土力学 土质边坡的稳定性
- 格式:pptx
- 大小:736.30 KB
- 文档页数:32
一、边坡稳定性计算方法在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。
根据边坡不同破裂面形状而有不同的分析模式。
边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。
这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。
(一)直线破裂面法化计算这类边坡稳定性分析采用直线破裂面法。
能形成直线破裂面的土类包括:均质砂性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。
图 9 - 1 为一砂性边坡示意图,坡高 H ,坡角β,土的容重为γ,抗剪度指标为c、φ。
如果倾角α的平面AC面为土坡破坏时的滑动面,则可分析该滑动体的稳定性。
沿边坡长度方向截取一个单位长度作为平面问题分析。
图9-1 砂性边坡受力示意图已知滑体ABC重 W,滑面的倾角为α,显然,滑面 AC上由滑体的重量W= γ(ΔABC)产生的下滑力T和由土的抗剪强度产生的抗滑力Tˊ分别为:T=W · sina和则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即为了保证土坡的稳定性,安全系数F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。
对于C=0 的砂性土坡或是指边坡,其安全系数表达式则变为从上式可以看出,当α =β时,F s 值最小,说明边坡表面一层土最容易滑动,这时当 F s =1时,β=φ,表明边坡处于极限平衡状态。
此时β角称为休止角,也称安息角。
此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。
这类滑坡滑动面的深度与长度之比往往很小。
当深长比小于 0.1时,可以把它当作一个无限边坡进行分析。
图 9-2表示一无限边坡示意图,滑动面位置在坡面下H深度处。
取一单位长度的滑动土条进行分析,作用在滑动面上的剪应力为,在极限平衡状态时,破坏面上的剪应力等于土的抗剪强度,即得式中N s =c/ γ H 称为稳定系数。
岩土工程中的边坡稳定性边坡稳定性一直是岩土工程中的重要问题之一。
边坡指的是山体或土地表面的坡度,其稳定性对于道路、铁路、建筑物、水利工程等的设计和施工具有关键的影响。
本文将探讨岩土工程中的边坡稳定性及相关因素。
1. 岩土工程中的边坡稳定性概述边坡稳定性是指边坡在重力、水力等外力作用下保持其原始形态的能力。
岩土工程中的边坡稳定性研究主要包括边坡的稳定性分析、评估和加固措施设计。
在边坡稳定性分析中,通常会考虑土壤的强度、坡度、水文条件等因素,并结合地形地貌等综合因素进行综合分析。
2. 影响边坡稳定性的因素(1)土壤的强度:土壤的强度直接影响边坡的稳定性,强度较低的土壤更容易导致边坡滑坡等灾害。
(2)坡度:较陡的坡度更容易导致边坡的失稳,因为重力作用更大。
(3)水文条件:水文条件是影响边坡稳定性的重要因素之一,包括地下水位、降雨、径流等。
(4)土体的孔隙水压力:当土壤中存在过多的孔隙水时,会增加边坡的重量和水压,导致边坡失稳。
(5)地震:地震会产生剧烈的地面摆动,进一步破坏边坡的稳定性,引发滑坡等灾害。
3. 边坡稳定性分析方法(1)常用方法:边坡稳定性分析的常用方法包括极限平衡法、有限元法和数值模拟方法等。
(2)极限平衡法:该方法基于土壤强度理论,通过计算土体切线与重力切向力的平衡来评估边坡稳定性。
(3)有限元法:该方法基于力学和数学原理,在电脑上建立数学模型,模拟边坡的力学行为。
(4)数值模拟方法:该方法通过数值计算方法,模拟边坡稳定性及其发展过程,可以更精确地分析边坡的稳定性。
4. 边坡稳定性评估和加固措施设计(1)评估:边坡稳定性评估通常包括现场调查、数据收集、分析计算和风险评估等步骤,以确定边坡是否稳定。
(2)加固措施设计:根据边坡稳定性评估结果,可以设计一系列的加固措施,包括减小坡度、加固土体、排水处理、构筑物设置等。
综上所述,岩土工程中的边坡稳定性是一个重要且复杂的问题。
