flac3d模拟基坑开挖
- 格式:doc
- 大小:258.00 KB
- 文档页数:5
运用flac3d模拟沟渠开挖前后岩体的应力应变报告一、问题的提出在天然山体与平原的的结合处开挖一条10m×4m×3m的沟渠,进行应力应变场的分析。
二、问题的分析与处理本模型的分析共分为三个阶段:第一阶段——前处理阶段:创建初始几何模型并划分网格,并在flac3d中显示网格体,然后定义材料的模型和材料参数,再定义边界条件和初始条件,这样便用flac3d建立起了计算的模型。
第二阶段——求解:在第一阶段建立好模型的基础上对模型进行变量的监控和求解运算。
第三阶段——后处理阶段:通过建立各种视口显示出各种运算的结果,以此判断模型的求解是否收敛。
对于沟渠的开挖模型及其运算,分三个阶段说明其生成及运算过程:1、前处理阶段由图可知,该模型可由两个radtunnel模型合并而成,分别以左侧模型p0(10,0,20)和右侧模型p0(10,10,10)为起始点。
步骤:1.打开flac3d软件,输入new命令全部清空原来数据,接着输入代码,如下:generate zone radtunnel p0 10 0 20 p1 0 0 20 p2 10 10 20 p3 10 0 0 p4 0 10 20 p5 10 10 0 p6 0 0 0 p7 0 10 0 p8 80 20 p9 10 0 7 p10 8 10 20 p11 10 10 7 p12 8 0 7 p13 8 10 7 generate zone radtunnel p0 10 10 10 p1 20 10 10 p2 10 0 10 p3 10 10 0 p4 20 0 10 p5 10 0 0 p6 20 10 0 p7 20 0 0 p8 12 10 10 p9 10 10 7 p10 12 0 10 p11 10 0 7 p12 12 10 7 p13 12 0 7plotadd surface blueshow生成网格模型如图1图1 几何网格模型2.定义材料的本构模型,本题为摩尔-库伦模型,然后对材料参数(体积模量,内摩擦角和剪胀角,粘聚力,抗拉强度)进行赋值,如没有输入其中一种参数,则系统默认为0。
基于FLAC3D的基坑工程下地铁隧道隆起位移的数值模拟作者:叶建华来源:《西部资源》2017年第06期摘要:本文以深基坑开挖对其邻近隧道的影响为研究内容,通过三维有限元分析,在定性的基础上研究了不同情况下深基坑开挖对隧道的影响,为优化设计和施工提供有益的参考。
关键词:基坑开挖;数值模拟;地铁隧道1.引言随着经济高速发展,大城市内部可供开发用地越来越接近饱和,地铁周边区域的用地不可避免的逐渐被使用,故现阶段越来越多的深基坑工程位于运行的地铁隧道区间附近。
由于近距离的深基坑开挖卸荷会导致隧道周边的位移场和应力场发生变化,而地铁隧道的变形控制要求又极其严格,因此,在大力发展城市地下空间建设和利用的今天,研究基坑开挖卸荷对地铁隧道的影响,确保隧道在运行过程中的使用安全,具有相当的紧迫性和适用性。
由于施工方法的多样性和工程的复杂性,目前还没有提出较为精确的理论解析解,绝大多数工程(紧邻地铁隧道附近)在建设前基本上都采用数值模拟的方法来分析深基坑开挖过程中对地铁隧道影响,并对其进行预测。
本文运用三维有限元分析软件FLAC3D从空间上分析讨论不同工况情况下深基坑开挖对地铁隧道变形及内力的影响,该分析方法和结果可为类似工程提供一定借鉴。
2.三维有限单元结构模型为了模拟基坑开挖卸荷对地铁隧道的影响,可以做出一些假设:(1)假设开挖岩土层为理想匀质单一岩土体;(2)忽略基坑边地面超载对地铁隧道的影响;(3)忽略其端部效应;(4)隧道位移与土体位移相容;(5)为减小计算量,将盾构隧道方向与基坑纵向近似为正交。
有限单元结构模型不可能选取无限大的空间,因此适当选取合理的计算区域和边界条件尤为重要。
由于基坑开挖的影响范围主要取决于基坑开挖的平面尺寸、形状、开挖深度及工程地质条件等因素。
