=,∴OC===,∵CM≥OC﹣OM,∴CM≥﹣故选:C.6.解:∵PA、PB为⊙O的切线,直线MN切⊙O于C,∴MB=MC,PA=PB,连接OC,OA,则四边形AOCN是正方形,设NC=OC=OA=AN=r,∵MN⊥PA,PM=5,PN=4,∴MN=3,∴CM=BM=3﹣r,∴5+3﹣r=4+r,解得:r=2,∴OC=2,CM=1,∴OM==,故选:D.7.解:连接AE,DE,∵∠AOD=120°,∴为240°,∴∠AED=120°,∵△BCE为等边三角形,∴∠BEC=60°;∴∠AEB+∠CED=60°;又∵∠EAB+∠AEB=∠EBC=60°,∴∠EAB=∠CED,∵∠ABE=∠ECD=120°;∴△ABE∽△ECD,∴=,即=,∴y=(0<x<6).8.解:∵M点坐标为(﹣2,3),∴点M到x轴的距离为3,到y轴的距离为2,∵⊙P的半径为2,∴圆心M到x轴的距离大于半径,到y轴的距离等于半径,故⊙M与x轴相离,与y轴相切,故选:D.9.解:不妨设∠BAD=∠ABC,则=,∵=,∴==,这个显然不符合题意,故①错误,连接OD,∵GD是⊙O的切线,∴OD⊥DG,∴∠ODG=90°,∴∠GDP+∠ODA=90°,∵GE⊥AB,∴∠AEP=90°,∴∠PAE+∠APE=90°,∵OA=OD,∴∠OAD=∠ODA,∵∠APE=∠GPD,∴∠GDP=∠GPD,∴GP=GD,故②正确,∵AB是直径,∴∠ACB=90°,∵∠ACP+∠BCE=90°,∠BCE+∠ABC=90°,∴∠ACE=∠ABC,∵=,∴∠CAP=∠ABC,∴∠PAC=∠PCA,∵∠AQC+∠CAP=90°,∠ACP+∠PCQ=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴PA=PQ,∵∠ACQ=90°,∴点P是△ACQ的外接圆的圆心,故③正确,∵与不一定相等,∴∠CAP与∠DAB不一定相等,∴点P不一定是△AOC的内心,故④错误,∵DG∥BC,OD⊥DG,∴OD⊥BC,∴=,∵=,∴==,∴∠AOC=∠COD=∠DOB=60°,∠CAD=∠DAB=30°∵OA=OC,∴△OAC是等边三角形,∵CE⊥OA,∴∠ACE=∠OCE,∴点P是△AOC的外心,∴OP=AP=PC===,故⑤错误,故选:A.10.解:如图,连接IC,作IE⊥AC于E,IF⊥AB于F,IG⊥BC于G.∵DB=DC,∴=,∠DBC=∠DCB,∴∠BAD=∠CAD,∵DI=DC,∴∠DIC=∠DCI,∵∠DIC=∠DAC+∠ACI,∠DCI=∠DCB+∠ICB,∠DBC=∠DAC,∴∠ICA=∠ICB,∴点I为△ABC内心,∴IE=IF=IG,∵BC是直径,∴∠BAC=90°,∴BC===2,∵S△ABC=•AB•AC=•IE•(AB+AC+BC),∴IE=3﹣,∵∠IAE=∠AIE=45°,∴AI=IE=3﹣,故选:D.二.填空题(共9小题)11.解:取优弧AB中点P,连接PC,PA,PB,延长CA至M,使MA=CB,连接PM.∵=,∴PA=PB,∵∠APB+∠ACB=180°,∠ACB=120°,∴∠APB=60°,∴△APB是等边三角形,∴∠ACP=∠ABP=60°,∵∠PAM+∠PAC=180°,∠PAC+∠PBC=180°,∴∠PAM=∠PBC,∵AM=BC,AP=BP,∴△MAP≌△CBP(SAS),∴PM=PC,∵∠PCM=60°∴△MPC为等边三角形,∴PC=CM.∴CA+CB=PC,过点P作PD⊥AB连接OB,∵△PAB是等边三角形,∴PD过圆心O,∠BPD=30°,∴BD=AB=2,在Rt△BDP中,DP=6,在Rt△BDO中,根据勾股定理得,(6﹣OB)2+(2)2=OB2∴OB=4,当PC为圆的直径时,CA+CB的最大值为8.故答案为8.12.解:设剪掉的等腰直角三角形的直角边为x,则由2x+x=8,解得x=4(2﹣),∴S=64﹣2(8﹣4)2=128﹣128,故答案为:128﹣128.13.解:设母线长为R,由题意得:65π=×10π×R,解得R=13cm.设圆锥的底面半径为r,则10π=2πr,解得:r=5,故圆锥的高为:=12故答案为:12.14.解:连接OA,OB,作AC⊥BO于点C,∵⊙O的半径为2,则⊙O的内接正八边形的中心角为:=45°,∴AC=CO=2,∴S△ABO=OB•AC=×2×2=2,∴S正八边形=8S△ABO=16,故答案为:16.15.解:∵正方形ABCD中,AD=CD,∠A=∠CDA=90°,∵AE=DF,∴△ADE≌△DCF(SAS),∴∠ADE=∠DCF,∵∠ADE+∠CDE=90°,∴∠DCF+∠CDE=90°,∴∠CPD=90°,∴点P在以CD为直径的半圆上运动,取CD的中点O,过O作OM⊥CD,且点M在CD的右侧,MO=2,连接OP,KM,∵PK∥BC,BC⊥CD,∴PK⊥CD,∴PK∥OM,PK=OM=2,∴四边形POMK是平行四边形,∵CD=AB=4,∴OP=CD=2,∴OP=OM,∴四边形POMK是菱形,∴点K在以M为圆心,半径=2的半圆上运动,当BK与⊙M相切时,∠CBK最大,∴∠BKM=90°,∵BM==2,∴BK==6,故答案为:6.16.解:这个圆锥的母线长为=10,所以这个圆锥的侧面积=×2π×8×10=80π(cm2).故答案为80πcm2.17.解:根据正n边形内接于半径为R的圆,则可将其分割成n个全等的等腰三角形,其中等腰三角形的腰长为圆的半径R,顶角为,∵n边形的面积为3R2,∴n××R×R×sin=3R2n sin=6解得n=12.故答案为12.18.解:连结OA、OB,D为优弧AB上一点,∠ADB为弧AB所对的圆周角,如图,∵PA,PB分别与⊙O相切于A,B两点,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB+∠P=180°,∴∠AOB=180°﹣70°=110°,∴∠D=∠AOB=55°,∴∠ACB=180°﹣∠D=125°.故答案为:125°.19.解:如图,△AOB中,∠AOB=30°,OA=OB=+,作AH⊥OB于H.则AH=OA=,OH=AH=,∴BH=OB﹣OH=,∴AB===2,∴正十二边形的周长C=12×2=24,∴=≈3.11,故答案我为24,3.11.三.解答题(共5小题)20.(1)证明:连接OD,如图1,∵CD与⊙O相切于D,∴OD⊥DC,∴∠ODA+∠ADC=90°,∵OA=OD,∴∠ODA=∠OAD,∴∠OAD+∠ADC=90°,又∵CH⊥AB,∴∠AHC=90°,∴∠OAD+∠AFH=90°,∴∠ADC=∠AFH,∵AE∥CD,∴∠ADC=∠EAF,∴∠EAF=∠AFH,∴AE=EF;(2)解:∵AE∥CD,∴∠C=∠E,∴cos∠C=cos∠E=,设EH=4x,AE=5x,则AH=3x,连接OE,如图2,∵AB=,∴OA=OE=,∵EH2+OH2=OE2,∴,解得x=1,∴AE=EF=5,EH=4,AH=3,∴HF=1,∴AF==.21.解:(1)连接OE,延长EO与CD交于点M,∵⊙O与AB相切于点E,∴OE⊥AB,∵四边形ABCD是矩形,∴∠A=∠B=∠C=∠D=90°,AB∥CD,∴EM⊥CD,∴∠EMD=∠EMC=90°,DM=GM,∴四边形AEMD和四边形BEMC都是矩形,∴AE=DM,BE=CM,∵CM﹣CG=GM,∴BE﹣AE=CG;(2)连接EO,延长EO交⊙O于点N,交CD于点M,连接OD,EF,FN,过点N作NH⊥BC,与BC的延长线交于点H,如图2,由(1)知,四边形AEMD为矩形,∴AE=DM=MG=3,AD=EM=9,设⊙O的半径为r,则OD=r,OM=9﹣r,∵OD2﹣OM2=DM2,∴r2﹣(9﹣r)2=32,解得,r=5,∴BH=EN=2r=10,∴CH=BH﹣BC=BH﹣AD=1,∵EN为⊙O的直径,∴∠EFN=90°,∵∠ENF=∠EDF,tan∠EDF=,∴tan∠ENF=,设EF=4x,则FN=3x,∵EF2+FN2=EN2,∴16x2+9x2=100,解得,x=2,或x=﹣2(舍),∴EF=8,FN=6,设CF=y,BE=HN=z,则BF=9﹣y,FH=y+1,∵∠EFN=90°,∠B=∠H=90°,∴∠BFE+∠HFN=∠BFE+∠BEF=90°,∴∠BEF=∠HFN,∴△BEF∽△HFN,∴,即,解得,y=,即CF=.22.解:(1)线BC与⊙O的位置关系是相切,理由是:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,即OD⊥BC,∵OD为半径,∴线BC与⊙O的位置关系是相切;(2)设⊙O的半径为R,则OD=OF=R,在Rt△BDO中,由勾股定理得:OB2=BD2+OD2,即(R+2)2=(2)2+R2,解得:R=4,即⊙O的半径是4.23.(1)证明:连接OD、EF交于点M,∵AE是⊙O的直径,∴∠AFE=∠90°=∠ACB,∴EF∥BC,又∵BC切⊙O于D,∴∠ODB=90°,∴∠OME=∠ODB=90°,即OD⊥EF,∴=,∴DE=DF;(2)解:∵EF∥BC,∴=,∴可设AF=8k,AE=10k,∴OA=OE=OD=5k,∵∠AFE=90°,∴EF==6k,又∵OD⊥EF,∴EM=FM=3k,∵OD⊥EF,∴OM==4k,∴DM=OD﹣OM=k,∵EF∥BC,∴∠BDE=∠FED,∴tan∠BDE=tan∠FED===.24.(1)证明:如图①,连结OC.∵直线CE与⊙O相切于点C,∴OC⊥CE,即∠OCE=90°.∵OA=OB,BC=CD,∴OC是△BDA的中位线.∴OC∥AD.∴∠CED=∠OCE=90°,即OC⊥AD;(2)①证明:如图②,作直径CG,连结FG,连结CF,∵CG是直径,点F在圆上,∴∠CFG=90°.∴∠G+∠FCG=90°.由(1)可知∠OCE=∠PCF+∠FCG=90°,∴∠G=∠PCF.又∵∠G=∠CBF,∴∠PCF=∠CBF;②如图②,连结AC.∵AB是直径,点F在圆上,∴∠AFB=∠PFE=90°=∠CEA.又∵∠EPF=∠APE,∴△PEF∽△PAE.∴=,即PE2=PF•PA.在直角△PEF中,tan∠PEF==,又∵PF=6,∴EF=8,由勾股定理,可求得PE=10.∵∠FBC=∠PCF=∠CAF,∠CPF=∠APC ∴△PCF∽△PAC.∴=,即PC2=PF×PA.∴PC2=PE2,则PC=PE=10.。