了解边坡稳定性的相关因素,并采用科学的分析方法和合理的加固措施设计,可以确保边坡在工程建设中的安全稳定。
第一部分边坡稳定性分析原理及防治措施1.边坡稳定性基本原理1.1边坡稳定性精确分析原理要对边坡稳定性问题进行精确分析,首先要对材料性能进行透彻的的研究实验,查清它的各种应力--应变关系以及它的屈服、破坏条件。
假定这些问题都已查清,那么从理论上讲,边坡在指定荷载下的稳定性问题是可以精确解决的。
七步骤大致如下:(1)进行边坡在指定荷载下的应力、变形的精确分析。
分析过程中,要采用合理的数学模型来反映材料的特性,务使这种数学模型能够如实表达出材料的主要性能,例如应力—应变间的非线性、卸载增荷性质、屈服破坏性质等等。
分析工作要通过计算机和非线性有限单元法进行。
(2)这种精确计算的数学分析将给出各点应力、应变值。
例如,就抗剪问题讲,通过分析得到了每一点上的抗剪强度τ= c +fσ,从而可以算出每一部分点上的局部安全系数。
如果每一点上的K均大于1,整个计算体系在抗剪上当然是安全的。
如果有个别点已达屈服,则由于在计算程序中已反映力材料性质,这,表明这些部位已进入屈服状态。
只要这些屈服区是些部位的τ将自动等于τf孤立的、小范围的,而没有形成连贯的破坏面,那么,在指定荷载下该体系仍是稳定的。
进入屈服状态的部位大小,野可以给出一个安全度的概念。
反之,如果屈服的部位已经连成一个连贯的破坏面,甚至已求不出一个满足平衡要求的解答,就说明该体系在指定荷载下已不能维持稳定。
(3)如果要推算“安全系数”,首先要给出安全系数的定义。
第一种方法,是将荷载乘以K,并将K逐渐增大。
每取一个K值就进行如上一次分析,直到K达到某临界值,出现了连贯性断裂面或已无法求得解答为止。
这个临界值就是安全系数。
显然,这样求出的K具有“超载系数”性质。
第二种方法,是将材料的强度除以K,并用于计算中,逐渐增加K,使其强度逐渐降低,直至失稳。
相应的K值就是安全系数。
显然,这样求得的K具有“材料强度储备系数”的意义。
上述方法虽很理想,但是近期内还不能实现。
首先,要进行这种合理分析,必须对材料的特性有透彻、明确的了解。
1粘质土边坡的稳定性1.1问题描述在工程土力学中一个普遍的问题是粘质土边坡的稳定性。
本例中土质视为均匀的,共有三个边坡状态分析。
第一个状态:黏聚力为0的砂质边坡,边坡角大于砂土的休止角。
第二个状态:给材质赋予较小的黏聚力,重新计算边坡是否稳定。
第三个状态,水位上升,分析其对边坡的稳定性影响。
(对于含潜水面的模拟研究,可以从两个方面实现:孔隙水压分布或地下水位面。
) 1.2建模步骤1.2.1初始模型状态图 1 材料的初始赋值参数建模需要考虑以下五个方面的内容:(1)模型尺寸:计算模型范围的选取直接关系到计算结果的正确与否,范围太大,白费计算机资源,范围太小,计算结果不合实际;(2)网格数目和分布:计算模型的尺寸一旦确定,计算网格的数目也相应确定,为减少因网格划分引起的误差,网格的长宽比应不大于5,对于重点研究区域可以进行网格加密处理;(3)工程对象:对于开挖、支护工程,应在建模中进行规划,调整网格结点,安排开挖以及支护的位置等;(4)材料力学参数:根据实际工程确定本构关系,赋相应的力学参数值(5)边界条件:位移边界和力边界两种(包括模型内部出适应力和位移),在计算前应确定模型的边界状况。
采用命令生成网格模型:示例:图 2 部分命令(分号后的内容为注释语句,非命令)参考解释(摘自网络):grid 20 10模型开始建立时,设置在x方向上总的单元格数目i和模型在y方向上总的单元格数目j。
gen x1,y1 x2,y2 x3,y3 x4,y4模型总网格数目给定后,需对模型整体区域进行圈定来确定模型的尺寸,(x1,y1)、(x2,y2)、(x3,y3)和(x4,y4)分别为区域从左下角起按顺时针旋转的四点坐标。
gen xi1,yi1 xi2,yi2 xi3,yi3 xi4,yi4 i=1,n1 j=1,m1 (i区)gen xii1,yii1 xii2,yii2 xii3,yii3 xii4,yii4 i=n1,n2 j=1,m1 (ii区)(i、j为区域沿x、y方向的结点号)图 3 20×10的网格1234图 4 分配第二个区域红色线圈的范围与四条蓝色的线圈区域取交集,其机制应该还是取四个点,因为第一个点的i和j规定要值都为最小,所以最终取上图中的四个红点,围成的区域是分配的第二个区域。