故本次数值模拟分析过程中,假定基坑开挖长约30m,宽约30m,最大开挖深度约8m。
一般认为:基坑开挖影响范围水平、竖向方向为2倍~3倍基坑开挖深度范围,考虑到隧道存在前后左右的对称性,本文所选的有限单元结构模型取长(X方向)90m,宽(Y 方向)90m,深(Z方向)40m,坐标O点代表隧道最低点。
用FLAC3D分析地铁车站基坑开挖与支护侯景鹏;邢继光【摘要】运用三维有限差分软件FLAC3D对深圳市地铁9号线某车站工程进行了基坑开挖与支护模拟.土体采用摩尔-库伦模型进行计算,得到了基坑开挖过程中各工况的竖直位移和水平位移.计算结果显示位移较小,基坑支护结构的设计安全可靠.基坑端部墙体在18 m范围内对基底隆起的影响较为明显,其范围相当于开挖深度.基坑端部墙体在20 m范围内对基坑侧移的影响较为明显,其范围相当于基坑宽度.地表沉降最大值点和水平位移最大值点都出现在距离基坑边缘15 m~25 m的区域内,大致相当于开挖深度.模拟结果可以作为今后设计施工的参考.【期刊名称】《东北电力大学学报》【年(卷),期】2018(038)003【总页数】5页(P67-71)【关键词】地铁车站;基坑开挖支护;变形规律;FLAC3D模拟【作者】侯景鹏;邢继光【作者单位】东北电力大学建筑工程学院,吉林吉林132012;中铁工程设计咨询集团有限公司太原设计院,太原山西030000【正文语种】中文【中图分类】TU9我国城市建设飞速发展,人口快速向大城市集中,城市道路交通拥堵问题日益严重.各大城市为缓解交通拥堵问题不约而同地选择开发地下空间,我国迎来了一轮建设地铁工程的高潮.车站深基坑的平面尺寸及开挖深度都有增大的趋势,容易导致基坑周围土体产生较大位移,使深基坑设计施工的难度不断提高.建设地铁车站不仅要保证基坑支护体系和基坑本身的稳定,还要保证附近建筑和地下管线不受破坏,这就要求施工中严格控制周围土体的变形.本文使用ITASCA公司推出的有限差分软件FLAC3D对深圳市地铁9号线某车站深基坑的开挖支护进行了数值模拟,根据模拟结果分析基坑内外土体竖直位移和水平位移的规律.1 工程概况1.1 地质条件车站全长为315.638 m、标准段宽为21.6 m,车站底板埋深约17.5 m.车站主体和附属结构均采用明挖顺筑法施工.该工程属深圳市重点建设项目,工程重要性等级为一级;地形地貌较简单、不良地质作用一般发育.原始地貌为台地及其间沟谷区,地势平坦.根据野外地质钻探结果和广东地区地质资料,上覆土层是第四系松散层,下伏基岩主要由花岗岩组成.岩土分层主要有:素填土层,平均2.48 m;填石层,平均1.02 m;残积可塑状砾质粘性土层,平均2.32 m;残积硬塑状砾质粘性土层,平钧4.80 m;全风化花岗岩层,平均3.78 m;强风化花岗岩层,平均3.61 m;中风化花岗岩层,平均2.21 m;微风化花岗岩层,平均7.82 m.根据车站工程基坑尺寸和地质情况,基坑侧壁主要为残积砾质粘性土层及全、强、中、微风化花岗岩,基坑底板主要为强、中、微风化花岗岩.1.2 支护方案连续墙具有刚度大、整体性好、防渗性好、适应性强等优良性能,因此车站主体结构采用连续墙形式,附属结构可采用钻孔灌注桩,亦可采用螺杆桩[1].设计采用800 mm厚地下连续墙,墙顶设冠梁,截面为1.0 m×0.8 m,在墙顶冠梁位置设第一道钢筋混凝土支撑,支撑截面为0.6 m×1.0 m,纵向支撑间距为9.0 m,第二、三道支撑采用钢管撑,管径600 mm.深基坑开挖过程一般选择分层开挖,支撑架设需要操作平台,应开挖到支撑以下一定深度后再架设支撑.根据上述情况,制定方案如下:在墙顶处设置第一道钢筋混凝土水平支撑;向下挖至8.5 m深度处,在8 m深度处设置第2道水平钢支撑,此时为工况一;向下挖至13.5 m深度处,在13 m深度处设置第3道水平支撑,此时为工况二;最后向下挖至底部17.5 m深度,此时为工况三.2 基坑开挖支护数值模拟2.1 FLAC3D在基坑开挖中的应用FLAC3D是美国ITASCA咨询集团公司推出的基于有限差分法的软件.