材料拉伸与压缩实验报告参考
- 格式:doc
- 大小:72.50 KB
- 文档页数:5
低碳钢和铸铁拉伸压缩实验报告摘要:材料的力学性能也称为机械性质,是指材料在外力作用下表现的变形、破坏等方面的特性。
它是由试验来测定的。
工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。
关键字:低碳钢 铸铁 拉伸压缩实验 破坏机理一.拉伸实验1.低碳钢拉伸实验拉伸实验试件 低碳钢拉伸图在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:低碳钢拉伸应力-应变曲线(1)弹性阶段(Ob段)在拉伸的初始阶段,σ-ε曲线(Oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。
线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。
线性阶段后,σ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。
卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。
(2)屈服阶段(bc段)超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。
使材料发生屈服的应力称为屈服应力或屈服极限(σs)。
当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。
这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。
(3)强化阶段(ce段)经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。
若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线(如d-d'斜线),其斜率与比例阶段的直线段斜率大致相等。
当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。
一、实验目的1. 了解材料力学中拉伸和压缩的基本原理及实验方法。
2. 通过实验观察材料的弹性、屈服、强化等力学行为。
3. 测定材料的屈服极限、强度极限、延伸率、断面收缩率等力学性能指标。
4. 掌握电子万能试验机的使用方法及工作原理。
二、实验原理1. 拉伸实验:将试样放置在万能试验机的夹具中,缓慢施加轴向拉伸载荷,通过力传感器和位移传感器实时采集力与位移数据,绘制F-Δl曲线,分析材料的力学性能。
2. 压缩实验:将试样放置在万能试验机的夹具中,缓慢施加轴向压缩载荷,通过力传感器和位移传感器实时采集力与位移数据,绘制F-Δl曲线,分析材料的力学性能。
三、实验设备1. 电子万能试验机2. 力传感器3. 位移传感器4. 游标卡尺5. 计算机及数据采集软件四、实验材料1. 低碳钢拉伸试样2. 铸铁压缩试样五、实验步骤1. 拉伸实验:1. 将低碳钢拉伸试样安装在万能试验机的夹具中。
2. 设置试验参数,如拉伸速率、最大载荷等。
3. 启动试验机,缓慢施加轴向拉伸载荷,实时采集力与位移数据。
4. 绘制F-Δl曲线,分析材料的力学性能。
2. 压缩实验:1. 将铸铁压缩试样安装在万能试验机的夹具中。
2. 设置试验参数,如压缩速率、最大载荷等。
3. 启动试验机,缓慢施加轴向压缩载荷,实时采集力与位移数据。
4. 绘制F-Δl曲线,分析材料的力学性能。
六、实验结果与分析1. 低碳钢拉伸实验:1. 通过F-Δl曲线,确定材料的屈服极限、强度极限、延伸率、断面收缩率等力学性能指标。
2. 分析材料在拉伸过程中的弹性、屈服、强化等力学行为。
2. 铸铁压缩实验:1. 通过F-Δl曲线,确定材料的强度极限等力学性能指标。
2. 分析材料在压缩过程中的破坏现象。
七、实验结论1. 通过本次实验,我们掌握了拉伸和压缩实验的基本原理及实验方法。
2. 通过实验结果,我们了解了低碳钢和铸铁的力学性能。
3. 实验结果表明,低碳钢具有良好的弹性和塑性,而铸铁则具有较好的抗压性能。
材料的拉伸压缩实验【实验目的】1.研究低碳钢、铸铁的应力——应变曲线拉伸图。