边坡稳定安全技术措施什么是边坡稳定?边坡是指由于路堤修建,挖掘或其他自然因素造成的侧向倾斜的土质或岩石的坡面。
如果边坡倾斜度太大,或者受到长期降雨、地震等自然因素的影响,就可能导致边坡滑动、崩塌等不稳定现象的发生。
边坡稳定是指采用一系列的技术手段,通过改变边坡的结构、改善土壤或岩石物理性质等措施,从而增强边坡的稳定性,减少或避免不稳定现象的发生。
边坡稳定技术措施土工材料的应用(1)软土护坡当边坡所处的区域是软土地质时,最常见的粘土防护系统涉及到浅层稳定和刚性覆盖材料,如钢筋混凝土板、预应力混凝土板、钢丝网加筋混凝土板和聚合物增强土层等。
这些材料不仅能够起到增强边坡稳定性,还能有效地防止边坡水土流失。
(2)坑道加固坑道的修建可能会破坏周围土壤的结构稳定性,导致边坡崩塌、沉陷等情况。
针对这种情况,可以采用支护体系、锚固体系、加筋体系等土工工程措施来加强坑道边坡结构的稳定性。
土力学方法(1)加固法在稳定边坡的过程中,加固是最常用的方法之一。
常见的加固方法包括土钉墙加固、高压灌浆加固、混凝土加固、钢结构加固、锚杆加固等。
加固工作的目标是在边坡结构中加强力量,增加抗滑稳定的能力。
(2)渗流法渗流法是一种应用于边坡表面的水流运动的稳定技术。
借助渗流法,可以使用过滤材料防止水流流入边坡内部,从而降低边坡的饱和度,提高边坡的牢固性和稳定性。
植被技术(1)植被恢复如果边坡上没有植被覆盖,土壤很容易因干旱或风蚀而流失,从而降低边坡的稳定性。
针对这种情况,可以通过种植或播放种子、增加植物生长来恢复边坡上的植被覆盖,从而增强边坡的稳定性。
(2)碎石技术使用合适的分类、级配的碎石对边坡进行覆盖也是一种增强边坡稳定性的技术。
碎石可以有效增强边坡表面的抗冲刷能力,防止表面流水冲刷,从而减少边坡崩塌和滑动的风险。
边坡稳定技术的安全维护稳定技术措施需要经常维护和检查,以确保其有效性和长期性。
维护的过程中,应该密切关注边坡的常见问题,如:(1)水土流失和侵蚀(2)裂缝和开裂(3)沉陷和变形(4)土体下滑和冲刷(5)受力失效如果出现以上问题,必须及时的对边坡进行修复和加固,以保证其稳定性和安全性。
土质边坡稳定性分析研究现状与趋势摘要:土坡失稳是西南地区乃至全国主要地质灾害类型,具有突发性、广泛性、致灾严重性等基本特点。
为了更好的梳理土质边坡的研究现状,将其概化为土质边坡失稳原理、土质边坡稳定性计算方法以及土质边坡稳定性评价方法等3个方面,发现学者们针对不同因素对土坡失稳的影响、土坡在二维方向上的稳定性计算方法和评价模型有较为深入的研究,但是缺少土坡在三维方向上的状态以及不同失稳判据之间的协调性研究。
指出了土质边坡稳定性分析研究应进一步聚焦的3个方向:土质边坡在3维方向上的稳定性表达、寻找更加准确的失稳判据以及建立合适的土质边坡监测预警系统。
关键词:土质边坡;稳定性分析;研究现状;研究趋势0引言土质边坡稳定性分析是指对处于一定自然条件下的土坡,采用人工勘测、软件分析、试验模拟等手段,对土坡的应力应变特征以及其他性质得出结论的过程[1]。
土坡失稳是指土坡在人为或自然因素下,导致其原有稳定状态发生破坏的一种地质灾害现象[2]。
土体的运动可分为五种基本类型:倒塌、倾覆、滑动、拓展和流动,其中最为常见的为滑动[2]。
土坡滑动失稳常发生于我国的西南地区,具有突发性、致灾严重性等特点,对于经济发展以及人民安全将会产生巨大的影响。
我国地处于亚洲东部,太平洋西部,地形地貌复杂,地质灾害频发。
据中华人民共和国国家统计局发布的2008—2017年间国内滑坡地质灾害统计数据表明我国依然存在着大量滑坡地质灾害现象。
防治土坡失稳地质灾害的首要任务是能够准确识别并判断出欠稳定土坡,基于笔者对文献的阅读以及工程实践,将土质边坡稳定性分析研究现状分为土质边坡失稳原理、土质边坡计算方法以及土质边坡评价方法,对研究成果进行了系统梳理,并探究了土质边坡稳定性分析研究趋势。
1土质边坡稳定性分析研究现状明晰土坡发生滑动失稳的基本原理是有效防治此类地质灾害的重要基础理论问题。
滑动是由于剪应变和位移造成的一种运动[2]。
土坡滑动失稳的原因有两种,土坡自身的应力平衡状态被外界力破坏或由于外界因素导致土体抗剪强度降低[1]。
