第十四章陶瓷基复合材料
- 格式:ppt
- 大小:4.17 MB
- 文档页数:77
张峰Z09016133陶瓷基复合材料陶瓷基复合材料概述:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。
陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。
这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。
而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。
纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。
陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。
其最高使用温度主要取决于基体特征。
陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。
法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。
陶瓷基复合材料制造工艺1 粉末冶金法工艺流程:原料(陶瓷粉末、增强剂、粘结剂和助烧剂) 均匀混合(球磨、超声等) 冷压成形 (热压)烧结适用于颗粒、晶须和短纤维增韧陶瓷基复合材料2浆体法(湿态法)为了克服粉末冶金法中各组元混合不均的问题,可采用浆体(湿态)法制备颗粒、晶须和短纤维增韧陶瓷基复合材料。
其混合体为浆体形式。
混合体中各组元保持散凝状。
即在浆体中呈弥散分散采用浆体浸渍法也可制备连续纤维增韧陶瓷基复合材料3反应烧结法用此方法制备陶瓷基复合材料,除基体材料几乎无收缩外,还具有以下优(1)增强剂的体积比可以相当大;(2)可用多种连续纤维预制体;(3)大多数陶瓷基复合材料的反应烧结温度低于陶瓷的烧结温度,因此可避免纤维的损伤。
此方法最大的缺点是高气孔率难以避免。
4、液态浸渍法用此方法制备陶瓷基复合材料,化学反应熔体粘度、熔体对增强材料的浸润性是首要考虑的问题,这些因素直接影响着材料的性能。
陶瓷熔体可通过毛细作用渗入增强剂预制体的孔隙。
施加压力或抽真空将有利于浸渍过程。
假如预制体中的孔隙呈一束束有规则间隔的平行通道,则可用Poisseuiue方程计算出浸渍高度h:h = √(γr t cosθ)/ 2η式中r 是圆柱型孔隙管道半径;t 是时间;γ是浸渍剂的表面能;θ是接触角;η是粘度。
第十四章陶瓷基复合材料加工工艺第一节增强体的制备陶瓷基复合材料的增强体(强韧化组元),主要有陶瓷纤维、陶瓷晶须与片状晶体、硬质陶瓷颗粒和可相变的氧化锆等。
一、增强纤维可以用作陶瓷复合材料增强体的纤维,有金属纤维、陶瓷纤维和碳纤维。
1.金属纤维Ta、Mo、W、Ni、Nb等高熔点纤维及不锈钢纤维,原则上都可以用作陶瓷基体的增强体。
金属纤维一般由拉丝制成,直径在10~600μm的范围内,有比较大的选择范围。
其特点是密度大、热膨胀系数大、容易氧化,可能对复合材料制作工艺和性能不利,而其延展性大和导电率高的特点,在某些情况下是有益的。
2.陶瓷纤维陶瓷纤维包括含有金属芯的陶瓷纤维和全陶瓷的纤维。
在W金属丝或碳素丝上,用化学沉降的方法可以形成连续的陶瓷纤维。
芯的直径大约在30—50μm,沉降后的纤维直径大约在100~200μm。
陶瓷层组分可以是SiC或Si3N4。
近年来,用有机硅前驱体分解的方法,可以拉制出许多种陶瓷纤维。
其方法是将硅基有机物前驱体,在熔融状态下拉制出直径在数十微米的纤维,然后进行聚合以及高温分解,形成陶瓷纤维。
这种纤维有碳化硅纤维、氮化硅纤维、碳化钛纤维、氧化铝纤维等。
其中,比较有名的是日本宇部兴产株式会社生产的以Nicalon和Tynano命名的碳化硅纤维。
它们都是用聚碳硅烷纺丝而成。
在组成上是碳化硅微晶和SiO2、C的集合物。
在高于1400℃的高温下,其中的SiC微细晶粒会发生再结晶而长大,C会与O发生反应,生成CO气体而逸出。
非晶态的SiO2也会结晶化而生成石英微细晶粒。
这些现象都使现存的碳化硅陶瓷纤维只能在1400℃以下温度下使用。
Tynano 型SiC纤维,是含有一定Ti元素的纤维,耐热温度据称比Nicalon高近50℃。
Al2O3纤维在高温下容易发生晶粒长大而难用于高温。
3.碳纤维碳纤维的用量正在不断增加,尤其是在高分子基复合材料中的用量增长很快。
