储氢合金的制备和改性
- 格式:ppt
- 大小:12.64 MB
- 文档页数:40
《La-Y-Ni基A2B7型储氢合金组成设计及优化研究》篇一一、引言随着现代社会的能源需求与日俱增,传统的能源来源已逐渐不能满足可持续发展需求。
在这一背景下,氢能以其高效、清洁、可再生的特性,成为了全球科研领域的研究热点。
储氢合金作为氢能储存的关键材料,其性能的优劣直接关系到氢能的应用与推广。
La-Y-Ni基A2B7型储氢合金因具有较高的储氢容量和良好的循环稳定性,受到了广泛的关注。
本文旨在研究La-Y-Ni基A2B7型储氢合金的组成设计及优化,以期提高其储氢性能。
二、储氢合金的基本原理与性质储氢合金是一种能够可逆地吸收和释放氢气的金属材料。
La-Y-Ni基A2B7型储氢合金作为其中的一种,其组成主要由稀土元素La、Y以及过渡金属Ni等组成。
该类合金具有较高的储氢容量、良好的吸放氢动力学性能以及较长的循环寿命,是理想的储氢材料。
三、组成设计及优化策略1. 元素选择La-Y-Ni基A2B7型储氢合金的元素选择对于其性能具有重要影响。
稀土元素La和Y的加入可以提高合金的储氢容量和循环稳定性,而Ni作为主要的吸氢元素,其含量直接影响合金的吸放氢性能。
此外,适量的其他元素如Al、Cu等也可以优化合金的电化学性能和热力学性能。
2. 组成比例优化通过调整La、Y、Ni等元素的组成比例,可以优化合金的储氢性能。
采用实验设计和数据分析方法,研究各元素比例与储氢性能之间的关系,从而确定最佳组成比例。
3. 制备工艺优化制备工艺对于La-Y-Ni基A2B7型储氢合金的性能具有重要影响。
通过优化制备过程中的温度、压力、时间等参数,可以改善合金的微观结构和性能,从而提高其储氢性能。
四、实验方法与结果分析1. 实验方法采用实验设计和数据分析方法,通过调整La、Y、Ni等元素的组成比例,研究各元素比例与储氢性能之间的关系。
同时,通过优化制备过程中的温度、压力、时间等参数,改善合金的微观结构和性能。
2. 结果分析通过实验数据发现,当La、Y、Ni的组成比例在一定范围内时,合金的储氢性能达到最优。
镁-镍储氢合金材料的研究前言:Mg-Ni合金是最重要的镁系储氢合金之一,对镁镍合金的研究很能代表镁基合金的发展。
其中镁是吸氢相,镍是吸氢过程中的催化相,Ni的加入不仅大大地改善了纯Mg的吸放氢热力学和动力学性能,同时还保持了其吸放氢容量大的优点。
它这种优越性已经引起世界各国的广泛研究,并取得一定成果。
一、镁基储氢合金储氢的基本原理镁系储氢合金具有储氢量高,低成本,轻质化等优点。
在300~400。
C和较高的氢压下,镁可与氢气直接反应,反应生成MgH2 。
MgH2在287。
C时的分解压为101.3kPa,其理论含氢量(质量分数)可达7.65% ,具有金红石结构,性能比较稳定。
由于纯镁吸氢和放氢速率都很慢,而且放氢温度高,因此人们很少用纯镁来存储氢气,而是通过合金化或制成复合材料的办法来改善镁的充放氢性能。
二、镁镍储氢合金(Mg2Ni)介绍及性能特点镁基储氢合金是最有潜力的金属氢化物储氢材料之一, 近年来已引起世界各国的广泛关注。
过渡金属、稀土金属和碱土金属是3类主要考虑的合金化元素。
过渡金属中,Ni被认为是最好的合金化元素。
因为根据Miedema规则,储氢合金最好由一个强氢化物形成元素和一个弱氢化物形成元素组成。
Ni与氢的结合力较弱,氢化物形成焓低,Mg2Ni吸氢后形成Mg2NiH4,形成焓为-64.5kJ/mol・H2,较MgH2低。
Ni对氢分子具有催化活性,在电化学储氢中,过多的Ni还具有抗阳极氧化的能力。
Mg2Ni氢化后结构发生较大变化,由六方晶胞膨胀并重组为萤石结构的高温相(>250℃),而低温相由高温相发生轻微的扭曲形成。
一般认为Mg2NiH4是一种配位氢化物,H与低化合价过渡金属Ni组成[NiH4]4-配位体,而电负性较低的Mg原子贡献两个电子以稳定配位体结构。
因此H并不是存在于Mg2NiH4晶格的间隙。
镁镍基储氢材料具有以下几个特点: (1)储氢容量很高, Mg2NiH4 的含氢质量分数w达到3.6%;(2)镁是地壳中含量为第六位的金属元素, 价格低廉, 资源丰富; (3)吸放氢平台好; (4)无污染.近年来,对Mg2Ni型合金的性能研究表明,它的理论放电容量接近1000mAh/g,远高于当前主要商用LaNi5型合金(放电容量仅为370mAh/g)。