2.确定低碳钢在拉伸时的机械性能(比例极限R p 、下屈服强度R eL 、强度极限R m 、延伸率A 、断面收缩率Z 等等)。
3. 确定铸铁在拉伸时的力学机械性能。
4.研究和比较塑性材料与脆性材料在室温下单向压缩时的力学性能。
【实验设备】1. 微机控制电子万能试验机;2. 游标卡尺。
3、记号笔4、低碳钢、铸铁试件【实验原理】 1、拉伸实验低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D 转换和处理,并输入计算机,得到F-?l 曲线,即低碳钢拉伸曲线,见图1。
对于低碳钢材料,由图1曲线中发现OA 直线,说明F 正比于?l ,此阶段称为弹性阶段。
屈服阶段(B-C )常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。
其中,B ?点为上屈服点,它受变形大小和试件等因素影响;B 点为下屈服点。
下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。
测定屈服载荷Fs 时,必须缓慢而均匀地加载,并应用?s =F s / A 0(A 0为试件变形前的横截面积)计算屈服极限。
图1低碳钢拉伸曲线屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。
当载荷达到强度载荷F b 后,在试件的某一局部发生显着变形,载荷逐渐减小,直至试件断裂。
应用公式?b =F b /A 0计算强度极限(A 0为试件变形前的横截面积)。
根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率?和端面收缩率?,即%100001⨯-=l l l δ,%100010⨯-=A A A ψ 式中,l 0、l 1为试件拉伸前后的标距长度,A 1为颈缩处的横截面积。
2、压缩实验 铸铁试件压缩过程中,通过力传感器和位移传感器进行数据采集,A/D 转换和处理,并输入计算机,得到F-?l曲线,即铸铁压缩曲线,见图2。
低碳钢和铸铁拉伸压缩实验报告摘要:材料的力学性能也称为机械性质,是指材料在外力作用下表现的变形、破坏等方面的特性。
它是由试验来测定的。
工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。
关键字:低碳钢 铸铁 拉伸压缩实验 破坏机理一.拉伸实验1.低碳钢拉伸实验拉伸实验试件 低碳钢拉伸图在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:低碳钢拉伸应力-应变曲线(1)弹性阶段(Ob段)在拉伸的初始阶段,σ-ε曲线(Oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。
线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。
线性阶段后,σ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。
卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。
(2)屈服阶段(bc段)超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。
使材料发生屈服的应力称为屈服应力或屈服极限(σs)。
当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。
这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。
(3)强化阶段(ce段)经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。
若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线(如d-d'斜线),其斜率与比例阶段的直线段斜率大致相等。
当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。