岩土边坡稳定性分析与评估岩土边坡是指岩石或土壤质地的自然或人工边坡,其稳定性是建设工程和地质灾害防治中的重要问题。
本文将对岩土边坡稳定性分析与评估进行论述,以提供对相关领域的深入理解和应用。
一、岩土边坡稳定性分析方法岩土边坡稳定性分析是通过对岩土边坡的地质、力学性质进行综合评估,预测边坡的稳定性。
常用的分析方法主要包括:1. 落地力分析法:该方法通过分析边坡上下部位的土体重力、抗剪强度和应力状态等指标,以确定边坡的稳定性。
根据力学原理和经验公式,可以评估出边坡的安全系数,从而判断边坡的稳定与否。
2. 数值模拟方法:数值模拟方法通过建立岩土边坡的数值模型,在计算机上进行模拟和计算,得出边坡的稳定性分析结果。
其中,常用的数值模拟方法包括有限元法、有限差分法等,它们能更准确地模拟边坡的力学行为,提供更精确的稳定性评估结果。
二、岩土边坡稳定性评估指标岩土边坡的稳定性评估需要考虑多个指标,常用的指标包括:1. 安全系数:边坡的安全系数是评估边坡稳定性的重要指标。
安全系数是指边坡承受外力作用下抵抗破坏的能力与发生破坏的能力之比。
当安全系数大于1时,边坡稳定;当安全系数小于1时,边坡处于不稳定状态。
2. 边坡位移:边坡位移是指边坡发生变形的程度。
边坡位移较大时,可能导致边坡的稳定性下降,甚至发生滑坡、塌方等地质灾害。
因此,边坡位移的评估对预防岩土边坡灾害具有重要意义。
3. 边坡变形:边坡变形包括水平变形和垂直变形两个方向。
水平变形是指边坡顶部和底部在水平方向上的位移差异,而垂直变形是指边坡顶部和底部在垂直方向上的位移差异。
边坡变形对边坡的稳定性评估具有重要影响。
三、岩土边坡稳定性评估的应用岩土边坡稳定性评估在建设工程和地质灾害防治中有广泛应用。
具体应用包括以下几个方面:1. 工程建设中的岩土边坡稳定性评估:在道路、铁路、水利、矿山等工程建设中,对岩土边坡的稳定性进行评估是确保工程安全的重要环节。
通过分析和评估边坡的稳定性,可以制定相应的防治措施,确保工程的顺利进行。
土石方边坡稳定土石方边坡是土地工程中常见的工程形式,用于道路、隧道、河堤、山坡等各类工程中。
边坡的稳定性是确保工程安全的关键因素之一。
本文将探讨土石方边坡的稳定性问题,包括稳定性分析方法、常见稳定性问题以及提高边坡稳定性的方法。
1. 背景土石方边坡是指由土壤和岩石构成的边坡结构,用于支撑或围绕不同类型的工程。
这些边坡可能会受到各种因素的影响,如降雨、地震、人为开挖等,这些因素都可能对边坡的稳定性产生影响。
2. 稳定性分析方法为了确保土石方边坡的稳定性,工程师通常使用不同的分析方法,以评估边坡的稳定性。
以下是一些常见的分析方法:a. 极限平衡分析:这种方法主要考虑边坡上的各种力和力矩,以确定是否存在任何力矩不平衡,从而导致边坡的倾覆或滑坡。
这是一种经验性的方法,通常用于初步评估边坡的稳定性。
b. 数值分析:数值分析是一种更精确的方法,通常使用计算机模拟来考虑土壤和岩石的物理性质,以及外部因素如雨水渗透和地震。
数值分析可以提供更详细的信息,帮助工程师更准确地评估边坡的稳定性。
c. 监测与反馈:在一些情况下,工程师还会使用监测和反馈系统来实时监测边坡的变化。
这种方法可以帮助工程师及早发现潜在的稳定性问题,并采取相应的措施来加固边坡。
3. 常见稳定性问题土石方边坡可能会面临各种稳定性问题,下面是一些常见的问题:a. 水力侵蚀:降雨可能导致水流进入边坡,冲刷土壤和岩石,从而降低边坡的稳定性。
b. 地震影响:地震会导致边坡的震动,从而引发滑坡或坍塌。
c. 施工操作:不当的施工操作,如挖掘不当或堆积土石方不均匀,可能会导致边坡稳定性问题。
d. 岩层和土壤性质:边坡所处地区的岩层和土壤性质对稳定性有着重要影响。
不同类型的土壤和岩石具有不同的力学性质,需要根据实际情况来评估稳定性。
4. 提高边坡稳定性的方法为了提高土石方边坡的稳定性,以下方法可以考虑:a. 排水系统:建立有效的排水系统,可以减轻降雨引起的水力侵蚀问题。
边坡稳定性分析研究现状及发展趋势边坡是一个既古老又复杂的岩土工程课题,其所涉及的领域要比地基工程或地下硐室工程设计的领域广而深。
边坡问题种类繁多,按照其物质组成可以分为岩质边坡和土质边坡,按照其人工改造程度分为自然边坡和人工边坡。
人类对边坡的认识的基础理论是建立在土力学和岩石力学之上的。