可以分析渐进破坏和失稳,在大变形模拟方面优于其他模拟软件.它包括弹性材料模型、塑性材料模型、莫尔-库仑弹性材料模型、应变软化/硬化塑性材料模型等多种本构模型.除了岩土材料外,梁、桩、壳以及支护、衬砌、锚索、土工织物、摩擦桩等结构也可以用FLAC3D进行模拟[2].2.2 计算模型及参数建模主要分为两部分:基坑土体和地下连续墙采用实体单元,实体单元的物理模型比衬砌单元清晰,参数较少.混凝土支撑和钢管支撑采用beam单元.FLAC3D中的“null”模型非常适用于模拟基坑的开挖[3],模型单元被设定为“null”表示将该单元从模型中删除.地铁车站基坑长度较长,基坑中间很多部分处于同样的受力状态,会增加很多重复计算,降低计算效率,故选取基坑模型尺寸为长36 m,宽20 m,深18 m.选取合适的计算边界有利于提高计算效率和结果的精度[4].取整体模型的尺寸为长96 m,宽160 m,高38 m.以端部基底中点为原点,基坑纵向为x方向,基坑宽度方向为y方向,深度方向为z方向.模型四周各侧面和底面均限制法向位移;模型顶面即地面,设为自由面.建模时合理地划分网格能够明显提高计算效率.距离基坑较近的区域是研究中重点,应该增加网格密度.距离较远区域受开挖的影响较小,网格可以疏一些.分析模型及支护示意图,如图1所示.图1 分析模型及支护示意图3 数据分析3.1 基底隆起变形竖直位移云图,如图2所示.可以看出基底中点隆起比较明显.在距离端部36 m的基坑底部取6个监测点,分别距离基坑中点 0 m、2 m、4 m、6 m、8 m 和10 m.将测点各工况的基底隆起绘制成图,如图3所示.可以看出每次开挖后隆起明显增加,基底中点隆起变形最大,距离中点越远隆起变形越小,基底边缘受围护结构制约,隆起最小.整体隆起变形数值偏大,这是土的回弹模量一般大于压缩模量造成的.在莫尔-库仑模型的研究中,目前除了在回弹为主的区域增大弹性模量参数数值,还没有更好的解决方案被提出.图2 竖直位移云图图3 y方向排列各测点的基底隆起图4 x方向排列各测点的基底隆起在基底中心线上取7个监测点,分别距离端部36 m、30 m、24 m、18 m、12 m、6 m 和 0 m.将测点各工况的基底隆起绘制成图,如图4所示.可以看出靠近基坑端部的范围,端部墙体对基底隆起有明显的约束作用,而远离基坑端部的部分,基底隆起虽然也随着端部距离的增大而增加,但增长并不明显.三个工况的开挖深度分别为 8.5 m、13.5 m 和 18 m,而三个工况分别在与端部距离8.5 m、13.5 m和18 m左右的位置开始,隆起增长的趋势明显放缓.由此可知基坑端部墙体对基底隆起有显著影响的范围基本相当于开挖深度.3.2 基坑坑壁侧移水平位移云图,如图5所示.可以看出支护结构约束作用明显,基坑侧移最大值没有出现在基坑顶部.图5 y方向水平位移云图图6 竖直排列各测点的侧移量图7 水平排列各测点的侧移量在距基坑端部36 m的基坑一侧设置8个监测点,分别距离基底-3 m、0 m、3 m、6 m、9 m、12 m、15 m和18 m.将测点各工况的侧移绘制成图,如图6所示.可以看出第一道混凝土支撑有效限制了基坑顶部的侧移,基坑侧移最大值出现在距基底3m处,最大值为3.49mm,最大值点高度以下受内部土体约束而逐渐减小[5~6].工况一中,侧移最大值出现在开挖深度以下,这是因为第一道钢筋混凝土支撑刚度较大,更好地限制了顶部的侧移.所以应纵向分段开挖,每开挖一段立即设置支撑,钢管撑可施加预应力,以此减小基坑的水平变形.在基坑一侧基底以上3m处设置7个监测点,分别距离基坑端部36 m、30 m、24 m、18 m、12 m、6 m和0 m.将测点各工况的侧移量绘制成图,如图7所示.可以看出每次开挖后基坑侧移都明显增加,端部墙体限制附近范围的基坑侧移,距离端部越远,侧移量越大.