【6套打包】六安市中考第二次模拟考试数学试卷中学数学二模模拟试卷一、选择题(每小题3分,共30分)1.下列各组数的大小比较中,正确的是( * ).(A )21> (B )23->- (C )10-> (D )22> 2.下列计算正确的是( * ).(A )x x 1248=+ (B )y y =-44 (C )y y y =-34 (D )33=-x x 3.如图,如果︒=∠+∠18021,那么( * ). (A ) ︒=∠+∠18042 (B )︒=∠+∠18043(C ) ︒=∠+∠18031 (D )41∠=∠4. 图中各硬纸片,不可以沿虚线折叠成长方体纸盒的是( * ).① ② ③ ④ (A )①② (B )②③ (C )③④ (D )①④ 5.甲、乙两名同学在参加体育中考前各作了5次投掷实心球的测试,甲所测的成绩分别为10.2m ,9m ,9.4m ,8.2m ,9.2m ,乙所测得的成绩的平均数与甲相同且所测成绩的方差为0.72,那么( * ).(A )甲、乙成绩一样稳定 (B ) 甲成绩更稳定 (C )乙成绩更稳定 (D )不能确定谁的成绩更稳定 6. 若b a <,下列各式中不成立的是( * ).(A )b a 22< (B )b a 22-<- (C )22+<+b a (D )22-<-b a 7.下列函数的图象中,不经过第一象限的是( * ).(A )3+=x y (B )3-=x y (C ) 1+-=x y (D )1--=x y 8. 函数222++-=x x y 的顶点坐标是( * ).(A )(1,3) (B )(1-,3) (C )(1,-2) (D )(-1,2)9.如果点E ,F ,G ,H 分别是菱形ABCD 四边AB ,BC ,CD ,DA 上的中点,那么四边形EFGH 是( * ).(A )菱形 (B )矩形 (C )正方形 (D )以上都不是 10. 边长分别等于6 cm 、8 cm 、10cm 的三角形的内切圆的半径为( * )cm .(A) 3 (B )2 (C) 23 (D )6第二部分 非选择题(共120分)第3题二、填空题(本大题共6题,每小题3分,满分18分) 11.若代数式1-x 有意义,则实数x 的取值范围是= * .12.2015年4月8日,广东省扶贫基金会收到了88家爱心企业合计217000000元的捐赠.将217000000用科学记数法表示为 * . 13.分解因式:2ab a -= * .14. 在Rt △ABC 中,∠C =90°CB =8cm ,若斜边AB 的垂直平分线交CB 于点D ,CD =2cm ,则AD= * cm .15.已知命题“如果一个四边形是平行四边形,那么这个四边形是旋转对称图形.”,写出它的逆命题是 * ,该逆命题是 * 命题(填“真”或“假”). 16. 反比例函数xk y 11=与一次函数b x k y +=22的图象交于A (-2,-1)和B 两点,点B 的纵坐标为-3,若21y y <,则x 的取值范围是 * .三、解答题(本大题共9小题,共102 分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分) 解方程:213-=x x 18.(本小题满分9分)在□ABCD 中,点E ,F 分别在AB ,CD 上,且AE =CF . 求证:∠AED =∠BFC . 19.(本小题满分10分) 已知xy 2=,求22)5()y x y x y x -+-+(的值. 20.为测山高,在点A 处测得山顶D 的仰角为31°,从点A 向山方向前进140米到达点B ,在B 处测得山顶D 的仰角为62°(如图).(1)在所给的图②中尺规作图:过点D 作DC ⊥AB ,交AB 的延长线于点C ; (2)山高DC 是多少(结果取整数)?21.(本小题满分12分)第18题第20题图①图②31︒AD62︒B某校九年级在母亲节倡议“感恩母亲,做点家务”活动.为了解同学们在母亲节的周末做家务情况,年级随机调查了部分同学,并用得到的数据制成如下不完整的统计表.(1)统计表中的=x ,=y ; (2)被调查同学做家务时间的中位数是 小时,平均数是 小时;(3)年级要组织一次"感恩母亲“的主题级会,级长想从报名的4位同学中随机抽取2位同学在会上谈体会.据统计,报名的4人分别是母亲节的周末做家务1小时的1人、做家务1.5小时的2人、做家务2小时的1人.请你算算选上的2位同学恰好是一位做家务2小时和一位做家务1.5小时的概率. 22.(本小题满分12分) 已知关于x 的方程-2xmx 3-x 4-+m =0(m 为常数).(1)求证:方程有两个不相等的实数根;(2)设1x ,2x 是方程的两个实数根,且1x +2x =6.请求出方程的这两个实数根.23.(本小题满分12分)直线l 经过(2,3)和(-2,-1)两点,它还与 x 轴交于A 点,与y 轴交于C 点,与经过原点的直线OB 交于第三象限的B 点,且∠ABO =30°.求: (1)点A 、C 的坐标; (2)点B 的坐标.24.(本小题满分14分)已知关于x 的二次函数k x k k x y 2)43(22+--+=的图象与x 轴从左到右交于A ,B 两点,且这两点关于原点对称. (1)求k 的值;(2)在(1)的条件下,若反比例函数xmy =的图象与二次函数k x k k x y 2)43(22+--+=的图象从左到右交于Q ,R ,S 三点,且点Q 的坐标为(-1,第23题xy-1),点R (R x ,R y ),S (S x ,S y )中的纵坐标R y ,S y 分别是一元二次方程012=-+my y 的解,求四边形AQBS 的面积AQBS S 四边形;(3)在(1),(2)的条件下,在x 轴下方是否存在二次函数k x k k x y 2)43(22+--+=图象上的点P 使得PAB S ∆=2RAB S ∆,若存在,求出点P 的坐标;若不存在,请说明理由.25.(本小题满分14分)如图,正三角形ABC 内接于⊙O ,P 是BC 上的一点,且PC PB <,PA 交BC 于E ,点F 是PC 延长线上的点,PB CF =,13=AB ,4=PA . (1)求证ABP ∆≌ACF ∆; (2)求证AE PA AC ⋅=2; (3)求PB 和PC 的长.数学参考答案一.选择题(每小题3分,共30分) CCCCB BDABB二.填空题(本大题共6题,每小题3分,满分18分) 11.1≥x 12.8102.17⨯ 13.)1)(1(b b a +-14.615. 如果一个四边形是旋转对称图形,那么这个四边形是平行四边形. 假 16.2-<x 或032<<-x (说明:只答对2-<x 中学数学二模模拟试卷一.选择题(满分24分,每小题3分)F第25题1.下列计算正确的是()A.﹣=B.()﹣1=﹣C.÷=2 D.3﹣=3 2.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.4.如果关于x的方程(a﹣5)x2﹣4x﹣1=0有两个实数根,则a满足的条件是()A.a≠5 B.a≥1 C.a>1且a≠5 D.a≥1且a≠5 5.如图,AB是半圆O的直径,C是OB的中点,过点C作CD⊥AB,交半圆于点D,则与的长度的比为()A.1:2 B.1:3 C.1:4 D.1:56.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm7.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x 人,女孩有y人,则下列方程组正确的是()A.B.C.D.8.如图,一次函数y1=ax+b和反比例函数y2=的图象相交于A,B两点,则使y1>y2成立的x取值范围是()A.﹣2<x<0或0<x<4 B.x<﹣2或0<x<4C.x<﹣2或x>4 D.﹣2<x<0或x>4二.填空题(满分24分,每小题3分)9.分解因式:x2﹣9x=.10.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.11.已知关于x,y的方程组的解满足x+y=5,则k的值为.12.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是.13.如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O 于D,连接BE.设∠BEC=α,则sinα的值为.14.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是.15.已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,AD为BC边上的高,动点P在AD上,从点A出发,沿A→D方向运动,设AP=x,△ABP的面积为S1,矩形PDFE的面积为S 2,y=S1+S2,则y与x的关系式是.三.解答题17.(6分)解不等式组并写出它的整数解.18.(6分)解分式方程:﹣1=.19.(6分)在边长为1的小正方形组成的网格中建立如图所示的平面直角坐标系,△ABC 为格点三角形(顶点是网格线的交点).(1)画出△ABC先向上平移2个单位长度,再向左平移3个单位长度得到的△A1B1C1;(2)以点O为位似中心,在第一象限画出△ABC的位似图形△A2B2C2,使△A2B2C2与△ABC的位似比为2:1.20.(6分)重庆市物价局发出通知,从2011年2月18日起降低部分抗生素药品和神经系统类药品最高零售价格,共涉及162个品种,某药房对售出的抗生素药品A、B、C、D、E 的销量进行统计,绘制成如下统计图:(1)补全折线统计图;(2)计算2月份售出各类抗生素销量的极差为;(3)2月份王老师到药房买了抗生素类药D、E各一盒,若D中有两盒是降价药,E中有一盒是降价药,请用画树状图或列表法求出他买到两盒都是降价药的概率.21.