同步电动机经常出现的故障及原因分析.

  • 格式:doc
  • 大小:32.00 KB
  • 文档页数:10

下载文档原格式

  / 10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同步电动机经常出现的故障及原因分析

经常发现的故障现象有:①定子铁芯松动,运行中噪声大。②定子绕阻端部绑线崩断,绝缘蹭坏,连接处开焊,导线在槽口处端点断裂引起短路。③转子励磁绕组接头处产生裂纹、开焊绝缘局部烧焦。④转子线圈绝缘损伤,起动绕组笼条断裂。⑤转子磁极的燕尾楔松动、退出。⑥电刷滑环松动,风叶断裂等故障。

以上故障现象有的出现在同步电动机仅运行2—3年内,甚至半年内。一般认为是电动机制造质量问题。但许多电机制造厂,虽对制造工艺中的关键部位加强措施,但没有明显效果,故障现象仍然屡屡发生。

通过对同步电动机及励磁装置运行数据进行数理统计分析,对电动机起动,投励运行中的各种典型状态波形摄片,研究分析表明,同步电动机出现上述故障,不是制造问题,而是传统励磁技术存在缺陷。

2 传统励磁技术存在的缺陷

2.1 励磁装置起动回路及环节设计不合理

同步电动机励磁装置主回路中的主桥分为:全控桥式和半控桥式,下面分别以这两种方式分析。

①半控桥式励磁装置:由三只大功率晶闸管和一只大功率二极管组成,如图1所示。电动机在起动过程中,存在滑差,在转子线圈内将感应-交变电势,其正半波通过ZQ形成回路,产生+if,其负半波则通过KQ,RF形成回路,产生-if,

如图2所示,由于回路不对称,则形成的-if与+if也不对称,致使定子电流强烈脉动,波形如图3所示。使电动机因此而强烈振动,直到起动结束才消失。

②全控桥工励磁装置:由6只大功率晶闸管组成,如图4所示。

在起动过程中,随着滑差减小,当转速达到50%以上时,励磁感应电流负半波通路时通时断,同样形成+if与-if电流不对称从而形成脉振转矩,造成电动机强烈振动。

③投励时“转子位置角”不合理。无论是全控桥还是半控桥,电动机起动过程投励时,都产生

沉闷的冲击,这种冲击,同样会造成电机损害,这是“转子位置角”不合理所致。

以上所出现的脉振、投励时的冲击,并不一定一次性使电机损坏,但每次起动都会使电机产生疲劳,造成电机内部损害,积而久之,必然造成电机内部故障。

2.2 将GL型反时限继电器兼做失步保护

传流动磁装置将GL型继电器兼做失步保护,当电机失步时,它不能动作(如带风机类负载)或不及时动作(如带往复式压缩机类负载),使电动机或励磁装置损坏。

①失励失步:是指同步电动机励磁绕组失去直流励磁或严重欠励磁,使同步电动机失去静态稳定,滑出同步,此时丢转不明显,负载基本不变,定子电流过流不大,电机无异常声音,GL型继电器往往拒动或动作时限加长,且失励失步值

班人员-不易发现,待电动机冒烟时,已失步较长时间,已造成了电机或励磁装置损害。但不一定当场损坏电机,而是造成电机内部暗伤,经常出现电机冒烟后,停机检查又查不出毛病,电机还可以再投入运行。

失励失步往往造成:起动绕组(阻尼条)过热,变形、开焊、甚至波及定子绕组端部。在转子回路还会产生高电压,造成励磁装置主回路元件损坏,引起灭磁电阻发热,严重时甚至造成整台励磁装置损坏。

②带励失步:周围大负荷起动,相邻母线短路等原因引起母线电压大幅度波动;或负载突增(如压缩机弊压、轧钢机咬冷钢);以上原因引起电动机短时间欠励磁或失励磁(如插接件接触不良),引起失励失步,又过渡到带励失步,或在起动过程中过早投励等原因引起。