端部墙体在20 m范围内对基坑侧移影响比较显著,相当于基坑宽度.3.3 地表位移在距端部36m的地表设置15个监测点,距离基坑中线的距离分别为10 m、12.5 m、15 m、17.5 m、20 m、22.5 m、25 m、27.5 m、30 m、35 m、40 m、50 m、60 m、70 m 和 80 m.将测点各工况沉降绘制成图,如图 8所示.可以看出连续墙有上浮的趋势,沉降最大值出现在距基坑边缘一定距离的地方,随着距离增加,基坑开挖对地表沉降的影响也越来越小[7~11].而沉降最大值出现的位置距基坑边缘15 m~25 m,数值上与开挖深度相近.在地表位移最大值可能出现的范围加强位移监测可以有效监控地下工程对临近建筑的影响[12].图8 地表竖向位移图9 地表水平位移将各测点各工况y方向水平位移绘制成图,如图9所示.可以看出水平位移的变化趋势与竖直沉降类似,最大值也出现在距基坑边缘一定距离的区域.随着与基坑中线的距离越来越大,水平位移也逐渐减小.水平位移最大值与沉降最大值出现的位置在同一范围内.4 结论(1)利用三维有限差分软件FLAC3D对基坑进行分步开挖支护模拟,计算得到基底隆起,基坑侧移,地表竖直和水平位移.(2)基底隆起最大值发生在基底中心处,基坑端部墙体在18 m范围内对基底隆起的影响较为明显,其范围相当于开挖深度.(3)基坑侧移最大值出现在距基底3 m处,最大值为3.49 mm.基坑端部墙体在20 m范围内对基坑侧移的影响较为明显,其范围相当于基坑宽度.(4)地表沉降最大值出现的位置距基坑边缘15 m~25 m,数值上与开挖深度相近.(5)支护结构的设计是安全可靠的,计算结果可以为工程设计提供参考.参考文献[1]龚靖,刘宇,徐佩洪.新型螺杆桩技术及其工程应用[J].东北电力大学学报,2016,36(3):91-95.[2]马露,李琰庆,蔡怀恩.FLAC3D在深基坑支护优化设计中的应用[J].河北工程大学学报:自然科学版,2007,24(4):35-38.[3]刘勇,冯志,黄国超,等.北京地铁工程深基坑围护结构变形研究[J].地下空间与工程学报,2009,5(2):329-335.[4]朱彦鹏,吴意谦.某地铁车站深基坑变形规律数值模拟及优化[J].兰州理工大学学报,2014,40(1):108-113.[5]刘均红.地铁车站深基坑变形规律的三维数值模拟分析[J].北方交通,2011(7):55-58.[6]任建喜,冯晓光,刘慧,等.地铁车站深基坑围护结构变形规律监测研究[J].铁道工程学报,2009(3):89-92.[7]刘继国,曾亚武.FLAC3D在深基坑开挖与支护数值模拟中的应用[J].岩土力学,2006,27(3):505-508.[8]麻凤海,张维来,吕培印.地铁车站深基坑开挖对土体影响的数值模拟[J].辽宁工程技术大学学报:自然科学版,2012,31(3):295-299.[9]房师军,付拥军,姚爱军.某地铁工程深基坑排桩围护结构变形规律分析[J].岩土工程学报,2011,33(S1):216-219.[10]周爱其,龚晓南,刘恒新等.内撑式排桩支护结构的设计优化研究[J].岩土力学,2010,31(S1):245-255.[11]吴意谦,朱彦鹏.兰州市湿陷性黄土地区地铁车站深基坑变形规律监测与数值模拟研究[J].岩土工程学报,2014,36(S2):404-410.[12]高飞,李长庆,倪博,等.平行隧道施工对路面基础沉降的影响[J].东北电力大学学报,2016,36(3):96-101.。
基于FLAC^(3D)的深基坑开挖变形数值模拟研究
杨博维
【期刊名称】《水资源与水工程学报》
【年(卷),期】2014(25)2
【摘要】结合沈阳北站综合交通枢纽改扩建工程的地下新建工程Ⅱ区基坑工程实例,运用有限差分软件FLAC3D模拟了基坑在4种不同支护方案下开挖过程,对4种开挖过程所引起的基坑坡顶和坡底的位移、坑壁水平方向的位移进行了分析。
数值模拟结果表明:坑底隆起是由于垂直方向卸载而引起的,采用混凝土围护桩和预应力锚索联合支护可以有效地控制基坑的变形。
研究结果和工程实践证明本工程的支护方案是有效可行的。
【总页数】5页(P24-28)