(6分)如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF ⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.22.(6分)在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1:2,且里程数之比为2:1.为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.四.解答题23.(8分)如图,AB是⊙O的直径,点C是圆上一点,点D是的中点,延长AD至点E,使得AB=BE.(1)求证:△ACF∽△EBF;(2)若BE=10,tan E=,求CF的长.24.(8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣x+3交AB,BC分别于点M,N,反比例函数y =的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.25.(10分)某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y(千克)与销售单价x(元)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?26.(10分)如图,在直角坐标系中,直线y=﹣x+b与x轴正半轴,y轴正半轴分别交于点A,B,点F(2,0),点E在第一象限,△OEF为等边三角形,连接AE,BE(1)求点E的坐标;(2)当BE所在的直线将△OEF的面积分为3:1时,求S的面积;△AEB(3)取线段AB的中点P,连接PE,OP,当△OEP是以OE为腰的等腰三角形时,则b=(直接写出b的值)参考答案一.选择题1.解:(A)原式=﹣,故A错误;(B)原式==,故B错误;(D)原式=2,故D错误;故选:C.2.解:原数据的2、3、3、4的平均数为=3,中位数为=3,众数为3,方差为×[(2﹣3)2+(3﹣3)2×2+(4﹣3)2]=0.5;新数据2、3、3、3、4的平均数为=3,中位数为3,众数为3,方差为×[(2﹣3)2+(3﹣3)2×3+(4﹣3)2]=0.4;∴添加一个数据3,方差发生变化,故选:D.3.解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.4.解:由题意知,△=(﹣4)2﹣4×(a﹣5)×(﹣1)≥0,且a﹣5≠0,解得:a≥1且a≠5,故选:D.5.解:连接OD,∵AB是半圆O的直径,C是OB的中点,∴OD=2OC,∵CD⊥AB,∴∠DOB=60°,∴∠AOD=120°,∴与的长度的比为,故选:A.6.解:设DE=xcm,则BE=DE=x,AE=AB﹣BE=10﹣x,在Rt △ADE 中,DE 2=AE 2+AD 2,即x 2=(10﹣x )2+16.解得:x =5.8.故选:C .7.解:设男孩x 人,女孩有y 人,根据题意得出:,解得:,故选:C .8.解:观察函数图象可发现:当x <﹣2或0<x <4时,一次函数图象在反比例函数图象上方,∴使y 1>y 2成立的x 取值范围是x <﹣2或0<x <4.故选:B .二.填空题9.解:原式=x •x ﹣9•x =x (x ﹣9),故答案为:x (x ﹣9).10.解:∵袋中装有6个黑球和n 个白球,∴袋中一共有球(6+n )个,∵从中任摸一个球,恰好是黑球的概率为,∴=, 解得:n =2.故答案为:2.11.解:,②×2﹣①,得3x =9k +9,解得x =3k +3,把x =3k +3代入①,得3k +3+2y =k ﹣1,解得y =﹣k ﹣2,∵x+y=5,∴3k+3﹣k﹣2=5,解得k=2.故答案为:212.解:设扇形的半径为r,圆心角为n°.由题意:•π•r=π,∴r=4,∴=π,∴n=120,故答案为120°13.解:连结BC,如图,∵AB是半圆的直径,∴∠ACB=90°,在Rt△ABC中,AC=8,AB=10,∴BC==6,∵OD⊥AC,∴AE=CE=AC=4,在Rt△BCE中,BE==2,∴sinα===.故答案为:.14.解:如图,过点O作OC⊥AB的延长线于点C,则AC =4,OC =2,在Rt △ACO 中,AO =,∴sin ∠OAB =. 故答案为:. 15.解:如图:连接BO ,CO ,∵△ABC 的边BC =4cm ,⊙O 是其外接圆,且半径也为4cm ,∴△OBC 是等边三角形,∴∠BOC =60°,∴∠A =30°.若点A 在劣弧BC 上时,∠A =150°.∴∠A =30°或150°.故答案为:30°或150°.16.解:∵在Rt △ABC 中,∠BAC =90°,AB =AC =2,AD 为BC 边上的高,AP =x ,∴∠BAD =∠CAD =45°,BC =4,AD =2,∴AP =PE =x ,PD =AD ﹣AP =2﹣x ,∴y =S 1+S 2=+(2﹣x )•x =﹣x 2+3x 故答案为:y ═﹣x 2+3x .三.解答题17.解:,由①得:x≥﹣1,由②得:x<2,∴不等式组的解集为﹣1≤x<2,则不等式组的整数解为﹣1,0,1.18.解:方程两边同时乘以(x+2)(x﹣2)得:(x﹣2)2﹣(x+2)(x﹣2)=16解得:x=﹣2,检验:当x=﹣2时,(x+2)(x﹣2)=0,∴x=﹣2是原方程的增根,原方程无解.19.解:(1)△A1B1C1;如图所示.(2)△A2B2C2如图所示.20.解:(1)2月份销售抗生素的总数是:6÷30%=20(盒),则E类的销售盒数是:20×10%=2(盒),则A类销售的盒数是:20﹣5﹣6﹣3﹣2=4(盒),;(2)极差是:6﹣2=4(盒);(3)若D中有两盒是降价药都用D表示,另一盒不降价的记作D,E中有一盒是降价药1,记作E,另一盒记作E1则共有20种情况,他买到两盒都是降价药的有6种情况,则概率是:=.21.证明:(1)∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=CE=BC,∴四边形AECD是菱形;(2)过A作AH⊥BC于点H,∵∠BAC=90°,AB=6,BC=10,∴AC=,∵,∴AH=,∵点E是BC的中点,BC=10,四边形AECD是菱形,∴CD=CE=5,∵S=CE•AH=CD•EF,▱AECD∴EF=AH=.法二:连接ED交AC于O,由题意得:AC=8,计算得ED=6..计算得5EF=6✘4,EF=.22.解:(1)设道路硬化的里程数是x千米,则道路拓宽的里程数是(50﹣x)千米,根据题意得:x≥4(50﹣x),解得:x≥40.答:原计划今年1至5月,道路硬化的里程数至少是40千米.(2)设2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数分别为2x 千米、x千米,2x+x=45,x=15,2x=30,设每千米的道路硬化和道路拓宽的经费分别为y万元、2y万元,30y+15×2y=780,y=13,2y=26,2018年1至5月:道路硬化的里程为40千米,道路拓宽的里程为10千米,由题意得:13(1+a%)•40(1+5a%)+26(1+5a%)•10(1+8a%)=780(1+10a%),设a%=m,则520(1+m)(1+5m)+260(1+5m)(1+8m)=780(1+10m),10m2﹣m=0,m 1=,m2=0(舍),∴a=10.四.解答题23.(1)证明:∵点D是的中点,∴∠CAD=∠BAE.∵AB=BE,∴∠BAE=∠E,∴∠CAF=∠E.又∵∠AFC=∠EFB,∴△ACF∽△EBF;(2)解:∵AB为⊙O的直径,∴∠ACB=90°.∵△ACF∽△EBF,∴∠EBF=∠ACF=90°.∵BE=10,tan E=,∴BF=BE•tan E=.∵∠CAF=∠E,∴AC=3CF.在Rt△ABC中,∠ACB=90°,AB=BE=10,AC=3CF,BC=CF+,∴AB2=AC2+BC2,即102=9CF2+(CF+)2,解得:CF=或CF=﹣(舍去).∴CF的长为.24.解:(1)∵B(4,2),四边形OABC是矩形,∴OA=BC=2,将y=2代入y=﹣x+3得:x=2,∴M(2,2),将x=4代入y=﹣x+3得:y=1,∴N(4,1),把M的坐标代入y=得:k=4,∴反比例函数的解析式是y=;(2)由题意可得:S四边形BMON =S矩形OABC﹣S△AOM﹣S△CON=4×2﹣×2×2﹣×4×1=4;∵△OPM的面积与四边形BMON的面积相等,∴OP×AM=4,∵AM=2,∴OP=4,∴点P的坐标是(0,4)或(0,﹣4).25.解:(1)将点(15,200)、(10,300)代入一次函数表达式:y=kx+b得:,解得:,即:函数的表达式为:y=﹣20x+500,(25>x≥6);(2)设:该品种蜜柚定价为x元时,每天销售获得的利润w最大,则:w=y(x﹣6)=﹣20(x﹣25)(x﹣6),∵﹣20<0,故w有最大值,当x=﹣==15.5时,w的最大值为1805元;(3)当x=15.5时,y=190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;设:应定销售价为x元时,既能销售完又能获得最大利润w,由题意得:50(500﹣20x)≥12000,解得:x≤13,w=﹣20(x﹣25)(x﹣6),当x=13时,w=1680,此时,既能销售完又能获得最大利润.26.