全固态锂离子电池关键材料详解
- 格式:doc
- 大小:23.50 KB
- 文档页数:5
基于金属锂负极的全固态锂电池化学储能技术1. 引言1.1 概述在当今快节奏的生活环境中,储能技术的发展对于满足人们对电力需求和实现可持续发展具有关键作用。
锂电池作为一种高效、稳定、可重复使用的化学储能技术,已经被广泛应用于移动设备、电动汽车等领域。
然而,传统的液态锂电池由于液体电解质带来的安全性和稳定性问题仍然存在限制。
因此,研究全固态锂电池技术成为了当前热门的研究领域。
1.2 研究背景全固态锂电池是一种基于固体电解质材料替代传统液态电解质实现高安全性和高能量密度的新型储能技术。
金属锂作为一种理想的负极材料,在全固态锂电池中展示出了独特的优势。
金属锂具有高比容量、低工作电压和良好的导电性能,可以有效提高全固态锂电池的性能表现。
1.3 目的和意义本文旨在对基于金属锂负极的全固态锂电池化学储能技术进行深入研究和探讨。
首先,我们将介绍金属锂负极的基本性质,包括其在全固态锂电池中的应用优势以及面临的挑战。
接着,我们将对全固态锂电池技术进行概述,包括其结构与原理、固体电解质材料综述以及富锰正极材料研究进展。
然后,我们将详细介绍基于金属锂负极的全固态锂电池的研究现状与进展,包括实验室级别研究成果介绍、工业化前景与问题分析以及未来发展方向展望。
最后,我们将总结现有技术,并提出个人对全固态锂电池技术发展的见解和期待。
2. 金属锂负极的特性2.1 金属锂的基本性质金属锂是一种轻量化学元素,具有较低的密度和高的电化学活性。
它具有优异的电导率和良好的离子传输速率,使其成为理想的负极材料候选者。
金属锂在常温下呈现银灰色金属,同时也是所有电池化学反应中储能密度最高的材料之一。
2.2 金属锂在全固态锂电池中的应用优势相较于传统液态锂离子电池,采用金属锂作为负极材料的全固态锂电池具有以下几个优势:首先,金属锂作为负极材料,在充放电过程中不会产生固态尺寸变化或溶解等问题,并且具有稳定的循环寿命。
其次,金属锂具有较低的工作电位窗口,并且在充放电过程中能够提供较高的功率密度,从而增强了全固态锂电池在快速充放电方面的性能表现。
固态锂电池正极材料固态锂电池正极材料是固态锂电池的重要组成部分,其性能直接影响着固态锂电池的电化学性能和安全性。
本文将介绍固态锂电池正极材料的种类、特点和研究进展。
固态锂电池正极材料主要包括氧化物、硫化物、硝酸盐和多相材料等。
其中,氧化物材料是目前研究最广泛、应用最为成熟的一类材料。
常见的氧化物正极材料有锰酸锂、钴酸锂、镍酸锂和铁酸锂等。
这些材料具有较高的比容量和较好的循环稳定性,但其电导率较低,限制了固态锂电池的快速充放电性能。
硫化物正极材料是近年来备受关注的一类材料。
相比于氧化物材料,硫化物材料具有更高的比容量和更好的电导率,能够实现更高能量密度的固态锂电池。
然而,硫化物材料在充放电过程中会发生体积膨胀和溶解的问题,导致电池容量衰减和安全性下降。
因此,如何解决硫化物材料的体积变化和溶解问题是当前研究的热点之一。
硝酸盐正极材料是另一类具有潜力的固态锂电池正极材料。
硝酸盐材料具有较高的离子导电性能和较好的化学稳定性,能够实现较高的循环寿命和安全性。
然而,硝酸盐材料的比容量相对较低,需要进一步提高以满足高能量密度电池的需求。
多相材料是一种将两种或多种不同类型的正极材料结合在一起的材料。
多相材料能够充分发挥不同材料的优点,提高固态锂电池的综合性能。
例如,将氧化物材料和硫化物材料结合在一起,可以实现高比容量和良好的电导率的平衡。
固态锂电池正极材料的研究重点主要集中在提高材料的比容量、电导率和循环寿命,以及解决材料的体积变化和溶解问题。
研究人员通过控制材料的微观结构、优化电极界面和采用新的合成方法等手段,不断改进固态锂电池的正极材料性能。
此外,还有一些新型材料,如多金属氧化物、硒化物和多孔材料等,也在逐步应用于固态锂电池正极材料的研究中。
固态锂电池正极材料的种类繁多,每种材料都具有不同的特点和应用前景。
通过不断地研究和创新,可以进一步提高固态锂电池的性能和安全性,推动固态锂电池技术的发展和应用。
锂离子电池固态离子传导材料锂离子二次电池已成功应用于我们生活的各个方面,随着时代的进步和科技的发展,对锂离子电池的要求越来越高[1]。
锂离子电池不仅需要具有高的能量密度和功率密度,还需具有使用寿命长、安全性能高等特点,尤其在电动汽车和规模储能领域,对锂离子电池的安全性要求越来越迫切。
锂离子电池因过充、内部短路等原因会导致电解液过热,发生起火甚至爆炸事故。
此外,电解液与电极材料在充放电过程中会发生副反应,导致电池容量出现不可逆衰减,同时也会带来胀气、漏液等问题。
目前,诸多研究者主要采用在电解液中加入添加剂等方式对有机电解液进行改进,以期解决传统锂离子电池的安全性问题,取得了一定成效,但并不能从根本上消除其安全性问题,因而成为了锂离子电池在动力电池和大容量储能应用方面的障碍。
为了彻底解决锂离子电池的安全性问题,一种全新的采用固体电解质的全固态锂电池进入了人们的视线。
无机固体电解质又称为快离子导体,在其内部只有特定的离子才能移动。
不同于液体电解质中由阴离子和阳离子的移动发挥电传导作用,在无机固体电解质中只有离子进行移动,因此在使用液态电解质的锂离子电池中常常发生的离子或溶剂所引起的副反应在无机固体电解质中很难发生。
无机固体电解质要应用于锂离子电池必须具备以下几点基本要求[2-4]:(1)快离子导体需要具有较高的锂离子电导率(>10-3S/cm)和较大的锂离子迁移数(接近于1);(2)活化能(即电导激活能)低于50 k J/Mol,即0.5 eV。
(3)电化学窗口宽,至少达到5 V;(4)化学及电化学稳定性好。
无机固体电解质本身具有适合应用于锂离子电池的优势,比如耐高温性能和可加工性能好装配方便,在全固态锂离子电池中有很好的应用前景。
由无机固体电解质所制的全固态锂离电池可逆性高、循环性好、自放电低,在充放电时副反应的发生可以有效得到抑制[5,6]。
但是,机械强度差、与电极活性物质接触时的界面阻抗大和电化学窗口不够宽是制约锂无机固体电解质用于锂离子电池的主要障碍[7,8],因此,开发在常温下具有较高离子导电率和稳定性的锂无机固体电解质材料显得尤为重要。
锂金属电池固态电解质综述全文共四篇示例,供读者参考第一篇示例:一、固态电解质的分类固态电解质主要分为无机固态电解质和有机固态电解质两大类。
无机固态电解质主要包括氧化物、硫化物、磷酸盐等,具有优良的化学稳定性和热稳定性;有机固态电解质主要由聚合物构成,具有柔韧性好、易加工等优点。
1. 高安全性:固态电解质相对于液态电解质来说,在高温、外界冲击等情况下更加稳定,降低了电池的安全风险。
2. 高能量密度:固态电解质的电导率高、离子传输速度快,有助于提高电池的能量密度,延长电池的使用寿命。
3. 抗极化能力强:固态电解质对极化和电解质溢出等问题有较好的抗性,减少了电池在充放电循环中的效率损失。
三、固态电解质在锂金属电池中的应用1. 固态电解质在全固态锂离子电池中的应用:全固态锂离子电池采用固态电解质代替液态电解质,具有高能量密度、高安全性等优点,有望成为未来电动汽车、储能设备等领域的主流技术。