【关键词】基坑;FLAC3D;变形分析;支护结构
【作者】杨博维
【作者单位】辽宁工程技术大学土木与交通学院
【正文语种】中文
【中图分类】TV314;TV551.4
【相关文献】
1.基于FLAC-3D数值模拟分析逆作法的深基坑变形 [J], 杨益飞;关群;孙若晗;高菊;张力
2.基于FLAC3D的深基坑开挖与支护数值模拟应用 [J], 徐凌;陈格际;刘帅
3.基于FLAC3D数值模拟的地铁异型深基坑开挖阳角效应研究 [J], 沈启炜
4.基于FLAC^3D的地铁车站深基坑开挖与支护数值模拟 [J], 孔汇川;田淑朋;白晓明;
5.基于FLAC 3D的大型地下洞室群分步开挖稳定性数值模拟研究 [J], 张亚勤;孔维秋;栗剑;岳好真;李勇
因版权原因,仅展示原文概要,查看原文内容请购买。
总667期第五期2019年2月河南科技Henan Science and Technology基于FLAC3D的深基坑土钉墙支护数值模拟周浩文邱丁山邹先义(中国十九冶集团有限公司,四川成都610031)摘要:以某小学深基坑工程为例,通过FLAC3D建立了基坑开挖的三维模型,对基坑开挖过程及土钉墙支护进行模拟,分析了水平位移及土钉墙受力特点,水平位移随开挖过程不断增大,沿基坑深度呈“C”型分布,最大位移达18mm;土钉最大应力在靠近坡面位置,混凝土面层弯矩沿深度逐渐增大。
研究表明,土钉墙支护方案是可行,能够有效地抑制基坑变形,保证基坑的安全稳定。
关键词:深基坑;土钉墙;FLAC3D;数值模拟中图分类号:TU476文献标识码:A文章编号:1003-5168(2019)05-0132-03 Numerical Simulation of Soil Nailing Wall Support for DeepFoundation Pit Based on FLAC3DZHOU Haowen QIU Dingshan ZOU Xianyi(China19th Metallurgical Corporation,Chengdu Sichuan610031)Abstract:Taking a deep foundation pit project in a primary school as an example,a three-dimensional model of foun⁃dation pit excavation was established by FLAC3D,and the process of foundation pit excavation and soil nailing wall support were simulated.The horizontal displacement and the stress characteristics of soil nailing wall were further an⁃alyzed.The horizontal displacement increased with the excavation process and distributed in a"C"shape along the depth of foundation pit,with the maximum displacement reaching18mm.The maximum stress of soil nail was near the slope,and the bending moment of concrete surface layer increased gradually along the depth.The research shows that the soil nailing wall support scheme is feasible,which can effectively restrain the deformation of foundation pit and ensure the safety and stability of foundation pit.Keywords:deep foundation pit;soil nailing wall;FLAC3D;numerical simulation随着城市建设规模不断扩大,深基坑工程越来越多。