解:(1)如图1,过E作EC⊥x轴于C,∵点F(2,0),∴OF=2,∵△OEF为等边三角形,∴OC=OF=1,Rt△OEC中,∠EOC=60°,∴∠OEC=30°,∴EC=,∴E(1,);(2)当BE所在的直线将△OEF的面积分为3:1时,存在两种情况:①如图2,S△OED :S△EDF=3:1,即OD:DF=3:1,∴D(,0),∵E(1,),∴ED的解析式为:y=﹣2x+3,∴B(0,3),A(3,0),∴OB=OA=3,∴S△AEB =S△AOB﹣S△EOB﹣S△AOE=×3×3﹣×3×1﹣×3×=﹣﹣=9﹣;②S△OED :S△EDF=1:3,即OD:DF=1:3,∴D(,0),∵E(1,),∴ED的解析式为:y=2x﹣,∴B(0,﹣),∵点B在y轴正半轴上,∴此种情况不符合题意;综上,S△AEB的面积是9﹣;(3)存在两种情况:①如图3,OE=EP,过E作ED⊥y轴于D,作EM⊥AB于M,作EG⊥OP于G,∵△AOB是等腰直角三角形,P是AB的中点,∴OP⊥AB,∴∠EGP=∠GPM=∠EMP=90°,∴四边形EGPM是矩形,∵OE=EP,∴EM=PG=OP=AB=,∴S△AOB =S△BOE+S△AOE+S△ABE,=++,b=2+2.②如图4,当OE=OP时,则OE=OP=2,∵△AOB是等腰直角三角形,P是AB的中点,∴AB=2OP=4,∴OB=2,即b=2,故答案为:2+2或2.中学数学二模模拟试卷一.选择题(满分24分,每小题3分)1.下列计算正确的是()A.﹣=B.()﹣1=﹣C.÷=2 D.3﹣=32.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.4.如果关于x的方程(a﹣5)x2﹣4x﹣1=0有两个实数根,则a满足的条件是()A.a≠5 B.a≥1 C.a>1且a≠5 D.a≥1且a≠5 5.如图,AB是半圆O的直径,C是OB的中点,过点C作CD⊥AB,交半圆于点D,则与的长度的比为()A.1:2 B.1:3 C.1:4 D.1:56.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm7.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x 人,女孩有y人,则下列方程组正确的是()A.B.C.D.8.如图,一次函数y1=ax+b和反比例函数y2=的图象相交于A,B两点,则使y1>y2成立的x取值范围是()A.﹣2<x<0或0<x<4 B.x<﹣2或0<x<4C.x<﹣2或x>4 D.﹣2<x<0或x>4二.填空题(满分24分,每小题3分)9.分解因式:x2﹣9x=.10.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.11.已知关于x,y的方程组的解满足x+y=5,则k的值为.12.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是.13.如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O 于D,连接BE.设∠BEC=α,则sinα的值为.14.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是.15.已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,AD为BC边上的高,动点P在AD上,从点A出发,沿A→D方向运动,设AP=x,△ABP的面积为S1,矩形PDFE的面积为S 2,y=S1+S2,则y与x的关系式是.三.解答题17.(6分)解不等式组并写出它的整数解.18.(6分)解分式方程:﹣1=.19.(6分)在边长为1的小正方形组成的网格中建立如图所示的平面直角坐标系,△ABC 为格点三角形(顶点是网格线的交点).(1)画出△ABC先向上平移2个单位长度,再向左平移3个单位长度得到的△A1B1C1;(2)以点O为位似中心,在第一象限画出△ABC的位似图形△A2B2C2,使△A2B2C2与△ABC的位似比为2:1.20.(6分)重庆市物价局发出通知,从2011年2月18日起降低部分抗生素药品和神经系统类药品最高零售价格,共涉及162个品种,某药房对售出的抗生素药品A、B、C、D、E 的销量进行统计,绘制成如下统计图:(1)补全折线统计图;(2)计算2月份售出各类抗生素销量的极差为;(3)2月份王老师到药房买了抗生素类药D、E各一盒,若D中有两盒是降价药,E中有一盒是降价药,请用画树状图或列表法求出他买到两盒都是降价药的概率.21.(6分)如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF ⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.22.(6分)在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1:2,且里程数之比为2:1.为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.四.解答题23.(8分)如图,AB是⊙O的直径,点C是圆上一点,点D是的中点,延长AD至点E,使得AB=BE.(1)求证:△ACF∽△EBF;(2)若BE=10,tan E=,求CF的长.24.(8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣x+3交AB,BC分别于点M,N,反比例函数y =的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.25.(10分)某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y(千克)与销售单价x(元)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?26.(10分)如图,在直角坐标系中,直线y=﹣x+b与x轴正半轴,y轴正半轴分别交于点A,B,点F(2,0),点E在第一象限,△OEF为等边三角形,连接AE,BE(1)求点E的坐标;(2)当BE所在的直线将△OEF的面积分为3:1时,求S的面积;△AEB(3)取线段AB的中点P,连接PE,OP,当△OEP是以OE为腰的等腰三角形时,则b=(直接写出b的值)参考答案一.选择题1.解:(A)原式=﹣,故A错误;(B)原式==,故B错误;(D)原式=2,故D错误;故选:C.2.解:原数据的2、3、3、4的平均数为=3,中位数为=3,众数为3,方差为×[(2﹣3)2+(3﹣3)2×2+(4﹣3)2]=0.5;新数据2、3、3、3、4的平均数为=3,中位数为3,众数为3,方差为×[(2﹣3)2+(3﹣3)2×3+(4﹣3)2]=0.4;∴添加一个数据3,方差发生变化,故选:D.3.解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.4.解:由题意知,△=(﹣4)2﹣4×(a﹣5)×(﹣1)≥0,且a﹣5≠0,解得:a≥1且a≠5,故选:D.5.解:连接OD,∵AB是半圆O的直径,C是OB的中点,∴OD=2OC,∵CD⊥AB,∴∠DOB=60°,∴∠AOD=120°,∴与的长度的比为,故选:A.6.解:设DE=xcm,则BE=DE=x,AE=AB﹣BE=10﹣x,在Rt △ADE 中,DE 2=AE 2+AD 2, 即x 2=(10﹣x )2+16. 解得:x =5.8. 故选:C .7.解:设男孩x 人,女孩有y 人,根据题意得出:,解得:,故选:C .8.解:观察函数图象可发现:当x <﹣2或0<x <4时,一次函数图象在反比例函数图象上方,∴使y 1>y 2成立的x 取值范围是x <﹣2或0<x <4. 故选:B . 二.填空题9.解:原式=x •x ﹣9•x =x (x ﹣9), 故答案为:x (x ﹣9).10.解:∵袋中装有6个黑球和n 个白球, ∴袋中一共有球(6+n )个,∵从中任摸一个球,恰好是黑球的概率为, ∴=,解得:n =2. 故答案为:2. 11.解:,②×2﹣①,得3x =9k +9,解得x =3k +3,把x =3k +3代入①,得3k +3+2y =k ﹣1,解得y =﹣k ﹣2,∵x+y=5,∴3k+3﹣k﹣2=5,解得k=2.故答案为:212.解:设扇形的半径为r,圆心角为n°.由题意:•π•r=π,∴r=4,∴=π,∴n=120,故答案为120°13.解:连结BC,如图,∵AB是半圆的直径,∴∠ACB=90°,在Rt△ABC中,AC=8,AB=10,∴BC==6,∵OD⊥AC,∴AE=CE=AC=4,在Rt△BCE中,BE==2,∴sinα===.故答案为:.14.解:如图,过点O作OC⊥AB的延长线于点C,则AC =4,OC =2,在Rt △ACO 中,AO =,∴sin ∠OAB =. 故答案为:. 15.解:如图:连接BO ,CO ,∵△ABC 的边BC =4cm ,⊙O 是其外接圆,且半径也为4cm ,∴△OBC 是等边三角形,∴∠BOC =60°,∴∠A =30°.若点A 在劣弧BC 上时,∠A =150°.∴∠A =30°或150°.故答案为:30°或150°.16.解:∵在Rt △ABC 中,∠BAC =90°,AB =AC =2,AD 为BC 边上的高,AP =x ,∴∠BAD =∠CAD =45°,BC =4,AD =2,∴AP =PE =x ,PD =AD ﹣AP =2﹣x ,∴y =S 1+S 2=+(2﹣x )•x =﹣x 2+3x 故答案为:y ═﹣x 2+3x .三.解答题17.解:,由①得:x≥﹣1,由②得:x<2,∴不等式组的解集为﹣1≤x<2,则不等式组的整数解为﹣1,0,1.18.解:方程两边同时乘以(x+2)(x﹣2)得:(x﹣2)2﹣(x+2)(x﹣2)=16解得:x=﹣2,检验:当x=﹣2时,(x+2)(x﹣2)=0,∴x=﹣2是原方程的增根,原方程无解.19.解:(1)△A1B1C1;如图所示.(2)△A2B2C2如图所示.20.