储氢合金的制备技术及开展与现状摘要:氢能是人类未来的理想能源。
一是因它具有较高的热值;如燃烧1kg的氢气可产生1.2 5x106kJ的热量,相当于3kg汽油或4.5kg焦碳完全燃烧所产生的热量。
再是氢资源丰富;我们知道,地球外表接近3/4是被水覆盖的,水中含氢量到达11.1%(虽然目前工业上主要是分解一些简单的有机物如甲烷来制得氢,但以后有可能通过分解水来制得氢)。
而其最大的优点是燃烧后的产物是水,不会产生环境污染的问题。
储氢材料(hydrogen storage material)是能可逆地吸收和释放氢气的材料。
就储氢材料的开展方向而言,大致可分为碳系列储氢材料和金属合金系列储氢材料。
本文主要讲述储氢合金材料的制备〔如Mg-RE-Ni系储氢合金〕、现状及开展。
关键词:储氢合金材料制备技术现状开展1、储氢合金分类迄今为止,人们对许多金属和合金的储氢性质进展了系统研究,现已开发出稀土系、钛系、锆系和镁系等几大类。
典型的储氢合金一般由A、B两类元素组成,其中,A是容易形成稳定氢化物的金属,如Ti、Zr、Ca、Mg、V、Nb、稀土等,他们控制着储氢合金的储氢量,与氢的反响为放热反响;B是难于形成氢化物的金属,如Ni、Fe、Co、Mn、Cu、Al、Cr等,他们控制着储氢合金吸放氢的可逆性,起调节生成热与金属氢化物分解压力的作用,氢溶于这些金属时为吸热反响。
A、B两类元素按照不同的原子比组合起来,就构成了集中典型的储氢合金,如:AB5型稀土系、AB2型Laves相系、AB型钛系和A2B型镁系等2、储氢合金的制备储氢合金的制备方法对其性能有着重要的影响,各种类型的合金也有不同的制取方法,其中包括感应熔炼法、电弧熔炼法、粉末烧结法、机械合金化法、置换扩散法和燃烧合成法等。
一下简单介绍几种制备方法2.1、感应熔炼法通过高频电流流经水冷铜线圈后,由于电磁感应使金属炉料产生感应电流,感应电流在炉料中流动并产生热量,从而使金属炉料被加热和熔化。
© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. 机械合金化法制备镁基储氢合金的研究进展3马行驰1 ,岳留振2 ,何国求3 ,何大海4 ,张俊喜1(1 上海电力学院能源与环境工程学院,上海200090 ;2 上海汽车集团股份有限公司技术中心,上海201804 ;3 同济大学材料科学与工程学院,上海200092 ;4 国家磁浮交通工程技术研究中心,上海201204)摘要机械合金化法是制备镁基储氢合金的较佳工艺。
对近年来机械合金化法制备镁基储氢合金的研究开发,特别是在多元合金化、复合储氢合金等方面的发展进行了系统阐述。
总结认为,机械合金化法可以显著改善镁基储氢合金的动力学性能和电化学性能,提高储氢量。
未来镁基储氢合金应向复合材料、新方法与机械合金化法相结合、材料的计算机设计等方面发展。
关键词镁基储氢合金机械合金化储氢性能复合材料Research Development of Mechanical Alloying Used toSynthesize Mg2based Hydrogen Storage AlloysMA Xingchi1 , YU E Liuzhen2 , HE Guoqiu3 , HE Dahai4 , ZHAN GJ unxi1(1 College of Energy and Environment Engineering , Shanghai University of Elect ric Power , Shanghai 200090 ;2 SAIC Motor Technical Center , Shanghai 201804 ;3 College of Material Science and Engineering ,Tongji University , Shanghai 200092 ;4 National Maglev Transportation Engineering R &D Center , Shanghai 201204)Abstract Mechanical alloying is a better technology used to synthesize Mg2based