竭诚为您提供优质文档/双击可除低碳钢和铸铁压缩实验报告篇一:低碳钢和铸铁的拉伸与压缩试验低碳钢和铸铁的拉伸与压缩试验一、实验目的1.测定低碳钢在拉伸时的下屈服强度ReL、抗拉强度Rm、断后伸长率A和断面收缩率Z。
观察低碳钢在拉伸过程中的各种现象(包括屈服、强化、缩颈及断裂),并绘制拉伸图(F-?L曲线)。
2.测定铸铁的抗拉强度Rm。
3.测定铸铁的抗压强度?较。
bc,观察低碳钢和铸铁压缩时的变形和破坏现象,并进行比二、实验设备与试样材料试验机,试样分划机或冲点机,游标卡尺,低碳钢和铸铁的拉伸试样,压缩试样。
三、实验步骤1.低碳钢拉伸试验(1)试样准备为便于观察试样标距范围内伸长沿轴向的分布情况和测量拉断后的标距Lu,在试样平行长度内涂上快干着色涂料,然后用专门的划线机,在标距L0范围内每隔10mm(对长试样)或每隔5mm(对短试样)刻划一根圆周线,或用冲点机冲点标记,将标距L0分成10格。
因直径d0沿试样长度不均匀,故用游标卡尺在标距的两端及中间三个横截面Ⅰ、Ⅱ、Ⅲ处,在互相垂直的两个直径方向上各测量一次,记入表1-1,算出各自的平均直径,取其中最小的一个作为原始直径d0,计算试样的最小原始横截面面积s0,s0取三位有效数字。
(2)试验机准备根据低碳钢的抗拉强度Rm和试样原始横截面面积s0,由公式Fm=Rms0估算拉断试样所需的最大力Fm。
根据估算的Fm的大小,选择试验机合适的量程。
试验机调“零”。
(3)安装试样将试件的一段夹持在固定夹头内,移动可动夹头至适当位置,可靠地夹好试件的另一端。
(4)检查及试机请教师检查以上步骤完成情况,获得认可后在比例极限内施力至10kn,然后卸力至接近零点,以检查试验机工作是否正常。
(5)施力测读启动试验机加载部分,缓慢均匀地施力。
注意观察试件的拉伸图,参照图5-8所示的几种屈服图形,确定下屈服力FeL,记入表1-2。
过了屈服阶段后,可用较快的速度施力,直至试样断裂为止。
金属材料的拉伸与压缩实验报告
一、前言
拉伸与压缩实验是金属材料力学性能测试中常用的方法之一。
通过实验可以得到金属材料的抗拉强度、屈服强度、延伸率等性能参数。
本实验旨在通过对不同金属材料的拉伸与压缩实验,探索金属材料的力学特性。
二、实验原理
拉伸与压缩实验的原理是将金属样本放入拉力机中,通过施加相应的拉伸或压缩力,在不同的应变下测量样本的力学性能。
应变可以通过求解样本的伸长量与原始长度的比值得到。
三、实验步骤
1. 将金属样本放置在拉力机上,并调整夹具使样本稳固;
2. 开始拉伸实验,慢慢增加加载量,记录下载荷和伸长量;
3. 当样本出现明显的变形时停止拉伸,记录此时的载荷和伸长量;
4. 根据记录数据计算拉力与伸长量之间的比值,得到材料的抗拉强度和延伸率;
5. 进行压缩实验,步骤同拉伸实验;
6. 根据实验数据计算压力与压缩量之间的比值,得到材料的抗压强度和压缩率。
四、实验结果分析
本实验对不同金属材料进行了拉伸与压缩实验。
实验结果表明,不同材料的力学
性能存在较大的差异。
其中,钢材的抗拉强度最高,铝材的延伸率较高。
对于同一材料,在拉伸和压缩实验中得到的结果存在差异,这是由于材料在不同的加载形式下会表现出不同的力学特性。
五、实验总结
拉伸与压缩实验是研究金属材料力学性能的重要手段。
通过实验可以得到材料的抗拉强度、屈服强度、延伸率等性能参数,有助于了解不同材料的应用范围和性能要求。
在实验中需要注意样本的选择和制备,以及试验过程中的操作规范和数据记录精确。
材料力学拉伸与压缩实验报告一、实验目的本实验旨在通过拉伸与压缩实验,探讨材料在受力下的力学性能,了解材料的强度、延展性和变形特点,为材料的工程应用提供理论依据。
二、实验原理1. 拉伸实验原理:拉伸试验是通过对试样施加拉力,使其发生长度方向的拉伸变形,以研究材料的强度、延展性和断裂特性。
在拉伸过程中,可以通过载荷和位移数据来绘制应力-应变曲线,从而得到材料的力学性能参数。
2. 压缩实验原理:压缩试验是通过对试样施加压力,使其产生长度方向的压缩变形,以研究材料在受压状态下的变形特性和抗压性能。
通过测量载荷和位移数据,可以得到材料的应力-应变关系,并分析其力学性能。
三、实验装置及试样1. 实验装置:拉伸试验机、压缩试验机、数据采集系统等。
2. 试样:常用的拉伸试样为标准圆柱形试样,常用的压缩试样为标准方形试样。