解:(1)2月份销售抗生素的总数是:6÷30%=20(盒),则E类的销售盒数是:20×10%=2(盒),则A类销售的盒数是:20﹣5﹣6﹣3﹣2=4(盒),;(2)极差是:6﹣2=4(盒);(3)若D中有两盒是降价药都用D表示,另一盒不降价的记作D,E中有一盒是降价药1,记作E,另一盒记作E1则共有20种情况,他买到两盒都是降价药的有6种情况,则概率是:=.21.证明:(1)∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=CE=BC,∴四边形AECD是菱形;(2)过A作AH⊥BC于点H,∵∠BAC=90°,AB=6,BC=10,∴AC=,∵,∴AH=,∵点E是BC的中点,BC=10,四边形AECD是菱形,∴CD=CE=5,∵S=CE•AH=CD•EF,▱AECD∴EF=AH=.法二:连接ED交AC于O,由题意得:AC=8,计算得ED=6..计算得5EF=6✘4,EF=.22.解:(1)设道路硬化的里程数是x千米,则道路拓宽的里程数是(50﹣x)千米,根据题意得:x≥4(50﹣x),解得:x≥40.答:原计划今年1至5月,道路硬化的里程数至少是40千米.(2)设2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数分别为2x 千米、x千米,2x+x=45,x=15,2x=30,设每千米的道路硬化和道路拓宽的经费分别为y万元、2y万元,30y+15×2y=780,y=13,2y=26,2018年1至5月:道路硬化的里程为40千米,道路拓宽的里程为10千米,由题意得:13(1+a%)•40(1+5a%)+26(1+5a%)•10(1+8a%)=780(1+10a%),设a%=m,则520(1+m)(1+5m)+260(1+5m)(1+8m)=780(1+10m),10m2﹣m=0,m 1=,m2=0(舍),∴a=10.四.解答题23.(1)证明:∵点D是的中点,∴∠CAD=∠BAE.∵AB=BE,∴∠BAE=∠E,∴∠CAF=∠E.又∵∠AFC=∠EFB,∴△ACF∽△EBF;(2)解:∵AB为⊙O的直径,∴∠ACB=90°.∵△ACF∽△EBF,∴∠EBF=∠ACF=90°.∵BE=10,tan E=,∴BF=BE•tan E=.∵∠CAF=∠E,∴AC=3CF.在Rt△ABC中,∠ACB=90°,AB=BE=10,AC=3CF,BC=CF+,∴AB2=AC2+BC2,即102=9CF2+(CF+)2,解得:CF=或CF=﹣(舍去).∴CF的长为.24.解:(1)∵B(4,2),四边形OABC是矩形,∴OA=BC=2,将y=2代入y=﹣x+3得:x=2,∴M(2,2),将x=4代入y=﹣x+3得:y=1,∴N(4,1),把M的坐标代入y=得:k=4,∴反比例函数的解析式是y=;(2)由题意可得:S四边形BMON =S矩形OABC﹣S△AOM﹣S△CON=4×2﹣×2×2﹣×4×1=4;∵△OPM的面积与四边形BMON的面积相等,∴OP×AM=4,∵AM=2,∴OP=4,∴点P的坐标是(0,4)或(0,﹣4).25.解:(1)将点(15,200)、(10,300)代入一次函数表达式:y=kx+b得:,解得:,即:函数的表达式为:y=﹣20x+500,(25>x≥6);(2)设:该品种蜜柚定价为x元时,每天销售获得的利润w最大,则:w=y(x﹣6)=﹣20(x﹣25)(x﹣6),∵﹣20<0,故w有最大值,当x=﹣==15.5时,w的最大值为1805元;(3)当x=15.5时,y=190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;设:应定销售价为x元时,既能销售完又能获得最大利润w,由题意得:50(500﹣20x)≥12000,解得:x≤13,w=﹣20(x﹣25)(x﹣6),当x=13时,w=1680,此时,既能销售完又能获得最大利润.26.解:(1)如图1,过E作EC⊥x轴于C,∵点F(2,0),∴OF=2,∵△OEF为等边三角形,∴OC=OF=1,Rt△OEC中,∠EOC=60°,∴∠OEC=30°,∴EC=,∴E(1,);(2)当BE所在的直线将△OEF的面积分为3:1时,存在两种情况:①如图2,S△OED :S△EDF=3:1,即OD:DF=3:1,∴D(,0),∵E(1,),∴ED的解析式为:y=﹣2x+3,∴B(0,3),A(3,0),∴OB=OA=3,∴S△AEB =S△AOB﹣S△EOB﹣S△AOE=×3×3﹣×3×1﹣×3×=﹣﹣=9﹣;②S△OED :S△EDF=1:3,即OD:DF=1:3,∴D(,0),∵E(1,),∴ED的解析式为:y=2x﹣,∴B(0,﹣),∵点B在y轴正半轴上,∴此种情况不符合题意;综上,S△AEB的面积是9﹣;(3)存在两种情况:①如图3,OE=EP,过E作ED⊥y轴于D,作EM⊥AB于M,作EG⊥OP于G,∵△AOB是等腰直角三角形,P是AB的中点,∴OP⊥AB,∴∠EGP=∠GPM=∠EMP=90°,∴四边形EGPM是矩形,∵OE=EP,∴EM=PG=OP=AB=,∴S△AOB =S△BOE+S△AOE+S△ABE,=++,b=2+2.②如图4,当OE=OP时,则OE=OP=2,∵△AOB是等腰直角三角形,P是AB的中点,∴AB=2OP=4,∴OB=2,即b=2,故答案为:2+2或2.。
【6套打包】武汉市中考第二次模拟考试数学试卷(1)重点高中提前招生模拟考试数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、填空题(每小题5分,共60分)1.现在爸爸的年龄是儿子的7倍,5年后爸爸的年龄将是儿子的4倍,则儿子现在的年龄是岁.2.若与互为相反数,则a2+b2=.3.若不等式组无解,则m的取值范围是.4.如图,函数y=ax2﹣bx+c的图象过点(﹣1,0),则的值为.5.在半径为1的⊙O中,弦AB、AC分别是、,则∠BAC的度数为.6.在Rt△ABC中,∠A=90°,tan B=3tan C,则sin B=.7.如图,矩形ABCD中,E是BC上一点,且BE:EC=1:4,AE⊥DE,则AB:BC=.8.如图,在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,若S△AOD:S△ACD=1:3,则S△AOD:S△BOC=;若S△AOD=1,则梯形ABCD的面积为.9.如图,E为边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC,PR⊥BE,则PQ+PR的值为.10.(2+1)(22+1)(24+1)(28+1)…(22048+1)+1的末位数字为.11.一行数从左到右一共2000个,任意相邻三个数的和都是96,第一个数是25,第9个数是2x,第2000个数是x+5,那么x的值是.12.如图所示,点A是半圆上的一个三等分点,B是劣弧的中点,点P是直径MN上的一个动点,⊙O的半径为1,则AP+PB的最小值.二、解答题(2小题,共40分)解答应写出文字说明、推理过程或演算步骤13.有一个底面周长为4πcm的圆柱体,斜着截去一段后,剩下的几何体如图所示,求该剩下几何体的体积(结果保留π)14.计算:+++…+.参考答案一、填空题(每小题5分,共60分)1.【解答】解:设儿子现在的年龄是x岁,则爸爸的年龄是7x岁,由题意得:4(x+5)=7x+5,解得:x=5,.故答案为:5.2.【解答】解:根据题意得:,解得:.则a2+b2=16+1=17.故答案是:17.3.【解答】解:∵不等式组无解,∴m+1≤2m﹣1,∴m≥2.故答案为m≥2.4.【解答】解:∵函数y=ax2﹣bx+c的图象过点(﹣1,0),即x=﹣1时,y=0,∴a+b+c=0,∴b+c=﹣a,c+a=﹣b,a+b=﹣c,∴原式=++=﹣1﹣1﹣1=﹣3.故答案为﹣3.5.【解答】解:作OM⊥AB,ON⊥AC;由垂径定理,可得AM=,AN=,∵弦AB、AC分别是、,∴AM=,AN=;∵半径为1∴OA=1;∵=∴∠OAM=45°;同理,∵=,∴∠OAN=30°;∴∠BAC=∠OAM+∠OAN或∠OAM﹣∠OAN∴∠BAC=75°或15°.6.【解答】解:∵Rt△ABC中,∠A=90°,∴∠B+∠C=90°,∴tan C=,∵tan B=3tan C,∴tan B=3,解得tan B=,∴∠B=60,∴sin B=sin60°=.故答案为:.7.【解答】解:∵∠B=∠C=90°,∴∠BAE+∠AEB=90°,∵AE⊥DE,∴∠AEB+∠CED=90°,∴∠BAE=∠CED,∴△ABE∽△ECD,∴=,设BE=x,∵BE:EC=1:4,∴EC=4x,∴AB•CD=x•4x,∴AB=CD=2x,∴AB:BC=2x:5x=2:5.故答案为2:5.8.【解答】解:(1)∵△AOD和△DOC中AO和CO边上的高相等,S△AOD:S△ACD=1:3,∴,∵AD∥BC,∴△ADO∽△CBO,∴,∴S△AOD:S△BOC=1:4,(2)∵S△AOD:S△ACD=1:3,∴AO:OC=1:2,∴S△AOD:S△BOC=1:4;若S△AOD=1,则S△ACD=3,S△BOC=4,∵AD∥BC,∴S△ABC=S△BDC,∵S△AOB=S△ABC﹣S△BOC,S△DOC=S△BDC﹣S△BOC,∴S△AOB=S△DOC=2,∴梯形ABCD的面积=1+4+2+2=9.故答案为:1:4;9.9.【解答】解:根据题意,连接BP,过E作EF⊥BC于F,∵S△BPC+S△BPE=S△BEC∴=BC•EF,∵BE=BC=1,∴PQ+PR=EF,∵四边形ABCD是正方形,∴∠DBC=45°,∵在Rt△BEF中,∠EBF=45°,BE=1,sin45°=,∴=,∴EF=,即PQ+PR=.∴PQ+PR的值为.故答案为:.10.