碳纤维分为有机高分子系(PAN系:聚丙烯腈系)和沥青系两大类。
陶瓷基复合材料增强机制、机理的研究现状及展望陶瓷基复合材料(CMC),一般是指相变增韧、颗粒增韧陶瓷和纤维及晶须增韧陶瓷材料。
这是目前备受重视的新型耐高温结构材料。
本文将介绍陶瓷基复合材料这种新型复合材料的机理和研究现状及展望。
与常规材料和非陶瓷复合材料相比,陶瓷材料具有耐高温、抗腐蚀、超硬度抗氧化和抗烧结等优异性能。
作为高温结构材料,尤其作为航空航天飞行器需要承受极高温度的特殊部位结构用材料具有很大的潜力。
因此世界各国都把结构陶瓷看作是对未来工业革命有重大作用的高技术新材料而给以重点研究和发展并相继开展了陶瓷汽车发动机、柴油机和航空发动机等大规模高温陶瓷热机研究计划,出现了陶瓷热,然而,常规结构陶瓷还存在缺陷和问题,主要是材料的脆性,可靠性不高等,应用于现在科技领域还有许多问题急需研究解决。
陶瓷基复合材料引起人们关注的重要原因就在于他可以改善陶瓷基材料的力学性能,特别是脆性,因此陶瓷基复合材料的发展和研究将成为陶瓷大规模应用计划取得成功的关键。
陶瓷基复合材料是在陶瓷基体中引入第二相材料,使之增强、增韧的多相材料,又称为多相复合陶瓷或复相陶瓷。
陶瓷基复合材料是2O世纪8O年代逐渐发展起来的新型陶瓷材料,包括纤维(或晶须)增韧(或增强)陶瓷基复合材料、异相颗粒弥散强化复相陶瓷、原位生长陶瓷复合材料、梯度功能复合陶瓷及纳米陶瓷复合材料。
其因具有耐高温、耐磨、抗高温蠕变、热导率低、热膨胀系数低、耐化学腐蚀、强度高、硬度大及介电、透波等特点,在有机材料基和金属材料基不能满足性能要求的工况下可以得到广泛应用,成为理想的高温结构材料。
连续纤维增强复合材料是以连续长纤维为增强材料,金属、陶瓷等为基体材料制备而成。
金属基复合材料是以陶瓷等为增强材料,金属、轻合金等为基体材料而制备的。
从20世纪60年代起各国都相继对金属基复合材料开展了大量的研究,因其具有高比强度、高比模量和低热膨胀系数等特点而被应用于航天航空及汽车工业。
陶瓷基复合材料的复合工艺
1.预处理
首先,要对陶瓷基材料进行表面处理,以保证其干净平整,可以通过研磨、酸洗等方式进行。
2.涂敷
接着,将经过预处理的陶瓷基材料涂上粘结剂,将其固定在复合材料的骨架上。
选择合适的粘结剂对于复合材料的性能至关重要。
3.堆叠
将涂好粘结剂的陶瓷基材料和其他复合材料进行堆叠,注意堆叠的顺序和布置,以及每层之间是否要添加隔离层或适当缓冲材料,以提高复合材料的性能。
4.压制
经过堆叠后,将复合材料放入压力机中进行压制,根据不同的需要,可以采用热压、冷压等不同的压制方法。
压制后的复合材料具有更高的密度和强度。
5.烧结
若需要提高陶瓷基复合材料的硬度和耐磨性,可以在压制之后进行烧结处理。
烧结温度和时间的选择需要根据具体情况进行调整。
6.后续处理
经过烧结处理后,可以进行后续的加工和处理。
如钻孔、切割、打磨等,以便制作出符合要求的复合材料产品。
陶瓷基复合材料综述报告陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料,具有优异的耐高温性能,主要用作高温及耐磨制品。
陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。
这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。
而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。
纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。
迄今,陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。
有些发达国家已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得了不错的使用效果[1]。
一、陶瓷基复合材料增强体用于复合材料的增强体品种很多,根据复合材料的性能要求,主要分为以下几种[2-4] :1.1纤维类增强体纤维类增强体有连续长纤维和短纤维。
连续长纤维的连续长度均超过数百。
纤维性能有方向性,一般沿轴向均有很高的强度和弹性模量。
1.2颗粒类增强体颗粒类增强体主要是一些具有高强度、高模量。
耐热、耐磨。
耐高温的陶瓷等无机非金属颗粒,主要有碳化硅、氧化铝、碳化钛、石墨。