古典土力学是建立在刚塑性模型基础上的破坏理论,是解决土质边坡稳定性的核心;而现代土力学则侧重土体真是破坏过程的理论研究,并且在最终要对边坡破坏过程作数值模拟。
首先,作为岩体力学的一个重要组成部分,边坡稳定性研究进展与人类工程活动的迫切需要和相关学科的迅速发展紧密相关。
早期的研究是以简单均质弹性、弹塑性理论为基础的半经验半理论边坡分析方法,其计算结果与实际工程情况有很大差异。
到了20世纪60年代初期,工程建设规模的扩大导致所涉及的边坡问题也日益突出。
尤其是1963年意大利Vaiont水库滑坡等一系列工程事故发生以后,人们开始深入对岩石边坡稳定性的研究;认识到必须将地质分析和力学机制分析紧密结合起来,这就促成了刚体极限平衡法[1]。
1967年人们开始尝试有限元研究边坡稳定性问题,给定量评价边坡的稳定性创造条件,并使其逐步过渡到数值方法。
1971年Cundall 提出了非连续介质的离散元,用于模拟边坡稳定的渐进破坏,1991年Toshihisa运用该方法分析了日本305国道的岩石边坡的破坏过程。
1986年FLAC[2]的出现,为边坡分析提供了一种有效的方法,不但可以处理大变形问题,而且可以模拟某一软弱面的滑动变形,能真实的反映实际材料的动态行为,并可以考虑支护结构与围岩的相互作用,被认为是岩土力学数值模拟行之有效的方法;加上1988年Brady运用它对矿山倾斜采场的加固方案进行模拟,1993年 Billaux 对6米高充填体进行模拟,1983年孙玉科对盐池河山崩变形机制作了平面有限元分析;1989年陈宗基对抚顺露天煤矿进行有限元分析;1995年王永嘉将FLAC引入国内,先后在水电、隧洞、边坡中广泛使用,FLAC的发展可谓是及其飞快的。
第一章功能概述边坡失稳破坏是岩土工程中常遇到的工程问题之一。
造成的危害及治理费用均非常可观。
因此,客观的、正确的评估边坡稳定状况,是摆在工程技术人员面前的一道难题。
为满足工程技术人员的需要,编制了“理正边坡稳定分析”软件。
该软件具有下列功能:⑴本软件具有通用标准、《堤防工程设计规范GB50286-98》、《碾压式土石坝设计规范SDJ218-84》、《碾压式土石坝设计规范SL274-2001》、《浙江省海塘工程技术规定》五种标准,以满足不同行业的要求;⑵本软件提供三种地层分布模式(等厚地层、倾斜地层、复杂地层),可满足各种地层条件的要求;⑶本软件可计算边坡的稳定安全系数及剩余下滑力;⑷本软件提供多种方式计算边坡的稳定安全系数;⑸本软件提供的自动搜索最小稳定安全系数的方法,是理正技术人员研制、开发、应用到软件中,并取得良好的效果。
一般情况下,都可以得到最优解。
但是对于较复杂的地质条件,建议先指定区域搜索、分不同精度进行分析,逐步逼近最优解,这样才能既快又准;⑹对于圆弧滑动稳定计算,本软件提供三种方法:瑞典条分法、简化Bishop法、及Janbu法;对于折线滑动稳定计算,本软件提供三种方法:简化Bishop法、简化Janbu法、摩根斯顿-普赖斯法。
用户可以根据不同的要求采用不同的方法。
⑺ 本软件针对水利行业做了大量工作,除水利的堤防、碾压土石坝规范外,还有海堤规范;可按不同工况一一施工期、稳定渗流期、水位降落期计算堤坝的稳定性(包括总应力法及有效应力法);⑻软件可考虑地震作用、外加荷载及锚杆、锚索、土工布等对稳定的影响;详细考虑水的作用,包括堤坝内部、外部水的作用;尤其方便的是可以将渗流软件分析的流场数据直接应用到稳定分析,使计算结果更逼近真实状况;⑼具有图文并茂的交互界面、计算书;具有对计算过程的信息查询及计算过程图形显示功能,可视化程度高;并有及时的提示指导,帮助用户使用软件;本软件适用于水利、公路、铁路等行业岩土在工程建设中遇到的边坡(主要是土质边坡、岩石边坡可参考)稳定分析。
土石方工程施工边坡稳定性分析一、引言土石方工程是土木工程领域中常见的一种施工工程,其施工边坡的稳定性直接关系到工程的安全性和持久性。
因此,对土石方边坡的稳定性进行全面的分析是非常重要的。
二、边坡稳定性的影响因素边坡的稳定性受到多个因素的影响,以下是几个主要的因素:1. 土体的力学性质:包括土体的强度、密度、润湿性等。
2. 水分含量:土体的饱和程度对边坡稳定性有着重要的影响。
3. 地震力:地震力能导致土体发生动力变形,造成边坡稳定性的降低。