【解答】解:(2+1)(22+1)(24+1)(28+1)…(22048+1)+1=(2﹣1)(2+1)(22+1)(24+1)(28+1)…(22048+1)+1,=(22﹣1)(22+1)(24+1)(28+1)…(22048+1)+1,=(24﹣1)(24+1)(28+1)…(22048+1)+1,=(28﹣1)(28+1)…(22048+1)+1,=(216﹣1)(216+1)…(22048+1)+1,…=(22048﹣1)(22048+1)+1,=24096﹣1+1=24096,因为24096的末位数字是6,所以原式末位数字是6.故答案为:6.11.【解答】解:∵第1个数是25,任意相邻三个数的和都是96,∴第4个数与第1个数相同,是25,同理,第7个数与第4个数相同,是25,即第1、4、7…个数字相同,同理可得,第2、5、8…个数字相同,第3、6、9…个数相同,所以第9个数与第3个数相同,是2x,∵2000÷3=666…2,∴第2000个数与第2个数相同,∵相邻三个数的和是96,∴25+x+5+2x=96,解得x=22.故答案为:22.12.【解答】解:作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,OA,OB,P A,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,P A=P A′,∵点B是弧AN的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B=.∴P A+PB=P A′+PB=A′B=.故答案为:.二、解答题(2小题,共40分)解答应写出文字说明、推理过程或演算步骤13.【解答】解:两个几何体的体积和为:π×()2×(6+4)=40πcm3.一个几何体的体积为×40πcm3=20πcm3,即剩下几何体的体积20πcm3.14.【解答】解:∵=(﹣),∴原式=(﹣)+(﹣)+(﹣)+…+(﹣)=(1﹣+﹣+﹣+…+﹣)=(1﹣)=.重点高中提前招生模拟考试数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、填空题(每小题5分,共60分)1.现在爸爸的年龄是儿子的7倍,5年后爸爸的年龄将是儿子的4倍,则儿子现在的年龄是岁.2.若与互为相反数,则a2+b2=.3.若不等式组无解,则m的取值范围是.4.如图,函数y=ax2﹣bx+c的图象过点(﹣1,0),则的值为.5.在半径为1的⊙O中,弦AB、AC分别是、,则∠BAC的度数为.6.在Rt△ABC中,∠A=90°,tan B=3tan C,则sin B=.7.如图,矩形ABCD中,E是BC上一点,且BE:EC=1:4,AE⊥DE,则AB:BC=.8.如图,在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,若S△AOD:S△ACD=1:3,则S△AOD:S△BOC=;若S△AOD=1,则梯形ABCD的面积为.9.如图,E为边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC,PR⊥BE,则PQ+PR的值为.10.(2+1)(22+1)(24+1)(28+1)…(22048+1)+1的末位数字为.11.一行数从左到右一共2000个,任意相邻三个数的和都是96,第一个数是25,第9个数是2x,第2000个数是x+5,那么x的值是.12.如图所示,点A是半圆上的一个三等分点,B是劣弧的中点,点P是直径MN上的一个动点,⊙O的半径为1,则AP+PB的最小值.二、解答题(2小题,共40分)解答应写出文字说明、推理过程或演算步骤13.有一个底面周长为4πcm的圆柱体,斜着截去一段后,剩下的几何体如图所示,求该剩下几何体的体积(结果保留π)14.计算:+++…+.参考答案一、填空题(每小题5分,共60分)1.【解答】解:设儿子现在的年龄是x岁,则爸爸的年龄是7x岁,由题意得:4(x+5)=7x+5,解得:x=5,.故答案为:5.2.【解答】解:根据题意得:,解得:.则a2+b2=16+1=17.故答案是:17.3.【解答】解:∵不等式组无解,∴m+1≤2m﹣1,∴m≥2.故答案为m≥2.4.【解答】解:∵函数y=ax2﹣bx+c的图象过点(﹣1,0),即x=﹣1时,y=0,∴a+b+c=0,∴b+c=﹣a,c+a=﹣b,a+b=﹣c,∴原式=++=﹣1﹣1﹣1=﹣3.故答案为﹣3.5.【解答】解:作OM⊥AB,ON⊥AC;由垂径定理,可得AM=,AN=,∵弦AB、AC分别是、,∴AM=,AN=;∵半径为1∴OA=1;∵=∴∠OAM=45°;同理,∵=,∴∠OAN=30°;∴∠BAC=∠OAM+∠OAN或∠OAM﹣∠OAN∴∠BAC=75°或15°.6.【解答】解:∵Rt△ABC中,∠A=90°,∴∠B+∠C=90°,∴tan C=,∵tan B=3tan C,∴tan B=3,解得tan B=,∴∠B=60,∴sin B=sin60°=.故答案为:.7.【解答】解:∵∠B=∠C=90°,∴∠BAE+∠AEB=90°,∵AE⊥DE,∴∠AEB+∠CED=90°,∴∠BAE=∠CED,∴△ABE∽△ECD,∴=,设BE=x,∵BE:EC=1:4,∴EC=4x,∴AB•CD=x•4x,∴AB=CD=2x,∴AB:BC=2x:5x=2:5.故答案为2:5.8.【解答】解:(1)∵△AOD和△DOC中AO和CO边上的高相等,S△AOD:S△ACD=1:3,∴,∵AD∥BC,∴△ADO∽△CBO,∴,∴S△AOD:S△BOC=1:4,(2)∵S△AOD:S△ACD=1:3,∴AO:OC=1:2,∴S△AOD:S△BOC=1:4;若S△AOD=1,则S△ACD=3,S△BOC=4,∵AD∥BC,∴S△ABC=S△BDC,∵S△AOB=S△ABC﹣S△BOC,S△DOC=S△BDC﹣S△BOC,∴S△AOB=S△DOC=2,∴梯形ABCD的面积=1+4+2+2=9.故答案为:1:4;9.9.【解答】解:根据题意,连接BP,过E作EF⊥BC于F,∵S△BPC+S△BPE=S△BEC∴=BC•EF,∵BE=BC=1,∴PQ+PR=EF,∵四边形ABCD是正方形,∴∠DBC=45°,∵在Rt△BEF中,∠EBF=45°,BE=1,sin45°=,∴=,∴EF=,即PQ+PR=.∴PQ+PR的值为.故答案为:.10.【解答】解:(2+1)(22+1)(24+1)(28+1)…(22048+1)+1=(2﹣1)(2+1)(22+1)(24+1)(28+1)…(22048+1)+1,=(22﹣1)(22+1)(24+1)(28+1)…(22048+1)+1,=(24﹣1)(24+1)(28+1)…(22048+1)+1,=(28﹣1)(28+1)…(22048+1)+1,=(216﹣1)(216+1)…(22048+1)+1,…=(22048﹣1)(22048+1)+1,=24096﹣1+1=24096,因为24096的末位数字是6,所以原式末位数字是6.故答案为:6.11.【解答】解:∵第1个数是25,任意相邻三个数的和都是96,∴第4个数与第1个数相同,是25,同理,第7个数与第4个数相同,是25,即第1、4、7…个数字相同,同理可得,第2、5、8…个数字相同,第3、6、9…个数相同,所以第9个数与第3个数相同,是2x,∵2000÷3=666…2,∴第2000个数与第2个数相同,∵相邻三个数的和是96,∴25+x+5+2x=96,解得x=22.故答案为:22.12.【解答】解:作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,OA,OB,P A,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,P A=P A′,∵点B是弧AN的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B=.∴P A+PB=P A′+PB=A′B=.故答案为:.二、解答题(2小题,共40分)解答应写出文字说明、推理过程或演算步骤13.【解答】解:两个几何体的体积和为:π×()2×(6+4)=40πcm3.一个几何体的体积为×40πcm3=20πcm3,即剩下几何体的体积20πcm3.14.【解答】解:∵=(﹣),∴原式=(﹣)+(﹣)+(﹣)+…+(﹣)=(1﹣+﹣+﹣+…+﹣)=(1﹣)=.中学数学二模模拟试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算20的结果是()A.0B.1C.2D.2.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)2=a2+b2C.a2b2=(ab)4D.(a3)2=a63.(3分)下列调查方式,合适的是()A.要了解一批灯泡的使用寿命,采用普查方式B.要了解广州电视台“今日报道”栏目的收视率,采用普查方式C.要了解我国15岁少年身高情况,采用普查方式D.要选出某校短跑最快的学生参加全市比赛,采用普查方式4.(3分)若分式的值为0,则x的值为()A.﹣1B.0C.1D.±15.(3分)解方程+时,去分母后得到的方程是()A.3(x﹣5)+2(x﹣1)=1B.3(x﹣5)+2x﹣1=1C.3(x﹣5)+2(x﹣1)=6D.3(x﹣5)+2x﹣1=66.(3分)下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣2x+1B.y=C.y=﹣2x2+1D.y=2x7.(3分)如图,将矩形ABCD折叠,使点C与点E重合,折痕为线段DF,已知矩形ABCD 的面积为6,四边形CDEF的面积为4,则AC=()A.B.C.D.8.(3分)如图,在梯形ABCD中,AB∥CD,过点C作CE∥BD,交AB延长线于点E,对角线AC、BD相交于点O,下列结论中,错误的是()A.△AOB∽△CODB.∠AOB=∠ACBC.四边形BDCE是平行四边形D.S△AOD=S△BOC9.(3分)在正方体表面上画有如图中所示的粗线,那么它的展开图可以是()A.B.C.D.10.