电动机带励失步,励磁系统虽仍有直流励磁,但励磁电流及定子电流强烈脉振,脉振频率随电机滑差而变化,使电动机遭受强烈脉振,有时产生电气共振和机械共振。定子电流脉振包络线的高峰值一般为电机额定电流Ie幅值的2~3倍,但其低谷值小于Ie,甚至可能接近为零,使GL型继电器“启动”又马上“返回”,如此反复,最终GL虽能动作,但长达几十秒,起不到保护作用。

带励失步造成:定子绕组绑线崩断,导线变酥,线圈表面绝缘层被振伤,继而过热,烧焦、烧环,甚至引起短路。转子励磁绕组接头处产生裂纹,出现过热、开焊、绝缘层烤焦:鼠笼条(直动绕组)断裂,与端环连接部位开焊变形,转子磁极的燕尾楔松动,退出;电刷滑环松动,定子铁芯松动噪声大,严重时出现断轴事故。

③断电失步:是由于供电系统的自动重合闸ZCH装置,备用电源自动投入BZ T装置动作或人工切换电源,使电动机暂时失去电源而导致的。它对电动机的危害是非同期冲击(包括非同期电流和转矩冲击)。这种冲击的大小与系统容量、线路阻抗、电源中断时间、负载性质,特别是与电源瞬停后又重新恢复瞬间的投入分离角θT密切相关。非同期冲击电流的最大值出现在θT=180+2nq时,一般高达电机出口三相短路冲击电流的1.4~1.8倍。非同期冲击转矩的最大值对于凸极式同步电动机,将出现在θT=(1300~1350)+2nπ时,对隐极式高速高步电动机,则出现在θT=(1200~1250)+2nπ时,一般可高达电机出口三相短路时量大瞬时短路冲击转矩的3倍左右,即为电机额定转矩的20-30倍左右。它将引起电机定子,转子绕组崩裂、绝缘、挤坏;大轴、轴销和连轴器扭坏,进而引起电机内部短路,起火等事故。但当θT=2nπ+△θ时,非同期冲击小于电机出口三相短路冲击,不会引起电机损坏。

对于380V低压同步电动机,所在电网一般容量不大,加上变压器及线路阴抗相对较大。断电失步对电机冲击有限,一般不加断电失步保护。

④励磁装置的控制部分存在设计不合理环节。

控制部分经常出现晶闸管误导通、脉冲丢失、三相电流丢波缺相、不平衡、励磁不稳定,引起电机失励。同时插接件接触不良。

3 同步电动机采用的励磁新技术

对同步电动机传流励磁装置进行技术改进,采用电脑、数字技术研制成综合控制器,代替原

控制插件,面板采用薄膜按键。性能稳定、信号显示直观,便于值班人员监控。综合控制器采用了下列新技术。

3.1 主电路的改进

改进后的励磁主电路采用无续流二极管新型半控桥式整流电路,如图5所示。合理选配灭磁电阻RF,分极稳定KQ的开通电压,当电动机在异步驱动状态时,使KQ在较低电压下便开通,电动机具有良好的异步驱动状态,有效消除了传统励磁装置在电动机异步暂态过程中所存在脉振,满足带载起动及再整步的要求;而当电动机在同步运行状态时,KQ在通过电压情况下才开通。既保护元器件,又在正常同步运行时,KQ不误导通。

3.2 电机在起动及再整步过程中

按照“准角强励磁整步”的原则设计。准角强励磁系指电机转速进入临界滑差,按照电动机投励瞬间在转子回路中产生的磁场与定子绕组产生的磁场互相吸引力最大(即定子磁场的N、S极分别与转子绕组产生的S、N极相吸)。在准角时投入强励,使吸引力进一步加大,这样电机进入同步便轻松、快速、平滑、无冲击。投励时的滑差大小,可通过数字式功能开关设定,改造后的电动机起动及投励过程的波形见图6 所示。

对于某些转速较低、凸极转矩较强的电机空载或特轻载起动时,往往在尚未投励的情况下便进入同步,装置内具有凸极投励回路,在电机进入同步后1~2秒内自动投磁电机进入同步后,电脑系统自动控制励磁电压由强磁恢复到正常励磁。