四、实验步骤1. 拉伸实验:a. 准备好拉伸试样,安装在拉伸试验机上。
b. 设置合适的加载速率和采样频率,开始施加拉力。
c. 记录载荷和位移数据,绘制应力-应变曲线。
d. 观察试样的变形情况,记录拉伸过程中的各阶段特征。
2. 压缩实验:a. 准备好压缩试样,安装在压缩试验机上。
b. 设置合适的加载速率和采样频率,开始施加压力。
c. 记录载荷和位移数据,得到应力-应变关系曲线。
d. 观察试样的变形情况,记录压缩过程中的各阶段特征。
五、实验结果及分析1. 拉伸试验结果分析:根据绘制的应力-应变曲线,分析材料的屈服点、最大强度、断裂点等力学性能参数,并观察材料的断裂形态和变形特点。
2. 压缩试验结果分析:根据得到的应力-应变关系曲线,分析材料在受压状态下的变形和抗压性能,并观察材料的压缩断裂形态。
六、实验结论通过拉伸与压缩实验,我们得到了材料在拉伸和压缩条件下的力学性能参数,并对其力学性能进行了分析。
实验结果表明,材料在拉伸状态下具有较好的延展性和韧性,而在受压状态下表现出良好的抗压性能。
这些结果为材料的工程应用提供了重要参考。
第1篇一、实验概述本次拉伸挤压实验旨在通过实际操作,验证材料力学理论在拉伸和挤压过程中的应用,并观察材料在不同受力状态下的力学性能变化。
实验材料选用了一种典型的金属材料,通过微机控制电子万能试验机对材料进行拉伸和挤压实验,获得了材料的应力-应变曲线,并对其力学性能进行了分析。
二、实验目的1. 理解拉伸和挤压实验的基本原理和操作步骤。
2. 观察并分析材料在拉伸和挤压过程中的力学行为。
3. 测定材料的弹性模量、屈服强度、抗拉强度、延伸率等力学性能指标。
4. 掌握材料力学性能测试方法,为后续材料选型和结构设计提供依据。
三、实验结果与分析1. 拉伸实验结果分析- 应力-应变曲线:在拉伸实验中,材料表现出明显的弹性阶段、屈服阶段和强化阶段。
在弹性阶段,应力与应变呈线性关系,材料表现出良好的弹性性能。
进入屈服阶段,应力不再随应变线性增加,材料开始出现塑性变形。
强化阶段,材料抵抗变形的能力增强,但最终仍会发生断裂。
- 力学性能指标:根据应力-应变曲线,计算得到材料的弹性模量、屈服强度、抗拉强度、延伸率等指标。
结果表明,该材料具有较高的弹性模量和抗拉强度,良好的塑性和韧性。
2. 挤压实验结果分析- 应力-应变曲线:在挤压实验中,材料表现出明显的弹性阶段和塑性阶段。
与拉伸实验相比,挤压过程中材料的屈服强度和抗拉强度略有提高,而延伸率则有所降低。
- 力学性能指标:根据应力-应变曲线,计算得到材料的弹性模量、屈服强度、抗拉强度、延伸率等指标。
结果表明,该材料在挤压过程中具有较高的弹性模量和抗拉强度,但塑性变形能力相对较弱。
四、实验结论1. 材料力学性能:本次实验结果表明,该金属材料具有较高的弹性模量和抗拉强度,良好的塑性和韧性,适用于承受较大拉伸和挤压载荷的结构部件。
2. 实验方法:拉伸和挤压实验是材料力学性能测试的重要方法,能够有效反映材料的力学行为。
通过实验,可以了解材料在不同受力状态下的力学性能,为材料选型和结构设计提供依据。
材料的力学实验报告材料的力学实验报告材料的力学实验报告一目录一、拉伸实验...............................................................................2 二、压缩实验...............................................................................4 三、拉压弹性模量E 测定实验...................................................6 四、低碳钢剪切弹性模量G测定实验.......................................8 五、扭转破坏实验....................................................................10 六、纯弯曲梁正应力实验..........................................................12 七、弯扭组合变形时的主应力测定实验..................................15 