(3分)k≠0,函数y=kx﹣k与y=在同一平面直角坐标系中的大致图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)计算:6ab2÷3ab=.12.(3分)不等式组的解集是.13.(3分)如图,如果AE∥BD,CD=20,CE=36,AC=27,那么BC=.14.(3分)某样本数据分成5组,第1组和第2组的频率之和为0.3,第3组的频率是0.14,第4组和第5组的频率相等,那么第5组的频率是.15.(3分)一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了道题.16.(3分)如图,在四边形ABCD中,对角线AC垂直平分BD,∠BAD=120°,AB=4,点E是AB的中点,点F是AC上一动点,则EF+BF的最小值是.三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤)17.(9分)计算:2sin30°﹣(﹣)﹣1﹣.18.(9分)如图,在▱ABCD中,点E,F分别在BC,AD上,且DF=BE.求证:四边形AECF是平行四边形.19.(10分)已知a、b(a>b)是方程x2﹣5x+4=0的两个不相等的实数根,求﹣的值.20.(10分)现需了解2019年各月份中5至14日广州市每天最低气温的情况:图①是3月份的折线统计图.(数据来源于114天气网)(1)图②是3月份的频数分布直方图,根据图①提供的信息,补全图②中的频数分布直方图;(2)3月13日与10日这两天的最低气温之差是℃;(3)图③是5月份的折线统计图.用S表示5月份的方差;用S表示3月份的方差,比较大小:S S;比较3月份与5月份,月份的更稳定.21.(12分)某商场销售产品A,第一批产品A上市40天内全部售完.该商场对第一批产品A上市后的销售情况进行了跟踪调查,调查结果如图所示:图①中的折线表示日销售量w与上市时间t的关系;图②中的折线表示每件产品A的销售利润y与上市时间t的关系.(1)观察图①,试写出第一批产品A的日销售量w与上市时间t的关系;(2)第一批产品A上市后,哪一天这家商店日销售利润Q最大?日销售利润Q最大是多少元?(日销售利润=每件产品A的销售利润×日销售量)22.(12分)某校初三(1)班综合实践小组去某地测量人工湖的长,如图A、D是人工湖边的两座雕塑,AB、BC是小路,小东同学进行如下测量:D点在A点的正北方向,B 点在A点的北偏东60°方向,C点在B点的北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC=40米,求AD的长.(结果保留根号)23.(12分)如图,⊙O的半径为5,点A在⊙O上,过点A的直线l与⊙O相交于点B,AB=6,以直线l为图象的一次函数解析式为y=kx﹣8k(k为常数且k≠0).(1)求直线l与x轴交点的坐标;(2)求点O到直线AB的距离;(3)求直线AB与y轴交点的坐标.24.(14分)如图①,△ABC表示一块含有60°角的直角三角板,60°所对的边BC的长为6,以斜边AB所在直线为x轴,AB边上的高所在直线为y轴,建立平面直角坐标系.等腰直角△DEF的直角顶点F初始位置落在y轴的负半轴,斜边DE始终在x轴上移动,且DE=6.抛物线y=ax2+bx+c经过A、B、C三点.(1)求a、b、c;(2)△DEF经过怎样的平移后,点E与点B重合?求出点E与点B重合时,点F的坐标;(3)△DEF经过怎样的平移后,⊙E与直线AC和BC均相切?(参考数据:=,=)25.(14分)已知:如图①,四边形ABCD是正方形,在CD的延长线上任取一点E,以CE为边作正方形CEFG,使正方形ABCD与正方形CEFG分居在CD的两侧,连接AF,取AF的中点M,连接EM、DM,DM的延长线交EF于点N.(1)求证:△ADM≌△FNM;(2)判断△DEM的形状,并加以证明;(3)如图②,将正方形CEFG绕点C按逆时针方向旋转n°(30<n<45)后,其他条件不变,(2)中的结论还成立吗?如果成立,请加以证明;如果不成立,请说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算20的结果是()A.0B.1C.2D.【分析】根据:a0=1(a≠0)可得结论.【解答】解:20=1,故选:B.【点评】本题考查了零指数幂的计算,比较简单,熟练掌握公式是关键.2.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)2=a2+b2C.a2b2=(ab)4D.(a3)2=a6【分析】直接利用完全平方公式以及积的乘方运算法则分别判断得出答案.【解答】解:A、(a﹣b)2=a2﹣2ab+b2,故此选项错误;B、(a+b)2=a2+2ab+b2,故此选项错误;C、a2b2=(ab)2,故此选项错误;D、(a3)2=a6,正确.故选:D.【点评】此题主要考查了完全平方公式以及积的乘方运算,正确掌握相关运算法则是解题关键.3.(3分)下列调查方式,合适的是()A.要了解一批灯泡的使用寿命,采用普查方式B.要了解广州电视台“今日报道”栏目的收视率,采用普查方式C.要了解我国15岁少年身高情况,采用普查方式D.要选出某校短跑最快的学生参加全市比赛,采用普查方式【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、要了解一批灯泡的使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批灯泡全部用于实验;B、要了解广州电视台“今日报道”栏目的收视率,进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可;C、要了解我国15岁少年身高情况,进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可;D、要选出某校短跑最快的学生参加全市比赛,必须选用普查;故选:D.【点评】本题考查的是调查方法的选择;正确选择调查方式要根据全面调查的优缺点再结合实际情况去分析.4.(3分)若分式的值为0,则x的值为()A.﹣1B.0C.1D.±1【分析】直接利用分式的值为零则分子为零,分母不等于零,进而得出答案.【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.5.(3分)解方程+时,去分母后得到的方程是()A.3(x﹣5)+2(x﹣1)=1B.3(x﹣5)+2x﹣1=1C.3(x﹣5)+2(x﹣1)=6D.3(x﹣5)+2x﹣1=6【分析】根据一元一次方程的解法即可求出答案.【解答】解:等式两边同时乘以6可得:3(x﹣5)+2(x﹣1)=6,故选:C.【点评】本题考查一元一次方程,解题的关键是熟练运用分式的运算法则,本题属于基础题型.6.(3分)下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣2x+1B.y=C.y=﹣2x2+1D.y=2x【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断.【解答】解:A、y=﹣2x+1,一次函数,k<0,故y随着x增大而减小,故A错误;B、y=,k=2>0,在每个象限里,y随x的增大而减小,故B错误;C、y=﹣2x2+1(x>0),二次函数,a<0,故当图象在对称轴右侧,y随着x的增大而减小;而在对称轴左侧(x<0),y随着x的增大而增大,故C错误;D、y=2x,一次函数,k>0,故y随着x增大而增大,故D正确.故选:D.【点评】本题综合考查二次函数、一次函数、反比例函数的增减性(单调性),是一道难度中等的题目.7.(3分)如图,将矩形ABCD折叠,使点C与点E重合,折痕为线段DF,已知矩形ABCD 的面积为6,四边形CDEF的面积为4,则AC=()A.B.C.D.【分析】根据四边形CDEF是正方形,即可得出CD==2,根据矩形ABCD的面积为6,即可得出AD=3,再根据勾股定理即可得到AC的长.【解答】解:由折叠可得,∠DEF=∠DCF=∠CDE=90°,∴四边形CDEF是矩形,由折叠可得,CD=DE,∴四边形CDEF是正方形,∴CD==2,又∵矩形ABCD的面积为6,∴AD=3,∴Rt△ACD中,AC==,故选:C.【点评】本题主要考查了折叠问题以及矩形的性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.(3分)如图,在梯形ABCD中,AB∥CD,过点C作CE∥BD,交AB延长线于点E,对角线AC、BD相交于点O,下列结论中,错误的是()A.△AOB∽△CODB.∠AOB=∠ACBC.四边形BDCE是平行四边形D.S△AOD=S△BOC【分析】根据梯形的性质和相似三角形的判定和性质解答即可.【解答】解:∵CD∥AB,∴△AOB∽△COD,故A正确;∵CD∥BE,DB∥CE,∴四边形BDCE是平行四边形,故C正确;∵△ABC的面积=△BOC的面积+△AOB的面积=△ADB的面积=△AOD的面积+△AOB的面积,∴△AOD的面积=△BOC的面积,故D正确;∵∠AOB=∠COD,∴∠DOC=∠OCE>∠ACB,故B错误;故选:B.【点评】此题考查相似三角形的判定,关键是根据梯形的性质和相似三角形的判定和性质解答.9.(3分)在正方体表面上画有如图中所示的粗线,那么它的展开图可以是()A.B.C.D.【分析】具体折一折,从中发挥想象力,可得正确的答案.【解答】解:由带有各种符号的面的特点及位置,可知只有选项D符合.故选:D.【点评】考查了几何体的展开图,解决此类问题,要充分考虑带有各种符号的面的特点及位置.10.(3分)k≠0,函数y=kx﹣k与y=在同一平面直角坐标系中的大致图象可能是()A.B.C.D.【分析】分两种情况讨论,当k>0时,分析出一次函数和反比例函数所过象限;再分析出k<0时,一次函数和反比例函数所过象限,符合题意者即为正确答案.