;FLAC3D3.0在某隧道工程开挖支护中的应用;隧道建模命令流入下:newset log onset logfile yang.loggen zon radcyl p0 0 0 0 p1 9.0 0 0 p2 0 50 0 p3 0 0 8 &size 4 20 6 4 dim 6 5 6 5 rat 1 1 1 1 group 围岩gen zon cshell p0 0 0 0 p1 6.0 0 0 p2 0 50 0 p3 0 0 5.0 &size 4 20 6 4 dim 5.6 4.6 5.6 4.6 rat 1 1 1 1 group 初期支护gen zon cshell p0 0 0 0 p1 5.6 0 0 p2 0 50 0 p3 0 0 4.6 &size 4 20 6 4 dim 5.0 4.0 5.0 4.0 rat 1 1 1 1 group 二次衬砌 fill group 原岩gen zon radcyl p0 0 0 0 p1 0 0 -8.0 p2 0 50 0 p3 9.0 0 0 &size 4 20 6 4 dim 3 6 3 6 rat 1 1 1 1 group 围岩2gen zon cshell p0 0 0 0 p1 0 0 -3.0 p2 0 50 0 p3 6.0 0 0 &size 4 20 6 4 dim 2.6 5.6 2.6 5.6 rat 1 1 1 1 group 仰拱初期支护gen zon cshell p0 0 0 0 p1 0 0 -2.6 p2 0 50 0 p3 5.6 0 0 &size 4 20 6 4 dim 2 5 2 5 rat 1 1 1 1 group 仰拱二次衬砌 fill group 仰拱原岩gen zone reflect normal -1 0 0gen zone radtun p0 0 0 0 p1 45 0 0 p2 0 50 0 p3 0 0 20 &size 3 20 3 12 dim 9 8 9 8 rat 1 1 1 1.1 group 围岩3gen zon reflect dip 0 ori 0 0 0 range x 0 9 y 0 50 z 8 20gen zon reflect dip 0 ori 0 0 0 range x 9 45 y 0 50 z 0 20gen zon reflect dip 90 dd 270 ori 0 0 0 range x 0 9 y 0 50 z 8 20gen zon reflect dip 90 dd 270 ori 0 0 0 range x 0 9 y 0 50 z -8 -20gen zon reflect dip 90 dd 270 ori 0 0 0 range x 9 45 y 0 50 z -20 20gen zon brick p0 -45 0 -20 p1 -45 0 -40 p2 -45 50 -20 p3 45 0 -20 &size 5 20 6 rat 1.1 1 1 group 围岩4save tun_model.sav;假设围岩岩体符合mohr-coulomb本构模型,给围岩赋参数命令流如下,; mohr-coulomb modelmodel mohrdef derives_mod1=E_mod1/(2.0*(1.0+p_ratio1))b_mod1=E_mod1/(3.0*(1.0-2.0*p_ratio1))s_mod2=E_mod2/(2.0*(1.0+p_ratio2))b_mod2=E_mod2/(3.0*(1.0-2.0*p_ratio2))endset E_mod1=0.6e9 