八、压杆稳定实验. (18)一、拉伸实验报告标准答案实验结果及数据处理:例:(一)低碳钢试件强度指标:Ps=_____KN屈服应力ζs= Ps/A _____MPa P b =_____KN 强度极限ζb= Pb /A _____MPa 塑性指标:L1-LAA1伸长率100% %面积收缩率100% %LA低碳钢拉伸图:铸铁试件强度指标:最大载荷Pb =_____ KN强度极限ζb= Pb / A = ___ M Pa问题讨论:1、为何在拉伸试验中必须采用标准试件或比例试件,材料相同而长短不同的试件延伸率是否相同答:拉伸实验中延伸率的大小与材料有关,同时与试件的标距长度有关.试件局部变形较大的断口部分,在不同长度的标距中所占比例也不同.因此拉伸试验中必须采用标准试件或比例试件,这样其有关性质才具可比性.材料相同而长短不同的试件通常情况下延伸率是不同的(横截面面积与长度存在某种特殊比例关系除外).2、分析比较两种材料在拉伸时的力学性能及断口特征.答:试件在拉伸时铸铁延伸率小表现为脆性,低碳钢延伸率大表现为塑性;低碳钢具有屈服现象,铸铁无.低碳钢断口为直径缩小的杯锥状,且有450的剪切唇,断口组织为暗灰色纤维状组织。
实验一:低碳钢、铸铁的拉伸和压缩实验一、实验目的1.测定低碳钢的屈服强度、抗拉强度、延伸率和断面收缩率。
2.测定铸铁的抗拉强度。
3.测定铸铁压缩时的抗压强度。
4.观察上述两种材料在拉伸过程中的各种现象,并绘制拉伸图。
5.分析比较低碳钢和铸铁的力学性能特点与试样破坏特征。
二、实验内容1.铸铁拉伸实验;2.铸铁压缩实验;3.低碳钢拉伸实验。
三、实验原理、方法和手段常温、静载下的轴向拉伸实验是材料力学试验中最基本、应用最广泛的试验。
通过拉伸试验,可以全面地测定材料的力学性能,如弹性、塑性、强度、断裂等力学性能指标。
这些性能指标对材料力学的分析计算、工程设计、选择材料和新材料开发都有及其重要的作用。
实验表明,工程中常用的塑性材料,其受压与受拉时所表现出的强度、刚度和塑性等力学性能是大致相同的。
但广泛使用的脆性材料,其抗压强度很高,抗拉强度却很低。
为便于合理选用工程材料,以及满足金属成型工艺的需要,测定材料受压时的力学性能是十分重要的。
因此,压缩实验同拉伸实验一样,也是测定材料在常温、静载、单向受力下的力学性能的最常用、最基本的实验之一。
依据国标GB/T 228-2002《金属室温拉伸实验方法》分别叙述如下:1.低碳钢试样。
在拉伸实验时,利用试验机的自动绘图器可绘出低碳钢的拉伸曲线,见图1-1所示的F—ΔL曲线。
图中最初阶段呈曲线,是由于试样头部在夹具内有滑动及试验机存在间隙等原因造成的。
分析时应将图中的直线段延长与横坐标相交于O点,作为其坐标原l图1-1点。
拉伸曲线形象的描绘出材料的变形特征及各阶段受力和变形间的关系,可由该图形的状态来判断材料弹性与塑性好坏、断裂时的韧性与脆性程度以及不同变形下的承载能力。
但同一种材料的拉伸曲线会因试样尺寸不同而各异。
为了使同一种材料不同尺寸试样的拉伸过程及其特性点便于比较,以消除试样几何尺寸的影响,可将拉伸曲线图的纵坐标(力P)除以试样原始横截面面积A,并将横坐标(伸长ΔL)除以试样的原始标距L0得到的曲线便与试样尺寸无关,此曲线称为应力-应变曲线,它与拉伸图曲线相似,也同样表征了材料力学性能。
碳钢与铸铁的拉伸、压缩实验
一、实验目的
1、测定碳钢在拉伸时的屈服极限s σ,强度极限b σ,延伸率δ和断面收缩率ψ,测定铸铁拉伸时的强度极限b σ。
2、观察碳钢、铸铁在拉伸过程中的变形规律及破坏现象,并进行比较,使用绘图装置绘制拉伸图(P-ΔL 曲线)。
二、实验设备
微机控制电子万能材料试验机、直尺、游标卡尺。
三、实验试祥
1. 为使各种材料机械性质的数值能互相比较,避免试件的尺寸和形状对试验结果的影响,对试件的尺寸形状GB6397-86作了统一规定,如图1所示:
图1
用于测量拉伸变形的试件中段长度(标距L 0)与试件直径d 。
必零满足L 0
/d 0=10或5,其延伸率分别记做和δ10和δ5
2、压缩试样:低碳钢和铸铁等金属材料的压缩试件一般做成很短的圆柱形,避免压弯,一般规定试件高度h 直径d 的比值在下列范围之内:
1≤d h
≤3