2. 固态电解质在锂金属电池中的应用:使用固态电解质可以有效抑制锂枝晶的生成,减少电池内部的内短路风险,提高电池的循环寿命和安全性。
3. 固态电解质在柔性电子器件中的应用:固态电解质具有柔性好、成本低等特点,适合用于柔性电子器件的制备,有望促进柔性电子器件的发展。
四、固态电解质的挑战与未来发展方向1. 制备工艺:固态电解质的制备工艺复杂,成本较高,需要进一步优化和简化制备工艺,降低生产成本。
2. 导电性能:固态电解质的导电性能仍有待提高,需要寻找新型材料或改进材料结构,提高电解质的离子传输速度。
3. 界面问题:固态电解质与阳极、阴极的界面问题是固态电解质应用中的关键问题,需要深入研究界面结构和性质,解决界面问题,提高电池的性能。
在未来,固态电解质在锂金属电池等领域的应用前景广阔,但仍面临着诸多挑战。
只有不断深入研究固态电解质的性能和应用,不断优化固态电解质的结构和性能,才能推动固态电解质在电池领域的广泛应用。
相信随着技术的不断进步和创新,固态电解质将会成为未来电池技术的主流,为人类社会的可持续发展做出更大的贡献。
全固态锂电池用聚氨酯基固态聚合物电解质的制备与性能研究共3篇全固态锂电池用聚氨酯基固态聚合物电解质的制备与性能研究1随着电动汽车及移动终端等市场的不断扩大,对于能量密度和安全性要求越来越高。
全固态锂电池因其具有高能量密度、低污染性、安全性高等优点,成为新的研究热点。
聚氨酯基固态聚合物电解质作为一种非晶态的聚合物电解质,在全固态电池中的应用越来越广泛,成为预测性能的非常有希望的选择。
本文主要研究全固态锂电池用聚氨酯基固态聚合物电解质的制备与性能。
首先,本文对聚氨酯基固态聚合物电解质的基本概念进行了简要介绍,然后详细描述了制备电解质所需的原材料及其比例。
接下来,作者对聚氨酯基固态聚合物电解质的物化性质进行了测试。
实验中采用了压电频率响应法测试其电导率、交流阻抗法测试其内阻值和荧光共振能量转移法测试其锂离子迁移率。
结果表明,聚氨酯基固态聚合物电解质具有良好的电导率和锂离子迁移率,内阻值低,且有望替代传统有机液体电解质,大大提高锂电池的安全性。
最后,作者还对全固态锂电池用聚氨酯基固态聚合物电解质的电化学性能进行了测试。
通过循环伏安法和恒流充放电测试,研究了电解质对电池性能的影响。
实验中发现,该电解质可以有效减少电池内部电阻,提高电池的容量、循环性能和能量密度,可望成为新一代高性能全固态锂电池的重要组成部分。
结合所得结果,本文初步探索了聚氨酯基固态聚合物电解质在全固态锂电池中的应用前景。
然而,一些美中不足的问题,如聚氨酯基固态聚合物电解质在高温下的稳定性还需进一步研究。
因此,今后需要通过改进材料结构、制备方法等途径,进一步提高电解质的成品质量和稳定性,实现其在实际工业应用中的大规模生产和使用本研究初步探索了聚氨酯基固态聚合物电解质在全固态锂电池中的应用前景,结果表明该电解质具有良好的电导率、锂离子迁移率和内阻值,可以提高锂电池的安全性、容量、循环性能和能量密度。
但仍需进一步研究其在高温下的稳定性,并通过改进材料结构和制备方法提高成品质量和稳定性,以实现其在实际工业中的大规模应用全固态锂电池用聚氨酯基固态聚合物电解质的制备与性能研究2全固态锂电池用聚氨酯基固态聚合物电解质的制备与性能研究近年来,随着电动汽车和可穿戴设备等的广泛应用,锂离子电池作为其主要电源,已成为了当今电池市场中的主流产品。
全固态锂电池负极材料及其主要作用全固态锂电池是一种新型的锂离子电池技术,以固态材料取代传统液体电解质。
其中,负极材料在全固态锂电池中起着至关重要的作用。
本文将介绍几种常见的全固态锂电池负极材料及其主要作用。
一、锂金属锂金属是全固态锂电池中最常见的负极材料之一。
它有很高的比容量和充放电效率,能够提供更高的电池能量密度和长循环寿命。
然而,锂金属的安全性问题限制了其在商业化应用中的使用。
由于锂金属的极化效应和表面电位的变化,会导致锂枝晶的生长,进而引发电池短路、过热、甚至爆炸等问题。
因此,在实际应用中,需要通过添加表面保护层等措施来解决这一问题。
二、锂钛氧化物(Li4Ti5O12)锂钛氧化物是全固态锂电池中常用的负极材料之一。
与锂金属相比,锂钛氧化物具有更高的安全性和稳定性。
它在锂离子的嵌入/脱嵌过程中不会发生化学反应,因此不会导致枝晶生长和电池短路等问题。
锂钛氧化物的长循环寿命使其成为高能量密度和高功率密度的全固态锂电池的理想负极材料。
三、锂硅合金(Li-Si)锂硅合金是一种具有较高理论比容量的全固态锂电池负极材料。
由于硅具有很高的锂嵌入容量,锂硅合金能够提供更高的能量密度。
然而,硅在锂离子嵌入和脱嵌过程中容易发生体积膨胀和收缩,这导致了负极材料的破裂和严重容量衰减。
因此,需要开发新的纳米结构和包覆技术来解决这个问题。
四、碳材料碳材料是全固态锂电池中常见的负极材料之一。
它具有良好的化学稳定性和导电性能,能够提供稳定的循环性能。
碳材料中的石墨是最常用的负极材料,具有较高的比容量和循环寿命。
此外,碳纳米管、石墨烯等新型碳材料也被广泛研究,它们具有更高的导电性和更大的比表面积,能够提供更高的能量密度和功率密度。
总之,全固态锂电池负极材料的选择对电池的性能和安全性有着重要的影响。
锂金属、锂钛氧化物、锂硅合金和碳材料都是常见的负极材料,它们分别具有不同的特点和优势。
通过进一步的研究和开发,全固态锂电池负极材料的性能和循环寿命将得到进一步的提升,从而促进全固态锂电池的商业化应用。
固态电池电解质材料及关键原材料的研发下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!固态电池电解质材料及关键原材料的研发引言在电动汽车、移动电子设备和可再生能源等领域的快速发展下,对电池性能和安全性的需求日益增加。
钒酸盐阴极材料在全固态锂离子电池中的应用前景分析钒酸盐阴极材料是一类潜力巨大的全固态锂离子电池材料,在电池领域的应用前景非常广阔,有望代替传统的液态锂离子电池成为新一代高性能电池材料。
本文将从钒酸盐材料的优势、全固态锂离子电池的发展趋势、当前的技术挑战和应用前景等方面进行详细分析。
首先,钒酸盐阴极材料具有较高的比容量和优异的循环寿命。
传统的液态锂离子电池中常采用的钴酸锂阴极材料具有较高的比容量,但其由于钴的资源相对匮乏和不稳定性等问题,阻碍了其在大规模应用中的发展。
相比之下,钒酸盐阴极材料具有更高的比容量,且钒资源相对丰富且廉价。
此外,钒酸盐阴极材料均为多价离子型材料,不同于钴酸锂阴极中的单价离子,这使得其克服了部分多价离子电极材料在实际应用中容量衰减等问题,具备更好的循环寿命。
其次,全固态锂离子电池作为一种新兴的电池技术,具有更高的安全性和较低的热失控风险。
传统液态锂离子电池中使用的有机电解液具有易燃和易挥发的特点,一旦发生电池失控,容易引发爆炸和火灾等严重安全事故。
而全固态锂离子电池将有机电解液替换为无机固态电解体,大大提升了电池的安全性能,有望实现更高的电池安全性和稳定性。