p_ratio1=0.27 E_mod2=0.8e9 p_ratio2=0.26deriveprop bulk b_mod1 shear s_mod1 cohe 1.8e6 tens 0.8e6 fric 30 range z 4.5 20 prop bulk b_mod2 shear s_mod2 cohe 2.8e6 tens 1.0e6 fric 35 range z -40 4.5 ini dens=2300set grav 0 0 -10; boundary and initial conditionsapply szz -1.4e6 range z 19.9 20.1fix z range z -40.1 -39.1fix x range x -45.1 -44.9fix x range x 44.9 45.1fix y range y 49.9 50.1hist unbalhist gp xdis 6.0,0,0hist gp zdis 0,0,5hist gp xdis 6.0,50,0hist gp zdis 0,50,5plot hist 3solvesave tun_nature.sav;对后面计算而言,模型建立时岩体在开挖前认为位移已经终了,因此需要对位移进行“清零”,而应力可以保留。
3.5 计算模型
计算模型见图3-3~图3-5,X轴为水平方向,Y轴为竖直方向。
本模型采用实体单元模拟土体、桩、筏板,其中素混凝土桩长5m,筏板厚2m,筏板嵌入土层0.4m。
模型中共有12730个网格点,12542个实体单元。
图3-3 计算模型图
图3-4 开挖完后模型图
图3-5 筏板、桩、空洞模型图
3.5 模拟计算工况
计算过程先对计算域进行初始应力场平衡计算,然后模拟计算地基开挖过程,最后模拟地基土的加固,并施加竖向荷载。
计算分析地基中存在空洞时上层土层开挖后产生的卸荷回弹,以及采用筏板及置换桩加固并施加压力后土层的沉降量
4 计算结果及分析
为便于分析空洞部位的位移应力,对模型中的4个空洞进行编号,见图4-1。
计算结果中竖向位移向上为正,向下为负;应力以拉为正,压为负。
图4-1 空洞示意图
4.1 地基中不存在空洞
上层土层开挖后的竖向位移分布见图4-2,由图可知,地基开挖完后在开挖面产生较大的反弹,最大回弹位移为17.8cm。
在空洞附近,回弹量比相同高程土层要大,且最大回弹位移均发生在空洞上表面,4个空洞四周的回弹位移极值见表4-1,其中1#空洞虽然埋深较深,但由于其尺寸较大,其最大回弹量与埋深较浅的2#空洞、3#空洞接近,4#空洞则由于埋深较深,且尺寸较小,其最大回弹量也相当较小。
表4-1 地基开挖后空洞四周位移极值统计
图4-2 地基开挖完后竖向位移分布云图
采用混凝土桩加固,并在筏板上施加荷载后地基位移变化量分布见图4-3。
由图可知,地基加固后并施加荷载后地基土产生了一定的沉降量,在场地中央的最大沉降量为3.8cm。
空洞上表面的沉降量比相同高程的土层大,下表面的沉降量则比相同高程的土层小,空洞最大沉降量均发生在上表面,最小沉降量均发生在下表面,空洞四周的位移极值统计见表4-2,1#空洞尽管其尺寸相对较大,但由于其位于场地边缘,且埋深较深,施加荷载后位移相对较小;尺寸及埋深接近的2#、3#空洞沉降量基本一致;4#空洞虽然埋深较深且尺寸较小,但由于其更接近作用力中心,故产生的沉降量与埋深较浅的2#、3#空洞基本一致。
表4-2 施加荷载后空洞四周位移增量极值统计
图4-3 地基加固及施加荷载后竖向位移变化量分布云图
4.2 应力计算成果及分析
采用混凝土桩加固,并在筏板上施加荷载后地基土的最大主应力及最小主应力分布云图见图4-3、图4-4。
由图可知,施加荷载后最大主应力发生在筏板中央,最大值约为-1.27MPa;最小主应力则发生在筏板与土体的接触面,最小值约
为0.65MPa。
空洞附近有应力集中现象。
图4-3 地基加固及施加荷载后最大主应力分布云图
图4-4 地基加固及施加荷载后最小主应力分布云图。