细金刚石、高岭土、滑石、碳酸钙等。
主要还有一些金属和聚合物颗粒类增强体,后者主要有热塑性树脂粉末1.3晶须类增强体晶须是在人工条件下制造出的细小单晶,一般呈棒状,其直径为0.2~1微米,长度为几十微米,由于其具有细小组织结构,缺陷少,具有很高的强度和模量。
1.4金属丝用于复合材料的高强福、高模量金属丝增强物主要有铍丝、钢丝、不锈钢丝和钨丝等,金属丝一般用于金属基复合材料和水泥基复合材料的增强,但前者比较多见。
1.5片状物增强体用于复合材料的片状增强物主要是陶瓷薄片。
将陶瓷薄片叠压起来形成的陶瓷复合材料具有很高的韧性。
二、陶瓷基的界面及强韧化理论陶瓷基复合材料(CMC)具有高强度、高硬度、高弹性模量、热化学稳定性等优异性能,被认为是推重比10以上航空发动机的理想耐高温结构材料。
陶瓷基复合材料的制备方法与工艺随着科学技术的不断发展,陶瓷基复合材料在工业生产和科学研究中得到了广泛的应用。
陶瓷基复合材料具有优良的耐磨性、高温稳定性和化学稳定性,因此在航空航天、汽车制造、医疗器械等领域有着重要的地位。
本文将介绍陶瓷基复合材料的制备方法与工艺。
一、陶瓷基复合材料的制备方法1. 热压法:热压法是一种常用的陶瓷基复合材料制备方法。
首先将陶瓷粉末与增强相(如碳纤维、玻璃纤维等)混合均匀,然后将混合物放入模具中,经过一定的温度和压力条件下进行热压,使得陶瓷粉末和增强相充分结合,最终得到陶瓷基复合材料制品。
2. 溶胶-凝胶法:溶胶-凝胶法是一种制备陶瓷基复合材料的新型方法。
首先将陶瓷前驱体(如硅酸酯、铝酸盐等)与增强相混合,在一定的条件下形成溶胶,然后通过凝胶化过程使得溶胶形成凝胶,最终通过热处理制备出陶瓷基复合材料。
3. 拉伸成型法:拉伸成型法是一种制备纤维增强陶瓷基复合材料的方法。
首先将陶瓷粉末与增强相混合,然后通过拉伸成型设备将混合物进行拉伸成型,最终得到纤维增强的陶瓷基复合材料。
二、陶瓷基复合材料的制备工艺1. 原料选择:在制备陶瓷基复合材料时,需要选择优质的陶瓷粉末和增强相。
陶瓷粉末的选择应考虑其颗粒大小、形状和化学成分,而增强相的选择应考虑其强度、刚度和耐热性能。
2. 混合均匀:在制备过程中,陶瓷粉末和增强相需要进行混合均匀,以确保最终制品的性能稳定。
3. 成型工艺:根据不同的制备方法,成型工艺也有所不同。
在热压法中,需要选择合适的温度和压力条件;在溶胶-凝胶法中,需要控制好溶胶和凝胶的形成过程;在拉伸成型法中,需要控制好拉伸成型设备的参数。
4. 烧结工艺:烧结是制备陶瓷基复合材料的重要工艺环节,通过烧结可以使得材料颗粒之间结合更加紧密,提高材料的密度和强度。
5. 表面处理:在制备陶瓷基复合材料的最后一道工艺中,可以对制品进行表面处理,如抛光、涂层等,以提高制品的表面质量和外观。
陶瓷基复合材料的复合机理、制备、生产、应用及发展前景摘要:材料是科学技术发展的基础,材料的发展可以推动科学技术的发展,材料主要有金属材料、聚合物材料、无机非金属材料和复合材料四大类。
其中复合材料是是最新发展地来的一大类,发展非常迅速。
最早出现的是宏观复合材料,它复合的组元是肉眼可以看见的,比如混凝土。
随后发展起来的是微观复合材料,它的组元肉眼看不见。
由于复合材料各方面优异的性能,因此得到了广泛的应用。
复合材料对航空、航天事业的影响尤为显著,可以说如果没有复合材料的诞生,就没有今天的飞机、火箭和宇宙飞船等高科技产品。
本文从纤维增强陶瓷基复合材料C f/SiC入手,综述了陶瓷基复合材料(ceramic matrix composite,CMC)的特殊使用性能、界面增韧机理、制备工艺作了较全面的介绍,并对CMC的的研究现状、未来发展进行了展望。
正文1、陶瓷基复合材料的定义与特性陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。
陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。
这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。
而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。
纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。
陶瓷基复合材料(CMC)由于具有高强度、高硬度、高弹性模量、热化学稳定性等优异性能,是制造推重比10 以上航空发动机的理想耐高温结构材料。