然而,全固态锂离子电池技术还面临一些挑战,这也在一定程度上影响了钒酸盐阴极材料在全固态锂离子电池中的应用。
首先,目前固态电解质的离子传输性能相对较差,导致电池的循环性能和倍率性能不理想。
其次,钒酸盐阴极材料的导电性和离子扩散性相对较差,需要通过导电剂和添加剂等方法进行改进。
此外,钒酸盐阴极材料还存在价格相对较高的问题,需要进一步降低成本才能实现大规模商业化应用。
尽管面临着一些技术挑战,但全固态锂离子电池作为一种具有巨大发展潜力的电池技术,仍然有着广阔的应用前景。
全固态锂离子电池的应用领域包括移动电源、电动汽车、储能系统等。
其中,移动电源领域是一个较为成熟的市场,全固态锂离子电池可以提供更长的电池续航时间和更高的安全性能,有望取代传统的液态锂离子电池成为下一代移动电源的主流技术。
固态锂离子电池是一种新型的电池技术,与传统的液态锂离子电池相比,它采用固态电解质代替了液态电解质。
以下是固态锂离子电池的组成原理:
1.正极:固态锂离子电池的正极通常采用锂过渡金属氧化物,如LiCoO2、LiNiO2或LiMn2O4
等。
这些材料具有较高的能量密度和稳定性,能够存储大量的能量。
2.负极:固态锂离子电池的负极可以采用锂金属、硅或石墨等材料。
其中,锂金属具有最高的能量
密度,但容易产生枝晶;硅具有较高的理论容量,但体积变化较大;石墨具有良好的稳定性和可逆容量,是目前最常用的负极材料。
3.固态电解质:固态电解质是固态锂离子电池的核心部分,它由聚合物或无机材料组成。
固态电解
质具有较高的离子电导率和稳定性,能够阻止锂枝晶的生长,提高了电池的安全性。
4.集流体:固态锂离子电池的集流体可以采用金属箔或复合材料。
集流体主要用于收集电流并传导
至外部电路,同时起到支撑和固定电极的作用。
在固态锂离子电池的工作过程中,当电池充电时,锂离子从正极脱出并穿过固态电解质向负极迁移,电子通过外部电路向负极迁移;当电池放电时,锂离子从负极穿过固态电解质向正极迁移,电子通过外部电路驱动电子器件。
由于固态电解质具有较高的离子电导率,可以大大提高电池的充放电速度和能量密度。
2024年是固态电解质和全固态锂电池研究的重要年份。
固态电解质作为一种新型电解质材料,具有高离子导电性、较高的安全性和良好的化学稳定性等特点,被广泛看作是解决锂电池安全性问题的关键技术之一、以下是对2024年固态电解质和全固态锂电池研究的概述。
一、固态电解质材料研究在固态电解质材料的研究方面,硫化锂玻璃(Li2S-P2S5)和氧化物固态电解质是2024年的热门研究方向。
硫化锂玻璃作为一种传统的固态电解质材料,具有较高的离子导电性能。
研究者通过调控硫化锂玻璃的成分和结构,提高了其离子导电性能和电化学稳定性。
此外,还有研究对硫化锂玻璃进行表面涂层或者插入基质,进一步提高了其电化学性能。
氧化物固态电解质由于其较高的化学稳定性和电化学稳定性,被认为是一种很有潜力的固态电解质材料。
氧化物固态电解质主要有氧化锂钇(Li7La3Zr2O12,LLZO)和氧化锂硅(Li10GeP2S12,LGPS)等。
研究者通过掺杂和改性的方法,提高了氧化物固态电解质的离子导电性和稳定性,为全固态锂电池的应用提供了关键材料。
二、全固态锂电池研究全固态锂电池是一种具有高能量密度、长寿命和良好安全性的锂离子电池。
2024年,固态电解质和全固态锂电池的研究取得了很大进展。
固态电解质的高离子导电性和稳定性为全固态锂电池的应用提供了可行性。
研究者通过在电极和电解质之间形成良好接触的界面,进一步提高了全固态锂电池的性能。
此外,为了提高全固态锂电池的电化学性能,还有研究对电极材料进行改性和优化,使其更适合全固态锂电池的工作条件。
全固态锂电池的研究重点还包括制备工艺和尺寸效应的研究。
制备工艺的研究主要关注如何实现高效制备全固态锂电池并提高其可扩展性。
尺寸效应的研究探索了全固态锂电池的微观结构和性能之间的关系,旨在寻找最佳的电池设计和优化策略。
三、全固态锂电池的挑战和展望尽管固态电解质和全固态锂电池在2024年取得了重要进展,但仍然面临一些挑战。
书山有路勤为径;学海无涯苦作舟
全固态锂电池材料、结构及研究进展
电动汽车、大规模储能和微型器件等领域的发展要求不断提高现有二次电池的能量密度、功率密度、工作温度范围和安全性,而全固态锂电池作为最具潜力的电化学储能装置,近年来受到广泛关注。
本文阐述了全固态锂电池的优点(即固态电解质的使用有助于提高锂电
池安全性、能量密度和功率密度,拓宽电池工作温度范围和应用领域),指出了作为全固态电池关键材料的固态电解质应满足的要求,并在此基础上分别讨论了聚合物电解质和无机固态电解质(特别是硫化物和氧化物)的优缺点。
此外,文章介绍了固态锂电池的 3 种结构类型,即薄膜型、3D 薄膜型和体型,综述了全固态锂电池从薄膜型向体型发展的历史进程及现状,并在此基础上讨论了全固态电池最终实现安全性、高能量密度和功率密度仍需解决的固态电解质材料方面问题。
随着能源危机和环境污染问题的日益突显,人们对清洁、可再生能源的
需求越来越迫切。
实际应用中,太阳能、风能、水力等可再生能源需要被转化为电能等二次能源才能广泛被人们加以利用。
为解决这类自然可再生能源与电力需求在时空分布上的不匹配问题,储能技术的发展必不可少。
在众多储能技术中,电化学储能技术,即电池的使用受到人们越来越多的
关注。
电池储能具有高效、规模可调的特点,既可整合于电力系统作为能量储
存单元,起到对电网削峰填谷的作用,提高电网运行的可靠性和稳定性,也可用于移动通讯、新能源汽车等领域,为人类生活质量的提高提供源源不断的能量支持。
专注下一代成长,为了孩子。
全固态锂离子电池及其制备方法嘿,朋友们!今天咱们来聊聊超酷的全固态锂离子电池,这玩意儿就像是电池界的超级英雄呢!首先呢,全固态锂离子电池的核心是固态电解质,这固态电解质啊,就像是电池里的交通警察。
普通电池的液态电解质就像一群调皮的小孩到处乱跑,而固态电解质把锂离子管得死死的,规规矩矩地让它们在电池里有序移动。
制备这个固态电解质可不容易,就像要训练一群散漫的小动物变得纪律严明一样。
得精心挑选合适的材料,比如锂超离子导体材料,这材料就像黄金矿工挖到的宝贝,珍贵得很。
然后呢,正负极材料的选择也相当关键。
正极材料就像是电池的能量宝库,要能储存大量的锂离子,就像一个超级大仓库,得有足够的空间来容纳货物。
常见的像锂钴氧化物之类的材料,那就是仓库里的一个个大货架,整整齐齐地摆放着锂离子。
负极材料呢,就像是回收锂离子的回收站,把用完的锂离子回收起来,像个勤劳的小管家。
在制备电池的时候,组装过程就像搭积木。
不过这可是超级精密的积木游戏,每一个部件都要严丝合缝。
就像给超级英雄穿上战衣,一点差错都不能有。
先把正极材料、固态电解质、负极材料按顺序摆放好,这过程要小心翼翼的,仿佛手里捧着价值连城的古董。
加热处理这个步骤就像是给电池做一次温泉疗养。
适当的温度能让各个部件之间结合得更紧密,就像在温泉里人们的肌肉放松下来,电池的各个部分也能更好地融合,不过温度可得控制好,不然就像把温泉变成了火山,直接把电池毁了。
还要进行压实工序呢。