4. 天气因素:如降雨、风力等天气因素可能引起土体的改变,从而对边坡稳定性产生影响。
三、边坡稳定性分析的方法边坡稳定性分析主要有以下几种方法:1. 极限平衡法:此方法主要是通过平衡边坡受力,确定边坡的安全系数来评估边坡的稳定性。
2. 数值模拟法:通过数值方法建立边坡的数学模型,并进行受力和变形分析,进而评估边坡的稳定性。
3. 监测法:利用边坡监测数据,通过实际监测结果来评估边坡的稳定性。
四、边坡稳定性分析的步骤边坡稳定性分析一般包括以下几个步骤:1. 确定边坡的几何参数和土体力学参数,如边坡高度、坡度、土体强度参数等。
2. 对边坡的受力进行分析,包括自重、支持力、外载荷等。
3. 进行边坡的受力平衡分析,计算边坡的安全系数。
4. 利用适当的方法进行边坡的变形和破坏分析,评估边坡的稳定性。
5. 根据分析结果,提出相应的边坡稳定性改善措施。
五、案例分析以某土石方工程的边坡施工为例,通过上述步骤进行边坡稳定性分析:1. 确定边坡的几何参数和土体力学参数。
2. 分析边坡的受力情况,考虑边坡的自重、支持力和外部荷载等因素。
3. 进行边坡的平衡分析,计算边坡的安全系数。
4. 进行边坡的变形和破坏分析,评估边坡的稳定性。
5. 根据分析结果,提出合理的边坡稳定性改善措施。
六、结论通过本文对土石方工程施工边坡稳定性分析的探讨,我们可以得出以下结论:1. 边坡稳定性受多个因素的综合影响,包括土体力学性质、水分含量、地震力和天气因素等。
土木工程师-专业知识(岩土)-土工结构与边坡防护-6.2边坡稳定性[单选题]1.某透水土质边坡,当高水位快速下降后,岸坡出现失稳,其主要原因最合理的是哪一项?()[2014年真题](江南博哥)A.土的抗剪强度下降B.土的有效应力增加C.土的渗透力增加D.土的潜蚀作用正确答案:C参考解析:高水位快速下降,迎水坡土体内部水向外渗流,渗透力增加滑动力矩,对边坡稳定不利。
[单选题]2.有一微含砾的砂土形成的土坡,在哪种情况下土坡稳定性最好?()[2009年真题]A.天然风干状态B.饱和状态并有地下水向外流出C.天然稍湿状态D.发生地震正确答案:C参考解析:天然稍湿状态的砂土,具有“假黏聚力”。
“假黏聚力”是指由毛细张力使细土粒具有的黏聚力。
当细粒土失水变干或浸没于水下时,这一黏聚力即消失。
当沙土的含水量为4%~8%之间时具有“假黏聚力”,此时砂土具有黏性土的性质,土坡的稳定性最好,即:K=tanφ/tanα+cl/Gsinθ。
[单选题]3.根据《建筑边坡工程技术规范》(GB 50330—2013),对下列边坡稳定性分析的论述中,错误的是()。
[2013年真题]A.规模较大的碎裂结构岩质边坡宜采用圆弧滑动法计算B.对规模较小,结构面组合关系较复杂的块体滑动破坏,宜采用赤平投影法C.在采用折线滑动法进行计算时,当最前部条块稳定性系数不能较好的反映边坡整体稳定性时,可以采用所有条块稳定系数的平均值D.对可能产生平面滑动的边坡宜采用平面滑动法进行计算正确答案:C参考解析:A项,根据《建筑边坡工程技术规范》(GB 50330—2013)第5.2.3条规定,计算沿结构面滑动的稳定性时,应根据结构面形态采用平面或折线形滑面。
计算土质边坡、极软岩边坡、破碎或极破碎岩质边坡的稳定性时,可采用圆弧形滑面。
B项,根据《建筑边坡工程技术规范》(GB 50330—2013)第5.2.2条条文说明规定,边坡抗滑移稳定性计算可采用刚体极限平衡法。
一.边坡稳固性盘算办法在边坡稳固盘算办法中,平日采取整体的极限均衡办法来进行剖析.依据边坡不合决裂面外形而有不合的剖析模式.边坡掉稳的决裂面外形按土质和成因不合而不合,粗粒土或砂性土的决裂面多呈直线形;细粒土或粘性土的决裂面多为圆弧形;滑坡的滑动面为不规矩的折线或圆弧状.这里将重要介绍边坡稳固性剖析的基起源基本理以及在某些鸿沟前提下边坡稳固的盘算理论和办法.(一)直线决裂面法所谓直线决裂面是指边坡损坏时其决裂面近似平面,在断面近似直线.为了简化盘算这类边坡稳固性剖析采取直线决裂面法.能形成直线决裂面的土类包含:均质砂性土坡;透水的砂.砾.碎石土;重要由内摩擦角掌握强度的填土.图 9 - 1 为一砂性边坡示意图,坡高 H ,坡角β ,土的容重为γ ,抗剪度指标为c . φ .假如倾角α的平面AC面为土坡损坏时的滑动面,则可剖析该滑动体的稳固性.沿边坡长度偏向截取一个单位长度作为平面问题剖析.