【解答】解:①当k>0时,y=kx﹣k过一、三、四象限;y=过一、三象限;②当k<0时,y=kx﹣k过一、二、四象象限;y=过二、四象限.观察图形可知,只有A选项符合题意.故选:A.【点评】本题主要考查了反比例函数的图象和一次函数的图象,熟悉两函数中k和b的符号对函数图象的影响是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)计算:6ab2÷3ab=2b.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=2b,故答案为:2b【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.12.(3分)不等式组的解集是x>0.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式﹣x<0得x>0,解不等式3x+5>0得x>﹣,所以不等式组的解集为x>0,故答案为:x>0.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.(3分)如图,如果AE∥BD,CD=20,CE=36,AC=27,那么BC=15.【分析】根据平行线分线段成比例解答即可.【解答】解:∵AE∥BD,CD=20,CE=36,AC=27,∴,即,解得:BC=15,故答案为:15【点评】此题考查平行线分线段成比例,关键是根据平行线分线段成比例解答.14.(3分)某样本数据分成5组,第1组和第2组的频率之和为0.3,第3组的频率是0.14,第4组和第5组的频率相等,那么第5组的频率是0.28.【分析】直接利用5各小组的频率之和为1,进而得出答案.【解答】解:∵某样本数据分成5组,第1组和第2组的频率之和为0.3,第3组的频率是0.14,∴第4组和第5组的频率和为:1﹣0.3﹣0.14=0.56,∵第4组和第5组的频率相等,∴第5组的频率是:0.28.故答案为:0.28.【点评】此题主要考查了频率的意义,正确得出第4组和第5组的频率和是解题关键.15.(3分)一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了19道题.【分析】设他做对了x道题,则小英做错了(25﹣x)道题,根据总得分=4×做对的题数﹣1×做错的题数,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设他做对了x道题,则他做错了(25﹣x)道题,根据题意得:4x﹣(25﹣x)=70,解得:x=19.故答案为:19.【点评】本题考查了一元一次方程的应用,根据总得分=4×做对的题数﹣1×做错的题数列出关于x的一元一次方程是解题的关键.16.(3分)如图,在四边形ABCD中,对角线AC垂直平分BD,∠BAD=120°,AB=4,点E是AB的中点,点F是AC上一动点,则EF+BF的最小值是2.【分析】连接DF,过E作EG⊥BD于G,当E,F,D三点共线时,EF+BF的最小值等于DE的长,利用勾股定理求得DE的长,即可得出EF+BF的最小值.【解答】解:如图所示,连接DF,过E作EG⊥BD于G,∵AC垂直平分BD,∴FB=FD,AB=AD,∴EF+BF=EF+FD,当E,F,D三点共线时,EF+BF的最小值等于DE的长,∵∠BAD=120°,∴∠ABD=30°,又∵AB=4,点E是AB的中点,∴EG=BE=1,AH=AB=2,∴BG=,BH=2,GH=,∴DH=2,DG=3,∴Rt△DEG中,DE===2,故答案为:2.【点评】本题主要考查了最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤)17.(9分)计算:2sin30°﹣(﹣)﹣1﹣.【分析】直接利用二次根式的性质以及特殊角的三角函数值、负指数幂的性质分别化简得出答案.【解答】解:原式=2×﹣(﹣2)﹣6=1+2﹣6=﹣3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(9分)如图,在▱ABCD中,点E,F分别在BC,AD上,且DF=BE.求证:四边形AECF是平行四边形.【分析】在▱ABCD中,AD=BC,又BE=DF,可得AF=EC,得出AF平行且等于EC,根据平行四边形的判定,可得出四边形AECF是平行四边形.【解答】证明:∵四边形ABCD平行四边形∴AD=BC.又∵BE=DF,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.【点评】此题主要要掌握平行四边形的判定与性质;熟练掌握平行四边形的判定与性质是解决问题的关键.19.(10分)已知a、b(a>b)是方程x2﹣5x+4=0的两个不相等的实数根,求﹣的值.【分析】利用平方差公式可将原式化简成a+b,再根据方程的系数结合根的判别式可得出a+b=5,此题得解.【解答】解:﹣=,=,=a+b.∵a、b(a>b)是方程x2﹣5x+4=0的两个不相等的实数根,∴a+b=5,∴原式=a+b=5.【点评】本题考查了根与系数的关系以及平方差公式,利用平方差公式将原式化简成a+b是解题的关键.20.(10分)现需了解2019年各月份中5至14日广州市每天最低气温的情况:图①是3月份的折线统计图.(数据来源于114天气网)(1)图②是3月份的频数分布直方图,根据图①提供的信息,补全图②中的频数分布直方图;(2)3月13日与10日这两天的最低气温之差是3℃;(3)图③是5月份的折线统计图.用S表示5月份的方差;用S表示3月份的方差,比较大小:S<S;比较3月份与5月份,3月份的更稳定.【分析】(1)最低气温14℃的有3天,据此补充频数分布直方图;(2)3月13日与10日这两天的最低气温之差是15﹣12=3(℃);(3)根据折线统计图分布,可知3月份最低气温波动比3月份最低气温波动小,所以所以S32<S,3月份更稳定.【解答】解:(1)最低气温14℃的有3天,所以补充频数分布直方图如下:(2)3月13日与10日这两天的最低气温之差是15﹣12=3(℃),故答案为3;(3)根据折线统计图分布,可知3月份最低气温波动比3月份最低气温波动小,所以所以S32<S,3月份更稳定,故但为<,3.【点评】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.(12分)某商场销售产品A,第一批产品A上市40天内全部售完.该商场对第一批产品A上市后的销售情况进行了跟踪调查,调查结果如图所示:图①中的折线表示日销售量w与上市时间t的关系;图②中的折线表示每件产品A的销售利润y与上市时间t的关系.(1)观察图①,试写出第一批产品A的日销售量w与上市时间t的关系;(2)第一批产品A上市后,哪一天这家商店日销售利润Q最大?日销售利润Q最大是多少元?(日销售利润=每件产品A的销售利润×日销售量)【分析】(1)根据题意和函数图象中的数据可以求得第一批产品A的日销售量w与上市时间t的关系;(2)根据函数图象中的数据可以求得第一批产品A上市后,哪一天这家商店日销售利润Q最大,并求出Q的最大值.【解答】解:(1)由图①可得,当0≤t≤30时,可设日销售量w=kt,∵点(30,60)在图象上,∴60=30k.∴k=2,即w=2t;当30<t≤40时,可设日销售量w=k1t+b.∵点(30,60)和(40,0)在图象上,∴,解得,k1=﹣6,b=240,∴w=﹣6t+240.综上所述,日销售量w=;即当0≤t≤30时,日销售量w=2t;当30<t≤40时,日销售量w=﹣6t+240;(2)由图①知,当t=30(天)时,日销售量w达到最大,最大值w=60,又由图②知,当t=30(天)时,产品A的日销售利润y达到最大,最大值y=60(元/件),∴当t=30(天)时,日销售量利润Q最大,最大日销售利润Q=60×60=3600(元),答:第一批产品A上市后30天,这家商店日销售利润Q最大,日销售利润Q最大是3600元.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.(12分)某校初三(1)班综合实践小组去某地测量人工湖的长,如图A、D是人工湖边的两座雕塑,AB、BC是小路,小东同学进行如下测量:D点在A点的正北方向,B 点在A点的北偏东60°方向,C点在B点的北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC=40米,求AD的长.(结果保留根号)【分析】过点B作BF⊥AD、BE⊥CD,垂足分别为E、F,已知AD=AF+FD,则分别求得AF、DF的长即可求得AD的长.【解答】解:过点B作BF⊥AD、BE⊥CD,垂足分别为E、F.在Rt△ABF中,∵∠F AB=60°,AB=20,∴AF=AB cos∠F AB=20×=10.在Rt△BCE中,∵∠EBC=45°,BC=40,∴BE=BC cos∠EBC=40×=20.在矩形BEDF中,FD=BE=20,∴AD=AF+FD=10+20.答:AD的长为(10+20)米.【点评】本题考查了解直角三角形的应用﹣方向角问题,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.23.(12分)如图,⊙O的半径为5,点A在⊙O上,过点A的直线l与⊙O相交于点B,AB=6,以直线l为图象的一次函数解析式为y=kx﹣8k(k为常数且k≠0).(1)求直线l与x轴交点的坐标;(2)求点O到直线AB的距离;(3)求直线AB与y轴交点的坐标.【分析】(1)令y=0,得kx﹣8k=0,解出即可;(2)作OD⊥AB,垂足为D.可知点O到直线AB的距离为线段OD的长度,利用勾股定理可得OD的长;(3)介绍两种方法:方法一,先根据勾股定理计算DN的长,证明Rt△OMD∽Rt△NOD,列比例式求OM的长,可得结论;方法二:先得∠OND=30°.根据30度的正切列式可得OM的长,可得结论.【解答】解:(1)令y=0,得kx﹣8k=0,∵k≠0,解得x=8,。