这就像是给电池做一次全身按摩,把各个部分压实,让锂离子在里面的通道更顺畅,就像给道路铺上了平坦的柏油,锂离子的小车子可以在里面欢快地跑来跑去。
检测环节那可是电池的大考。
就像学生参加高考一样,要经过各种严格的测试,看看电池的性能是否达标。
从容量到充放电效率,每一项都不能马虎,这可是决定电池命运的时刻。
封装电池就像是给超级英雄打造一个专属的小房子。
这个小房子得既坚固又密封,防止外界的干扰,就像超级英雄的秘密基地一样,只有这样,电池才能在各种环境下稳定工作。
全固态锂电池负极材料及其主要作用全固态锂电池是一种新型的电池技术,它采用了固态电解质替代了传统液态电解质,具有更高的能量密度、更长的循环寿命和更高的安全性。
在全固态锂电池中,负极材料是电池的重要组成部分之一,它在电池的性能和性能稳定性方面起着至关重要的作用。
全固态锂电池负极材料主要包括金属锂、碳基材料和合金材料。
这些材料在全固态锂电池中扮演着储存和释放锂离子的角色。
1. 金属锂:金属锂是一种常用的全固态锂电池负极材料,它具有高的理论比容量和较低的电位,能够提供更高的能量密度。
金属锂具有良好的电导率和低的内阻,可以实现高速充放电,但同时也存在着与固态电解质的化学反应和安全性问题。
2. 碳基材料:碳基材料是另一种常见的全固态锂电池负极材料,如石墨、硬碳等。
碳基材料具有较高的电导率、较低的体积膨胀和良好的循环稳定性。
它们能够嵌入和脱嵌锂离子,实现锂离子的储存和释放。
3. 合金材料:合金材料是全固态锂电池负极材料的另一类重要类型。
合金材料通常是由多种金属元素组成,能够实现高容量的储存锂离子。
合金材料具有良好的电导率和化学稳定性,但同时也存在着体积膨胀和循环寿命的挑战。
全固态锂电池负极材料的主要作用如下:1. 储存和释放锂离子:负极材料是储存和释放锂离子的关键组成部分。
在充电过程中,负极材料通过吸收锂离子将其储存起来;在放电过程中,负极材料释放锂离子供电池使用。
负极材料的选择和性能直接影响电池的能量密度和循环寿命。
2. 提供电子导电路径:负极材料需要具有良好的电导率,以确保电子能够自由地在负极材料中流动。
电子导电路径的畅通性能够提高电池的充放电效率和功率密度。
3. 抑制固态电解质与负极材料之间的化学反应:负极材料需要具有足够的化学稳定性,以抑制固态电解质与负极材料之间的不良化学反应。
这有助于减少电池的内阻和提高电池的循环寿命。
4. 抑制体积膨胀:在充放电过程中,一些负极材料会发生体积膨胀导致电池的机械变形和损坏。
原子与分子物理学报JOURNAL OF ATOMIC AND MOLECULAR PHYSICS第37卷第6期2020年12月Vol. 37 No. 6Dec. 2020doi : 10.19855/j.l000-0364.2020.066003用于全固态锂电池的有机-无机复合电解质金英敏,李栋,贾政刚,熊岳平(哈尔滨工业大学化工与化学学院,哈尔滨市150001)摘要:固态电解质被认为是解决传统液态锂金属电池安全隐患和循环性能的关键材料,但仍然存在离子 电导率低,界面兼容性差等问题.设计兼顾力学性能、离子电导率和电化学窗口的有机-无机复合型固态电解质材料是发展全固态锂电池的明智选择.近年来,基于无机填料与聚合物电解质的有机-无机复合电解质备受关注.设计与优化复合电解质结构对提高复合电解质综合性能具有重要意义.本文详细梳理了有机-无机复合固态电解质在全固态锂电池中展现明多方面优势,从满足不同性能需求的复合电解质结构设计角度出发,综述了有机-无机复合电解质在锂离子传导、锂枝晶的抑制、界面稳定性和相容性等方面的研究进展,并对有机-无机复合电解质明未来发展趋势和方方进行了展望.关键词:全固态锂电池;固态电解质;复合型固态电解质;结构设计中图分类号:O65 文献标识码:A 文章编号:1000-0364(2020)06-0958 06Organic - inorganic composite electrolytes for all - solid - state lithium batteriesJIC Ying-Min # LI Dong, JIA Zheng-Gang, XIONG Yue-0ing(School of Chemistry and Chemical engineering , Harbin Institute of Technology , Harbin 150001 , China )Abstrach : Solid electrolytes ary consitered te be a promising candidaie te replace traditional liquid electrolytes due te their enhanced safety and cycling perfoanance. UnfoOunately , the low ionic conductivity of solid electro lytes and the pooa interfacial contact at electrolyte/electrode interface limii theia application in Li bateaet. Thus , developing novd electrolyee systems based on ceramit fnieo - incoa^orated polymeo electrolytes w WU im proved mechanical strength , ionie conductivim and wide electrochemical window is the ultimate solution for aH -solid - state cithium bateries. Recently , composite soliO cectrolytes containing ceramie and polymer elee-holytes have drawn a loe of attention. Designing and optimizing tee structure of composite solid electrolytes is ofgoct importance te boosi tee overali performance. The multipie adventages of oroanie - inoroanie composite eleo-trolytes assembled in H - solid - state lithium bateries ho discussed in the text. Resecrch prooress on structurai design of composite solid electrolytes from the perspective of meeting diferent performance demands consinering Li-ion eoanspooem>thanism, Lid>ndoie suppo