已知滑体ABC重 W ,滑面的倾角为α ,显然,滑图9-1 砂性边坡受力示意图面 AC上由滑体的重量W= γ(Δ ABC)产生的下滑力T和由土的抗剪强度产生的抗滑力Tˊ分离为:T=W · sina和则此时边坡的稳固程度或安然系数可用抗滑力与下滑力来暗示,即为了包管土坡的稳固性,安然系数F s 值一般不小于 1.25 ,特别情形下可许可减小到 1.15 .对于C=0 的砂性土坡或是指边坡,其安然系数表达式则变成从上式可以看出,当α =β时,F s 值最小,解释边坡概况一层土最轻易滑动,这时当 F s =1时,β=φ,标明边坡处于极限均衡状况.此时β角称为休止角,也称安眠角. 此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型.这类滑坡滑动面的深度与长度之比往往很小.当深长比小于 0.1时,可以把它当作一个无穷边坡进行剖析.图 9-2暗示一无穷边坡示意图,滑动面地位在坡面下H深度处.取一单位长度的滑动土条进行剖析,感化在滑动面上的剪应力为,在极限均衡状况时,损坏面上的剪应力等于土的抗剪强度,即得式中N s =c/ γ H 称为稳固系数.经由过程稳固因数可以肯定α和φ关系.当c=0 时,即无粘性土.α =φ ,与前述剖析雷同.二圆弧条法依据大量的不雅测标明,粘性土天然山坡.人工填筑或开挖的边坡在损坏时,决裂面的外形多呈近似的圆弧状.粘性土的抗剪强度包含摩擦强度和粘聚强度两个构成部分.因为粘聚力的消失,粘性土边坡不会像无粘性土坡一样沿坡面概况滑动.依据土体极限均衡理论,可以导出均质粘这坡的滑动面为对数螺线曲面,外形近似于圆柱面.是以,在工程设计中常假定滑动面为圆弧面.树立在这一假定上稳固剖析办法称为圆弧滑动法和圆弧条分法.1. 圆弧滑动法1915 年瑞典彼得森( K.E.Petterson )用圆弧滑动法剖析边坡的稳固性,今后该法在列国得到广泛运用,称为瑞典圆弧法.图 9 - 3 暗示一均质的粘性土坡. AC 为可能的滑动面, O为圆心, R 为半径.假定边坡损坏时,滑体ABC在自重W 感化下,沿AC绕O 点整体迁移转变.滑动面 AC 上的力系有:促使边坡滑动的滑动力矩 M s =W · d ;抵抗边坡滑动的抗滑力矩,它应当包含由粘聚力产生的抗滑力矩M r =c ·AC · R ,此外还应有由摩擦力所产生的抗滑力矩,这里假定φ= 0 .边坡沿AC的安然系数F s 用感化在 AC面上的抗滑力矩和下滑力矩之比暗示,是以有这就是整体圆弧滑动盘算边坡稳固的公式,它只实用于φ= 0 的情形.图9-3 边坡整体滑动 2. 瑞典条分法前述圆弧滑动法中没有斟酌滑面上摩擦力的感化,这是因为摩擦力在滑面的不合地位其偏向和大小都在转变.为了将圆弧滑动法运用于φ> 0 的粘性土,在圆弧法剖析粘性土坡稳固性的基本上,瑞典学者 Fellenius 提出了圆弧条剖析法,也称瑞典条分法.条会法就是将滑动土体竖向分成若干土条,把土条当成刚塑体,分离求感化于各土条上的力对圆心的滑动力矩和抗滑力矩,然后按式( 9-5 )求土坡的稳固安然系数.采取分条法盘算边坡的安然系数F ,如图 9 - 4 所示,将滑动土体分成若干土条.土条的宽度越小,盘算精度越高,为了防止盘算过于繁琐,并能知足设计请求,一般取宽为 2 ~ 6m 并应选择滑体外形变休和土层分界点作为分条的界线.于随意率性第 i条上的感化力如下.图9-4 瑞典条分法(1)土条的自.个中γ 为土的容得, 为土条的断面面积.将沿其断面积的形心感化至圆弧滑面上并分化成垂直滑面的法向分力和切于滑面的切向分力,由图 9 - 4 ( b )可知:显然, 是推进土体下滑的力.但假如第 i 条们于滑弧圆心铅垂线的载侧(坡脚一边),则起抗滑感化.对于起抗滑感化的切向分力采取符号 T ′暗示.因感化线能过滑弧圆心 O 点力矩为零,对边坡不起滑动感化,但决议着滑面上抗剪强度的大小.(2)滑面上的抗滑力 S ,偏向与滑动偏向相反.依据库仑公式应有S=N i tanφ+cl i .式中l i 为第i条的滑弧长.(3)土条的两个正面消失着条块间的感化力.感化在 i条块的力,除重力外,条块正面 ac和bd 感化有法向力P i . P i+1 ,切向力H i . H i+1 .假如斟酌这些条间力,则由静力均衡方程可知这是一个超静定问题.