hydrogen storage alloys. Inthis paper , the research and development progress of Mg2based hydrogen storage alloys prepared by mechanical allo2ying in recent years are reviewed , especially f rom the aspect s of multi2component alloying and composite hydrogenstorage alloys. It is held in the summary that mechanical alloying could obviously improve the kinetics and elect ro2chemist ry properties and increase the hydrogen storage capacity of Mg2based hydrogen storage alloys. Composite ma2terial , new method based on mechanical alloying and computer aided design are the development t rends of Mg2basedhydrogen storage alloys in the future.Key words Mg2based hydrogen storage alloys , mechanical alloying , hydrogen storage properties , compositematerials3 国家“973”重点基础研究发展计划资助项目(2007CB714704) ;国家自然科学基金资助项目(50771073)马行驰:男,1980 年生,博士,讲师,主要从事金属功能材料研究Tel :0212654304102355E2mail :maxingchi1980 @163. com0 前言随着人类社会的进步和发展,传统能源———石油、煤日渐枯竭,并带来严重的环境污染,使人类面临着能源、资源和环境危机的严峻挑战[ 1 ] 。
储氢合金无机1002班汪沅201039110213化石能源的有限性与人类需求的无限性-石油、煤炭等主要能源将在未来数十年至数百年内枯竭.化石能源的使用正在给地球造成巨大的生态灾难-温室效应、酸雨等严重威胁地球动植物的生存.氢是一种非常重要的二次能源。
它的资源丰富;发热值高,燃烧1kg氢可产生142120kJ的热量,比任何一种化学燃料的发热值都高;氢燃烧后生成水,不污染环境。
因此,氢能是未来能源最佳选择之一。
氢的利用主要包括氢的生产、储存和运输、应用三个方面。
而氢的储存是其中的关键。
氢气储存技术的滞后,限制了氢的大规模应用,特别是交通工具上的应用。
储氢合金是一种新型合金,一定条件下能吸收氢气,一定条件能放出氢气。
虽然可将氢气存贮于钢瓶中,但这种方法有一定危险,而且贮氢量小(15MPa,氢气重量尚不到钢瓶重量的1/100),使用也不方便。
液态氢比气态氢的密度高许多倍,固然少占容器空间,但是氢气的液化温度是-253℃,为了使氢保持液态,还必须有极好的绝热保护,绝热层的体积和重量往往与贮箱相当。
储氢合金能以金属氢化物的形式吸收氢,是一种安全、经济而有效的储氢方法。
1 金属储氢原理许多金属(或合金)可固溶氢气形成含氢的固溶体(MHx),固溶体的溶解度[H]M与其平衡氢压pH2的平方根成正比。
在一定温度和压力条件下,固溶相(MHx)与氢反应生成金属氢化物。
金属与氢的反应,是一个可逆过程。
正向反应,吸氢、放热;逆向反应,释氢、吸热;改变温度与压力条件可使反应按正向、逆向反复进行,实现材料的吸释氢功能。
换言之,是金属吸氢生成金属氢化物还是金属氢化物分解释放氢,受温度、压力与合金成分的控制。
2 储氢合金分类并不是所有与氢作用能生成金属氢化物的金属(或合金)都可以作为储氢材料。
实用的储氢材料应具备如下条件:(1)吸氢能力大,即单位质量或单位体积储氢量大。
(2)金属氢化物的生成热要适当,如果生成热太高,生成的金属氢化物过于稳定,释氢时就需要较高温度;反之,如果用作热贮藏,则希望生成热高。