sion and ineooat>seabieietao summaoii>d.Th>oueuo>d>e>e-opment trend and direction of oraanio - inoraanio composite electrolytes ga also mentioned.Key words : All - solid - state lithium biteries ; Solid electrolytes ; Composite solid electrolytes ; Structural de sign收稿日期:2020-07-16基金项目:特种化学电源国家重点实验室开放课题"SKL - ACP -C-14)作者简介:金英敏(1996—)#女#朝鲜族#黑龙江省齐齐哈尔市人#博士生#从事全固态锂电池的研究.E-mail : jyinjinyingminKlG!. com通讯作者:熊岳平(1963—)#男#汉族#吉林省九台市人#教授#博导#从事固体氧化物燃料电池和全固态锂电池的研究.E-mait : ypxiong@ hit. edu. cn第6期金英敏,等:用于全固态锂电池的有机-无机复合电解质9591引言锂离子电池自20世纪90年代问世以来,由于其具有能量密度高、输出功率大、电压高、自放电小、工作温度范围宽、无记忆效应和环境友好等优点[1"3],现已成为最重要的能源存储器件之一,被广泛应用于电动车、轨道交通、大规模储能和航空航天等领域[4,5]-然而,传统液态锂离子电池采用液态电解液,不仅存在易泄漏、易挥发、易燃烧等安全隐患[6],而且在充放电过程中容易和电极发生副反应、高电压下会分解产气,导致电池容量出现不可逆衰减-除此之外,使用石墨负极的液态锂离子电池的能量密度已经接近其上限[7],而液态体系无法使用高能量密度的金属锂作为负极材料,这是因为锂电极表面不均匀的锂沉积会导致锂枝晶的生长,最终刺穿隔膜造成电池内部短路、热失控甚至起火爆炸叫固态电解质的使用,不仅避免了液态有机电解液带来的一系列安全隐患,还可逆避免锂枝晶刺穿隔膜的问题,提高了电池的安全性-除此之外,固态电解质宽的电化学窗口允许锂金属负极和高电压正极材料的同时使用,是提升锂离子电池能量密度的有效途径[9,10]-全固态锂金属电池兼具高安全性和高能量密度的优点,被认为是最具发展潜力的下一代锂电池技术,得到了广泛关注与研究(固态电解质作为全固态锂电池的核心组分,是制备高能量密度、高循环稳定性和高安全性能全固态锂电池的关键材料.因此开发出性能优异的固态电解质已经成为研究者们的关注重点•2固态电解质概述为了实现固态锂金属电池的高安全性和高能量密度,固态电解质除了具备优异的力学性能和热稳定性,还应满足来下要求:室温锂离子电导率高,电化学窗口宽,对锂金属电化学稳定性高,与电极界面阻抗低,加工性能优异,易于大规模生产等.通常,固态电解质可分为无机固态电解质和聚合物固态电解质两大类.其中,无机固态电解质作为单离子导体,在室温具有较高的离子电导率(10"~10x4S・cm")和较高的锂离子迁移数(T+接近1)[11]-氧化物型和硫化物型固态电解质是无机固态电解质的两类典型代表,一些硫化物如23PS4、Li i0GeP*S i2等具有接近甚至高于液态电解质的离子电导率,但在空气中不稳定,易释放H2S.12,1!/-尽管氧化物固体电解质化学稳定性较高,但也存在其他因素限制其应用-例如, NASICON型电解质Li i+n A'Ti*」PO4)3(LATP)、Li i+n A'Ge*」PO4)3(LAGP)和钙钛矿型电解质(Li0.33La0.557Ti O3,LLTO)和锂电极之间的化学稳定性差,TO_容易被金属锂还原成TO+[14]-Garnet型电解作(LO La3Z-2O12,LLZO)虽然和锂电极相对稳定,但对空气中的水分和CO敏感,表面易形成loco3和的日层,阻碍离子传输[15]-刚性的无机固态电解质虽然可逆物理地抑制锂枝晶的生长,但正是由于其本身的刚性,与电极接触时界面相容性差,产生较大的电极/电解质固固接触阻抗.除此之外,制备工艺复杂使无机固态电解质难来大规模生产[16]-往往需要采用在电解质或电极表面进行修饰口、弓引界面层1R,19/、采用合金电极[20]等手段来改善界面接触和界面离子传输.与无机固态电解质相比,聚合物固态电解质对电极的浸润性更好,可与电极紧密接触并保证界面连续的离子传输通道;具有高度的可塑性和柔韧性,机械加工性能好,可塑根据要求制作成所需形状,适合批量化制备和大规模生产[21]-聚合物固态电解质通常是由具有极性基团如—O-,=O,—N-,—S-,C=O,C:N等的极性高分子和锂盐络合后通过溶液浇筑法制得,具有较好的柔性和加工性能、良好的力学性能和成膜性,且容易与锂金属形成稳定的界面,被为为由要一锂能量在储器件于重有潜力的解质质之一H-在聚合物电解质中,聚环氧乙烷(Polyethylene oxide,PEO)是研究最早的—类体系.1979年,Armand等成功制备了基于PEO聚合物电解质的全固态聚合物锂离子电池-PEO基聚合物电解质的导电过程主要是由锂盐如双三氟甲烷磺酰亚胺锂(LiTFSI)、高氯酸锂(LOIO4)等解离产生的锂离子与PEO链上的一0—持续地发生络合、解络合的过程,是通过PEO无定型相中的链段运动来实现LO的迁移[25,26]-因此,自由移动的LO数量和PEO链段的运动能力决定了PEO基聚合物电解质的离子电导率.锂盐的加界可塑抑制PEO的结晶,提高无定型相的比例,改善锂离子的传输能力[27]-但PEO在室温下结晶度很高,限制了离子传导,只有升高温度会增加无定型相的比例,离子电导率才会提高-为了提升PEO基聚合物电解质的离子电导率,许多方法如在聚合物基体中引入增塑剂叫提高锂盐含960原子与分子物理学报第37卷量[29刖等已被广泛研究,通过减少PEO基体结晶区的比例,加快链段运动,促进锂盐的解离,从而提高离子电导率.尽管这些手段可以提高离子电导率,但同时电解质的机械强度与稳定性也会在一定程度上有所降低.31,32/.另外,PEO固态聚合物电解质电化学窗口相对较窄"V4V).33/,难以匹配高电压正极材料,对固态电池能量密度的提升相对有限;另外PEO基固态锂电池需要在相对较高温度"60〜80°C)下运行,增加了运行成本.除PEO基聚合物体系外,聚偏氟乙烯"Polyvinylidene fluoride,PVDF).33\聚偏氟乙烯-六氟丙烯(Polyvinylidene fluoride-co-hexafluoropropylene,PVDF_HFP)[34]、聚丙烯腈Polyacrylonitrile,PAN)】⑸等也是重要的聚合物电解质体系. PVDF链段上含有强极性基团一CH*%CF*―,氟原子较强的电负性有利于促进锂盐解离,提升PVDF基体中锂离子的浓度.36/.PAN分子中的氮原子可提供孤对电子,与锂离子发生络合作用.由于氮原子的电负性比氧原子弱,与PEO基体相比,PAN基体与锂离子间的相互作用更弱,因此PAN基体的锂离子迁移数会相对较高.37/.