为了保证试件承受轴向压力,加工时应使试件两个端面尽可能平行,并与试件轴线垂直,为了减少两端面与试验机承垫之间的摩擦力,试件两端面应进行磨削加工,使其光滑。
图2
四、实验原理
图2为试验机绘出的碳钢拉伸P-△L 曲线图,拉伸变形ΔL 是整个试件
的伸长,并且包括机器本身的弹性变形和试件头部在夹头中的滑动,故绘出的曲线图最初一段是曲线,流动阶段上限B ‘受变形速度和试件形式影响,下屈服点B 则比较稳定,工程上均以B 点对应的载荷作为材料屈服时的载荷P S ,以试样的初
始横截面积A0除PS ,即得屈服极限:
0A Ps
S =
σ
屈服阶段过后,进入强化阶段,试样又恢复了承载能力,载荷到达最大值
P b ,时,试样某一局部的截面明显缩小,出现“颈缩”现象,这时示力盘的从动针停留在P b 不动,主动针则迅速倒退表明载荷迅速下降,试样即将被拉断。
以试样的初始横截面面积A 。
除P b 得强度极限为
0A P b
b =
σ
延伸率δ及断面收缩率φ的测定,试样的标距原长为L 0拉断后将两段试样紧密地对接在一起,量出拉断后的标距长为L 1延伸率应为
%1000
1⨯-=
l l l δ
试样拉断后,设颈缩处的最小横截面面积为A 1,由于断口不是规则的圆形,应在两个相互垂直的方向上量取最小截面的直径,以其平均值计算A 1,然后按下式计算断面收缩率:
01
100%ψA -A =
⨯A
铸铁试件在变形极小时,就达到最大载荷P b 而突然发生断裂。
没有屈服和颈缩现象,其强度极限远小于低碳钢的强度极限。
图4为低碳钢试件的压缩图,在弹性阶段和屈服阶段,它与拉伸时的形状基本上是一致的,而且s P 也基本相同,所以说,低碳钢材料在压缩时的E 和s σ都与拉伸时大致相同,低碳钢的塑性好,由于泊松效应,试件越压越粗,不会破坏,横向膨胀在试件两端受到试件与承垫之间巨大摩擦力的约束,试件被压成鼓形,进一步压缩,会压成圆饼状,低碳钢试件压不坏,所以没有强度极限。
图5为铸铁试件压缩图,P-ΔL 比同材料的拉伸图要高4-5倍,当达到最大载荷b P 时铸铁试件会突然破裂,断裂面法线与试件轴线大致成0
45~0
55的倾角。
这表面,铸铁压缩破坏主要是由剪应力引起的。
五、实验步骤
低碳钢拉伸试验步骤:
1、测量试样尺寸 测定试样初始横截面面积A ο时,在标距L ο的两端及中部三个位置上,沿两个互相垂直的方向,测量试样直径,以其平均值计算各横截面面积,取三个横截面面积中的最小值为A ο。
2、检查试验机的夹具是否安装好,各种限位是否在实验状态下就位;
3、安装试件。
安装时仅将试件上端夹紧,下端悬空,然后再试件上夹持引伸计;
4、启动下降按钮将试件移下,停止安装好试件,进行调零,回到试验初始状态;
5、根据实验设定,启动实验开关进行加载,注意观察试验中的试件及计算机上的曲线变化;
6、实验完成,保存记录数据;
7、试件破坏后(非破坏性试验应先卸载),断开控制器并关闭,关闭动力系统及计算机系统,清理还原。
图4 图5
铸铁压缩试验步骤:
1、测量试样尺寸,测量试样两端及中间等三处截面的直径,取三处中最小
A之用。
一处的平均直径0d作为计算原截面积0
2、调整试验机,选择测力度盘,调整指针对准零点,并调整自动绘图器。
电子万能试验机按软件操作指南步骤进行。
3、安装试样,将试样两端面涂上润滑油,然后准确地放在试验机活动台支承垫的中心上。
4、检查及试车
液压试验机试车时将试验机活动台上升,试件亦随之上升,当试件上端面接近承垫时应减慢活动台上升速度,避免突然接触引起剧烈加载,当试件与上承垫刚接触时,将自动绘图笔调整好,使它处于工作状态,用慢速预加少量载荷。
然后卸载近零点,以检查试验机工作是否正常。
5、进行试验
∆曲线,铸铁试件,缓慢而均匀地加载,同时使用自动绘图装置绘出P-L
直到试件破裂为止,记下破坏载荷b P。
6、结束工作
打开回油间,将载荷卸掉,取下试件,使试验机复原。
六、数据处理
低碳钢拉伸:试样直径d
断面收缩率:
灰铸铁 直径d :9.92mm 、9.90mm,平均值9.91mm 铸铁的强度极限: =54.642KN/(3,1*10^-4mm)=176.3MPa
%=(105-80)/80=31.25% 100 0
1
⨯ - = l l l δ 01 0
×100%=[(2*10^-4)-(5.6*10^-5)]/(2*10^-4)=72%
ψ A-A = A
A P b
b
= σ。