一方面,它克服了单一陶瓷材料脆性断裂的缺点,提高了材料的断裂韧性;另一方面,它保持了陶瓷基体耐高温、低膨胀、低密度、热稳定性好的优点。
陶瓷基复合材料的最高使用温度可达1650℃,而密度只有高温合金的70%。
因此,近几十年来,陶瓷基复合材料的研究有了较快发展。
目前CMC 正在航空发动机的高温段的少数零件上作评定性试用。
陶瓷基复合材料陶瓷基复合材料沈卫平一、陶瓷基复合材料概述特种陶瓷具有优秀的力学性能、耐磨性好、硬度高及耐腐蚀性好等特点但其脆性大耐热震性能差而且陶瓷材料对裂纹、气孔和夹杂等细微的缺陷很敏感。
陶瓷基复合材料使材料的韧性大大改善同时其强度、模量有了提高。
颗粒增韧陶瓷基复合材料的弹性模量和强度均较整体陶瓷材料提高但力–位移曲线形状不发生变化而纤维陶瓷基复合材料不仅使其弹性模量和强度大大提高而且还改变了力–位移曲线的形状(图)。
纤维陶瓷基复合材料在断裂前吸收了大量的断裂能量使韧性得以大幅度提高。
图–陶瓷基复合材料的力–位移曲线表–不同金属、陶瓷基体和陶瓷基复合材料的断裂韧性比较材料整体陶瓷颗粒增韧相变增韧AlBBOBBSiCAlBBOBBTiCSiBBNBBTiCZrOBBMgOZrOBBYBBOB BZrOBBAlBBOB断裂韧性MPamPP~~~~~~裂纹尺寸大小,m~~~~~~表–不同金属、陶瓷基体和陶瓷基复合材料的断裂韧性比较材料晶须增韧纤维增韧SiCAlOSiC硼硅玻璃SiC锂铝硅玻璃铝钢断裂韧性MPamPP~~~~~裂纹尺寸大小,m~二、陶瓷基复合材料的制备工艺、粉末冶金法原料(陶瓷粉末、增强剂、粘结剂和助烧剂)均匀混合(球磨、超声等)冷压成形(热压)烧结。
关键是均匀混合和烧结过程防止体积收缩而产生裂纹。
二、陶瓷基复合材料的制备工艺、浆体法(湿态法)为了克服粉末冶金法中各组元混合不均的问题采用了浆体(湿态)法制备陶瓷基复合材料。
其混合体为浆体形式。
混合体中各组元保持散凝状即在浆体中呈弥散分布。
这可通过调整水溶液的pH值来实现。
对浆体进行超声波震动搅拌则可进一步改善弥散性。
弥散的浆体可直接浇铸成型或热(冷)压后烧结成型。
适用于颗粒、晶须和短纤维增韧陶瓷基复合材料(图)。
采用浆体浸渍法可制备连续纤维增韧陶瓷基复合材料。
纤维分布均匀气孔率低。
图–浆体法制备陶瓷基复合材料示意图、反应烧结法(图)用此方法制备陶瓷基复合材料除基体材料几乎无收缩外还具有以下优点:增强剂的体积比可以相当大可用多种连续纤维预制体大多数陶瓷基复合材料的反应烧结温度低于陶瓷的烧结温度因此可避免纤维的损伤。
碳/碳化硅陶瓷基复合材料一、简介陶瓷基复合材料(Ceramic matr ix composite ,CMC)是在陶瓷基体中引入第二相材料, 使之增强、增韧的多相材料, 又称为多相复合陶瓷(Multiphase composite ceramic)或复相陶瓷(Diphase ceramic)。
陶瓷基复合材料是20 世纪80 年代逐渐发展起来的新型陶瓷材料, 包括纤维(或晶须)增韧(或增强)陶瓷基复合材料、异相颗粒弥散强化复相陶瓷、原位生长陶瓷复合材料、梯度功能复合陶瓷及纳米陶瓷复合材料。
其因具有耐高温、耐磨、抗高温蠕变、热导率低、热膨胀系数低、耐化学腐蚀、强度高、硬度大及介电、透波等特点,在有机材料基和金属材料基不能满足性能要求的工况下可以得到广泛应用, 成为理想的高温结构材料。
报道,陶瓷基复合材料正是人们预计在21 世纪中可替代金属及其合金的发动机热端结构的首选材料。
鉴于此, 许多国家都在积极开展陶瓷基复合材料的研究, 大大拓宽了其应用领域, 并相继研究出各种制备新技术。
其中,C/SiC 陶瓷基复合材料是其中一个非常重要的体系。
C/SiC 陶瓷基复合材料主要有两种类型, 即碳纤维/碳化硅(Cf /SiC)和碳颗粒/碳化硅(Cp/SiC)陶瓷基复合材料。
Cf /SiC 陶瓷基复合材料是利用Cf 来增强增韧SiC 陶瓷, 从而改善陶瓷的脆性, 实现高温结构材料所必需的性能, 如抗氧化、耐高温、耐腐蚀等;Cp/SiC 陶瓷基复合材料是利用Cp 来降低SiC 陶瓷的硬度, 实现结构陶瓷的可加工性能,同时具有良好的抗氧化性、耐腐蚀、自润滑等。
本文主要综述了Cf /SiC 陶瓷基复合材料的制备及应用研究现状,并且从结构和功能一体化的角度, 提出了采用软机械力化学法制备Cp 与SiC 复合粉体, 通过无压烧结得到强度、抗氧化性、耐腐蚀等性能以满足普通民用工业用的Cp/SiC 陶瓷基复合材料的制备技术及应用前景。