除此之外,PAN基固态电解质具有较高的抗氧化能力,可以匹配高压正极材料,但由于PAN链段上的强极性基团一CN与锂负极相容性较差,导致该体系电解质与锂负极接触时界面处会产生严重的钝化现象.38L更重要的一点,几乎所有的聚合物电解质都存在室温离子电导率相对较低(10一8〜io-5s •cm-1).39/、锂离子迁移数较低仏+V0.5).27/的问题,限制了其应用可行性.由此可见,无论是无机固态电解质还是聚合物固态电解质,现有的单一固态电解质体系难以满足全固态锂金属电池的性能要求•3有机-无机复合固态电解质概述为了兼顾无机固态电解质的高离子电导率以及固态聚合物电解质的柔韧性,通过将无机填料加入聚合物电解质中,发展有机-无机复合型固态电解质成为固态锂金属电池的关键突破口.无机填料因其较高的表面积,可可增强与聚合物基质的接触,缩短锂离子扩散途径.无机填料不仅可可降低聚合物的结晶度,根据路易斯酸碱理论,填料的酸性表面还可可吸附锂盐解离的阴离子,促进锂盐的解离,增加可自由移动的锂离子数量.40/(填料表面作为聚合物链段与锂盐阴离子的交联位点,可形成锂离子传输通道.与纯聚合物固态电解质相比,复合固态电解质具有更低的熔融温度(4m)和玻璃化转变温度"T)40/,更高的离子电导率和力学性能,以及与锂负极更好的兼容性.根据填充物对复合电解质电导率的贡献,可可将它们分为没有参与到导电过程的惰性填充物如SiO*〔41/、TO*.42/、AOO3.43/等,和参与锂离子的传输的活性填料如LLZO.44,45/、LATP:46/、LAGP〔47/、LLTO:48,49/等.活性填料除了可可起到和惰性填料一样的作用之外,还可可直接提供锂离子,不仅能提高自由LO的浓度,还可增强LO 在填料表面的传输能力.50,51/.另外,无机填料在电解质中还可以吸附痕量的水及其它微量杂质,使得复合电解质在电化学环境中更稳定,拓宽电解质的电化学窗口.利用无机材料良好的机械强度和抗穿刺性能与聚合物材料良好的界面相容性和界面稳定性形成的复合电解质,也可可有效地抑制电池运行过程中锂枝晶的生长,提高电池的循环稳定性和库伦效率.例如,Fu等.22/将3D结构的LO.4Lc3Zo2AO.2O12(LLZO)纳米纤维与PEO 基体复合,LLZO纳米纤维的引入不仅延长了LO 的连续传输路径,而且加固了聚合物电解质内部结构的机械强度(图1)•该复合电解质薄膜的离子传导性能有了明显提高,室温离子电导率可达2.5X10"5S•cm一1.图13D LLZO/PEO复合固态电解质结构示意图.22/Fig.1Schematic of the hybrid3D LLZO/PEO solid-state composite electrolyte(Reprinted with permission from.22/.Copyrighi(2016)NationalAcademy of Sciences).有机-无机复合固体电解质,结合了无机固体电解质和聚合物固体电解质的优势,兼具无机物的高强度、高稳定性和聚合物的轻质、柔性.此外,复合界面处的有机-无机相互作用可进一步提升聚合物复合固体电解质的离子电导率.近第6期金英敏,等:用于全固态锂电池的有机-无机复合电解质961年来柔性电子设备发展迅速,可穿戴设备、柔性显示屏等柔性电子器件层出不穷,柔性复合电解质的设计使得薄膜化、微型化、柔性可弯折的锂电池也将成为可能.基于此,本文综述了用于全固态锂电池的有机-无机复合固态电解质,重点论述了复合电解质在锂离子传导、锂枝晶的抑制、界面相容性和稳定性等方面的研究进展,展望了未来高性能固态电解质的研究重点和发展方向•3.1锂离子传导关于有机-无机复合电解质的锂离子导电机理,主要有以下三种观点:⑴有机相导电,(2)无机相导电,(3)有机-无机界面导电.锂盐在聚合物基体中解离为锂离子与阴离子,锂盐与聚合物链段上的极性基团相互作用,锂离子通过在各极性基团间的跳跃实现电荷传输.在有机相中,锂离子主要依赖非结晶区域内聚合物的链段运动实现迁移,这样的迁移方式活化能相对较高、离子电导率相对较低.无机相的离子传导通过锂离子导体型活性填料内部的离子扩散实现,这样的迁移方式具有相对较低的活化能、较快的离子传输速率.关于有机-无机复合界面处的离子传导,首先界面处的无机相表面可穿通过抑制聚合物链段的重排,增加聚合物中无定形态的比例,在界面处形成高离子传导性的非晶区域;其次,无机相表面通过路易斯酸碱作用可穿固定锂盐中的阴离子,促进锂盐解离、提升界面处可自由移动锂离子的数量•随着渗流理论印在有机-无机复合电解质中的应用,已有大量研究表明聚合物相与无机相复合界面处可能存在锂离子快速传输通道化有机-无机复合电解质,通常采用在聚合物基体中分散无机颗粒填料的方式来合成•根据渗流理论,随着填料比例的增加,离子电导率会先上升后下降[53],当填料含量过高时,颗粒的团聚会阻碍锂离子的传输•若不能保证无机填料的均匀分散以及合适的添加量,则会造成无机填料的团聚、填料与聚合物基体相互作用的削弱,减少聚合物无定形态的比例.2等人[54]探究了(Li6.4La3Zr1.4Ta o.6O12,LLZTO)的颗粒尺寸对LLZ-TO/PEO复合电解质离子电导率的影响.结果表明,与微米级LLZTO相比,具有40nm尺寸的LLZTO和PEO复合形成的电解质其离子电导率高出前者两个数量级•这是因为小颗粒的LLZTO具有更大的比表面积,从而与PEO可形成更多的界面,利于离子传输.聚合物复合固体电解质中的离子传导过程,是一个涉及多相介质和异质界面的复杂过程.需要掌握多相介质和异质界面处的微观结构、锂离子分布以及锂离子传输路径等信息,才能清楚掌握复合固体电解质中的离子传导机制•固态核磁共振"Solid-State Nuclear Magnetic Resonance,SS-NMR)技术是探测离子局部结构和动力学的有效手段,通过分辨$Li和"L同位素在反应前后的含量变化等信息,来研究聚合物复合固体电解质中的离子传导机制•Hu等人[39]下6Li和"Li分别作为复合固体电解质的外源锂和内源锂,通过比较充放电循环前后6Li和"Li的SS -NMR图谱(图2(a)),揭示了Li_在LLZO/PEO (LiTFSI)复合电解质内部的传输轨迹(图2(Z)).对于LLZO(5wt%)-PEO(LiTFSI)电解质,循环后LiTFSI的6Li峰强度增加了23.3%,并且LT 和晶态PEO相互作用的共振峰"0.3ppm)向低强度偏移,说明此时LT的传输路径为PEO基质中解离的LiTFSI,LLZO(5wt%)的加入使得PEO和LT之间相互作用减弱,增加了自由锂离子数量.当LLZO含量增至20w-%时,循环后分解的LLZO和LiTFSI的6Li峰强度分别增加了10.6和21.2%,说明此时锂的迁移路径为分散在PEO中的锂盐(包括LiTFSI和分解的LLZO颗粒).此时的LLZO含量过低,在聚合物基质中呈现分散分布,无法形成有效的连续渗流结构.对于LLZO (50wt%)-PEO(LiTFSI),循环后LLZO的6Li峰(2.3ppm)强度增加了27.2%,说明此时绝大多数的LT通过由LLZO形成的渗流网络迁移,只有小部分通过PEO中解离的锂盐迁移.