要使问题得解,由两个可能的门路:一是摈弃刚体均衡的概念,把土当做变形体,经由过程对土坡进行应力变形剖析,可以盘算出滑动面上的应力散布,是以可以不必用条分法而是用有限元办法.另一门路是仍以条分法为基本,但对条块间的感化力作一些可以接收的简化假定.Fellenius 假定不计条间力的影响,就是将土条两侧的前提力的合力近似地算作大小相等.偏向相反.感化在同感化面上.现实上,每一土条两侧的条间力是不服衡的,但经验标明,土条宽度不大时,在土坡稳固剖析中,疏忽条间力的感化对盘算成果的影响不明显.将感化在各段滑弧上的力对滑动圆心取矩,并分离将抗滑感化.下滑感化的力矩相加得出用在全部滑弧上的抗滑力矩以及滑动力矩的总和,即将抗滑力矩与下滑力矩之比界说为土坡的稳固安然系数,即这就是瑞典条分法稳固剖析的盘算公式.该法运用的时光很长,积聚了丰硕的工程经验,一般得到的安然系数偏低,即偏于安然,故今朝仍然是工程上经常运用的办法.(三)毕肖普法从前述瑞典条分法可以看出,该办法的假定不是异常准确的,它是将不服衡的问题按极限均衡的办法来斟酌并且未能斟酌有用应力下的强度问题.跟着土力学学科的不竭成长,许多学者致力于条分法的改良.一是侧重摸索最安全滑地位的纪律,二是对根本假定作些修正和填补.但直到毕肖普( A.N.Bishop )于 1955 年担出了安然系数新界说,条分法这五办法才产生了质的飞跃.毕肖普将边坡稳固安然系数界说为滑动面上土的抗剪强度τ f 与现实产生的剪应力τ之比,即(9-7)这一安然系数界说的焦点在于一是可以或许充分斟酌有用应力下的抗剪老是;二是充分斟酌了土坡稳固剖析中土的抗剪强度部分施展的现实情形.这一概念不公使其物理意义加倍明白,并且运用规模更广泛,为今后非圆弧滑动剖析及土条分界面上条间力的各类斟酌方法供给了有得前提.由图 9 - 5 所示圆弧滑动体内掏出土条i进行剖析,则土条的受力如下:1.土条重W i 引起的切向反力T i 和法向反力N i ,分离感化在该分条中间处2.土条的侧百分离感化有法向力P i . Pi+1 和切向力H i . H i+1 .由土条的竖向静力均衡前提有∑ F z ,即图9-5 毕肖普法条块感化力剖析(9-8)当土条未损坏时,滑弧上土的抗剪强度只施展了一部分,毕肖普假定其什与滑面上的切向力相均衡,这里斟酌安然系数的界说,且ΔH i =H i+1 -H i 即(9-9)将( 9 - 9 )式代科( 9 - 8 )式则有令(9-10)则(9-11)斟酌全部滑动土体的极限均衡前提,些时条间力P i 和 H i 成对消失,大小相等.偏向相反,互相抵消.是以只有重力W i 和切向力T i 对圆心产生力矩,由力矩均衡知(9-12)将( 9 - 11 )式代入( 9 - 9 )式再代入( 9 - 12 )式,且d i =Rsinθ i ,此外,土条宽度不大时, b i =l i cosθ i ,经整顿简化可行毕肖普边坡稳固安然系数的广泛公式(9-13)式中ΔH i 仍是未知量.毕肖普进一步假定ΔH i =0 于是上式进一步简化为(9-14)假如斟酌滑面上孔隙水压力 u 的影响并采取有用应力强度指标,则上式可改写为(9-15)从式中可以看出,参数m θi 包含有安然系数 F s ,是以不克不及接求出安然系数,而需采取试算法迭代求解F s 值.为了便于迭代盘算,已编制成m θ~θ关系曲线,如图 9 - 6 所示.试算时,可先假定 F s = 1.0 ,由图 9 - 6 查出各θ i所对应的值.代入( 9 - 14 )式中,求得边坡的安然系数 F s ′.若 F s ′与F s 之差大于划定的误差,用 F s ′查m θi ,再次盘算出安然系数 F s 值,如是重复迭代盘算,直至前后两次盘算出安然系数F s ′值,如是重复迭代盘算,直至前后两次盘算的安然系数异常接近,知足划定精度的请求为止.平日迭代老是收敛的,一般只要 3 ~ 4次即可知足精度.与瑞典条分法比拟,简化毕肖普法是在不斟酌条块间切向力的前提下,知足力多边形闭合前提,就是说,隐含着条块间有程度力的感化,固然在公式中程度感化力并未消失.所以它的特色是:(1)知足整体力矩均衡前提;(2)知足各条块力的多边形闭合前提,但不知足条块的力矩均衡前提;(4)假设条块间感化力只有法向力没有切向力;(4)知足极限均衡前提.毕肖普法因为斟酌了条块间程度力的感化,得到的安然系数较瑞典条分法略高一些.。