在此基础上加入增塑剂四乙二醇二甲醚TEGDME)时,体相LLZO的6Li峰强度仅增加了7.0%,而分解的LLZO和LiTFSI的6Li共振峰分别增强了14.8和14.0%,说明此时锂离子的主要传输路径变为PEO -TEGDME基质中解离的锂盐•该研究还指出,当体系采用LiCKO作为锂盐时,离子传输会有所不同[55].这是因为TFSI-比CKV具有更大的体积, LiTFSI在PEO中的解离度更高,可可释放出更多的自由锂离子,具有更高的锂离子电导率[56].Chan等人[57]制备了含有5wt%LLZO纳米线的PAN(LiT104)-LLZO复合电解质"composite polymer electroly-e,CPE),在复合电解质的高分辨6Li NMR谱中并没有LLZO相的6Li共振峰,可能是因为LLZO较低的含量.除分散在PAN基质中的LiTFSI峰(0.9ppm)之外,也检测到了聚合物/962原子与分子物理学报第37卷⑻Pristine«Li t J Ureplacement(b)PEO(LiTFSI)LLZO•43210-1e Li shift&ppmeons tau-r f目-J」pasodujco占・-1用-J1IpssodLuooacI3*43210-1◎Li shift5!ppmDecomposedInterfaceDecomposedLLZOLLZO(5wt%)-PEO(LiTFSI)•9i•.«•■•:¥*H•LLZO(20wt%)-PEO(LiTFSI)TEGDME*LLZO(50wt%)•LLZO(50wt開卜PEOPEO(LiTFSI)(LiTFSI)(50wt%HEGDME 图2(a)LLZO-PEO(LiTFSI)复合电解质循环前后的6Li NMR图谱,(b)LLZO-PEO( LiTFSI)复合电解质的锂离子传输路径示意图.39/•Fig.2(a)$Li NMR compaWson of pristine and cycleH LLZO-PEO(2辻3=【)composite electrolytes,(h) Schematic of Lt-ion pathways within LLZO-PEO( LiTFSI)composite electrolyteo( Reprinted withpermission from.39/•Copyright(2018)Americon Chemical Society)•陶瓷界面处的LiTFSI共振峰(0b85ppm),二者所占比例分别为62.6和37.4%,这说明有37.4%的PAN已被LLZO修饰(图3(b)).为了探究复合电解质中的锂离子传输路径,对6Li/CPE/6Li电池进行了充放电循环•6Li NMR谱中分散在PAN基质中的LiTFSI共振峰在循环前后几部保持不变,而聚合物/陶瓷界面处的LiTFSI共振峰强度显著增加(图3(c)).这说明LLZO纳米线对PAN聚合物基体具有显著影响,在低含量LLZO的PAN(LTCO q)-LLZO复合电解质中,锂离子更倾向于在修饰后的PAN/CLZO界面进行传输,此时LLZO的含量不足以形成渗流网络使锂离子的迁移只经过LLZO相(图3(a))•在PEO基聚合物电解质中,无机填料的加入可以作为增塑剂来降低聚合物的结晶度,提高锂离子传导能力.而与PEO不同的是,在PAN基聚合物电解质中,陶瓷填料的加入不会显著改变PAN的结晶度•无论是在不含有LLZO还是含有5wt%LLZO纳米线的复合电解质中,PAN的存在形式都是无定型相.这进一步验证了LLZO是通过增强Li_和CIO q-之间的解离来提升电解质中的自由LT含量,从而提高锂离子电导率•该工作同时指出,与添加Al O3的聚合物电解质相比,LLZO由于具有更高的介电常数(40〜60”58/和能与阴离子产生更强相互作用力的路易斯基表面结构.59/,更能促进锂盐的解离,释放出更多的锂离子.在聚合物基体中加入的活性填料可以显著提升复合电解质的离子电导率,不仅是因为活性填图3(a)复合电解质内部锂离子传输路径示意图,(b)PAN(LiClO4)-LLZO复合电解质、PAN(LiC104)电解质和LLZO纳米线的6Li NMR图谱,(O循环前后PAN(LCIO q)-LLZO复合电解质的6Li NMR图谱.57/•Fig.3(a)Schematic showing possible Li+transportpathways in the CPE,(b)6Li NMR spectra ofthe CPE sample containing5wt%undopedLLZO NWs,a blank samp'with only PAN andLiC104,and undoped LLZO NW powder,(c)6Li NMR spectra comparison between the as-made(pristine)and cycled CPEs containing5wt%undoped LLZO NWs(Reprinted with permission from.57/.Copyright(2017)AmericanChemical Society).料本身即为锂离子导体,更是因为在聚合物/陶瓷界面形成了更多的锂离子传输路径.一般情况下,将无机相分散到聚合物基体中,由于高离子电导率的无机相被聚合物基体所分散,使得锂离子传输通道受限于低离子电导率的聚合物相.当填料第6期金英敏,等:用于全固态锂电池的有机-无机复合电解质963达到一定浓度上限时,复合电解质的离子电导率会有一定程度的下降,这是因为填料的团聚破坏了渗流网络.不仅是无机活性填料在聚合物基体中的加入量会显著影响复合固态聚合物电解质的离子传导性能,无机填料的几何结构也会在很大程度上产生影响.因此,在聚合物复合固体电解质中构筑相互连通的无机相结构,提供连续的离子传输路径,充分利用无机活性填料带来的优势,有助于提升其离子电导率.复合电解质的离子电导率与无机填料在聚合物基质中形成的渗流结构密切相关,而渗流结构主要取决于无机填料结构(纳米颗粒,纳米纤维,3D网状结构等).Yu等人®]创新采用3D纳米结构的水凝胶前驱体制备了3D Li0_3P La°.55TO(LLTO)骨架.将PEO和LiTFSI浇筑进LLTO骨架,得到LLTO/PEO(LiTF-SI)复合电解质.聚合物、水、LLTO的相分离促使了连续的3D渗流结构的形成.为了更好的解释LLTO填料结构对内部锂离子传输带来的影响,对不同结构(纳米颗粒和3D骨架结构)与不同含量的LLTO填料进行了电导率规律探究.结果表明,当LLTO纳米颗粒填料的体积分数较低时,电导率变化规律遵循渗流模型.超过2.7vol%时,曲线开始偏离.这是因为纳米颗粒的团聚造成渗流程度随着界面相体积的减少而降低•不连续的锂离子传输路径导致了较低的离子电导率•然而,基于水凝胶结构的3D LLTO骨架形成的复合电解质即使在较高的体积含量时(9.8-18.7 vol%),仍然具有较高的离子电导率并且遵循渗流模型理论(图4(b)).这是因为三维连续的LL-T0结构抑制了填料的团聚,保证了界面相的连续,提高了渗流程度,从而得到较高的离子电导率.含有3D LLTO结构的复合电解质室温具有8-8x IO'5S-cm'1的电导率,而采用SiO*惰性填料和LLTO纳米颗粒填料的复合电解质的电导率分别仅有9.5x10「6S-cm"和1.9x10_5S -cm'1(图4(a)).根据路易斯酸碱理论,无机填料由于比PEO具有更高的介电常数,可作为阴离子吸附剂,增强锂盐的解离能力.因为LLTO(' >20)的介电常数高于SO*('=4),所以与惰性填料SiO*相比,LLTO的添加在复合电解质电导率提升方面可作起到更有效的作用•除了有机-无机界面相的增加可作提升电导率之外,LLTO 表面的空位也可作为锂离子跃迁的路径,进一步促进了离子传输,而这是惰性填料所不具备的.除此之外,3D结构的LLTO活性填料比颗粒结构的LLTO具有更显著的提升电导率的作用,进定步验证了该结构在离子传导方面带来的优势(图4 (c,d)).Gu。
全固态电池核心材料
全固态电池是一种新型的电池技术,相比传统液态电池具有更高
的安全性、更长的使用寿命和更高的能量密度。
全固态电池核心材料
包括阳极、阴极和固态电解质。
首先,阳极常常使用金属锂或钛酸锂等材料,这些材料在充放电
过程中能够吸收或释放大量的离子,产生较低的内阻和高效的电化学
反应。
与此同时,阳极应具有较好的电导性和稳定性,以保证电池的
稳定性和安全性。
其次,阴极也是全固态电池的关键组成部分,它通常使用锂硫、
锂锰氧化物、锂钴氧化物等材料。
这些材料具有较高的电化学反应活
性和较高的比容量,可以存储更多的能量。
同时,阴极也需要具有一
定的电导性和化学稳定性。
固态电解质作为全固态电池中的重要组成部分,它能够有效地防
止电解液泄漏和氧化等问题。
常见的固态电解质材料包括氧化物、硫
化物、磷酸盐和硅氧烷等化合物,它们具有高离子电导率和较好的稳
定性。
总体来讲,全固态电池的核心材料主要是阳极、阴极和固态电解质。
这些材料需要具有一定的电化学反应活性、电导性和化学稳定性,以实现高能量密度、高安全性和长寿命的要求。
当前全固态电池技术
仍处于发展初期,未来可能会出现更多新型的固态电解质材料和电极
材料,进一步提高电池性能和广泛应用的可行性。
高能量密度全固态金属锂电池关键材料与技术1. 引言1.1 概述高能量密度全固态金属锂电池是一种新兴的电池技术,在能源储存和移动设备领域具有广阔的应用前景。
与传统液态电池相比,全固态金属锂电池具有更高的能量密度、更长的寿命和更好的安全性能。
随着科技的不断进步,全固态金属锂电池已经取得了重要的研究成果,并且越来越多的关注被投入到该领域中。
1.2 文章结构本文将从以下几个方面对高能量密度全固态金属锂电池进行深入探讨。
首先介绍全固态电池的基本原理,理解其工作机制对于后续研究非常重要。
然后分析金属锂作为储能材料在全固态金属锂电池中的优势与挑战,以及目前全固态金属锂电池发展现状。
接着重点探讨关键材料技术研究,包括固态电解质材料、金属锂负极材料以及正极材料的选择与设计思路。
接下来,阐述全固态金属锂电池面临的技术挑战,并提供解决方案,包括安全性问题与界面稳定性改善措施、密封与包装技术的创新发展以及生产工艺优化及成本降低策略。
最后,探讨最新实验研究成果分享和全固态金属锂电池在能源存储领域的应用前景,同时指出未来发展中可能遇到的潜在挑战并提出解决思路。
1.3 目的本文旨在全面介绍高能量密度全固态金属锂电池的关键材料与技术。
通过对相关研究进展和实验结果进行综合分析,旨在提供一个清晰准确的概览,在读者中引起对该领域深入研究的兴趣。
此外,本文还将探讨该技术在能源存储领域中的应用前景,并对未来研究方向进行展望。
希望通过本文的撰写能够促进更多科学家、工程师和企业投资者对高能量密度全固态金属锂电池研究的关注和支持,加速其实际应用的进程。
2. 高能量密度全固态金属锂电池介绍2.1 全固态电池的基本原理全固态电池是一种新型的储能装置,其基本原理是利用固态电解质取代传统液体电解质,在安全性和稳定性方面具有显著优势。
全固态电池由正极、负极和固体电解质组成,并通过离子在固体材料中的迁移来完成充放电过程。
与传统液体电解质相比,全固态电池由于具备高离子导率、抑制锂枝晶生长和阻止钝化膜形成等特点,具有更高的能量密度和更长的循环寿命。
全固态锂电池关键材料——固态电解质研究摘要:全固态锂电池发展过程中,固态电解质是其中的关键材料,应用固态电解质能够有效解决常规锂电池安全问题。
本文对固态电解质中氧化物固态电解质、硫化物固态电解质以及聚合物固态电解质分别进行了研究,以供参考。
关键词:全固态锂电池;固态电解质;研究传统锂电池采用有机液态电解液时,在使用过程中存在不小的安全问题[1]。
当前,在全固态锂电池成为研究热点,为有效解决全固态锂电池使用安全问题,扩大全固态锂电池的容量,增加电池使用寿命,推动全固态锂电池的实用化,就需要深入研究全固态锂电池的关键材料——固态电解质。
一、氧化物固态电解质氧化物固态电解质按照物质结构划分,主要有玻璃态(非晶态)电解质和晶态电解质。
玻璃态电解质包括反钙钛矿型Li3–2x MxHalO固态电解质和LiPON薄膜固态电解质。
晶态电解质包括石榴石型固态电解质,钙钛矿型Li3x La2/3–xTiO3固态电解质,NASICON型Li1+x AlxTi2–x(PO4)3和Li1+xAlxGe2–x(PO4)3固态电解质等。
反钙钛矿结构固态电解质的成本低且环境友好,同时在室温条件下有着高离子电导率(2.5×10–2S/cm),这一固态点价值还有着热稳定性以及与金属Li稳定和优良的电化学窗口等特性。
当前,主要研究的反钙钛矿型固态电解质为Li3ClO。
通过掺杂高价阳离子(如Mg2+、Sr2+、Ca2+、Ba2+),可以让晶格中出现大量的空位。
而大量的空位,能够有效增加锂离子的传输通道(见图1),降低Li+离子扩散的活化能,进而提高电解质的离子导电能力。
图1 反钙钛矿Li 3ClO 的晶体结构图在高纯氮气中,采用射频磁控溅射高纯LiPO 4靶就能够得到锂磷氮氧(LiPON)薄膜,所得到的薄膜电解质厚度在1µm 以下,且电阻较小,能够有效应用于薄膜锂离子电池。
这一电解质有着良好的综合性能,室温条件下离子电导率为2.3×10–6S/cm ,电化学窗口达到5.5V ,且有着较高的热稳定性,与LiMn 2O 4、LiCoO 2等常用正极和金属Li 负极有着很好的相容性。
全固态锂离子电池关键材料详解全固态锂离子电池采用固态电解质替代传统有机液态电解液,有望从根本主解决电池安全性问题,是电动汽车和规模化储能理想的化学电源。
其关键主要包括制备高室温电导率和电化学稳定性的固态电解质以及适用于全固态锂离子电池的高能量电极材料、改善电极/固态电解质界面相容性。
全固态锂离子电池的结构包括正极、电解质、负极,全部由固态材料组成,与传统电解液锂离子电池相比具有的优势有:①完全消除了电解液腐蚀和泄露的安全隐患,热稳定性更高;②不必封装液体,支持串行叠加排列和双极结构,提高生产效率;③由于固体电解质的固态特性,可以叠加多个电极;④电化学稳定窗口宽(可达5V以上),可以匹配高电压电极材料:⑤固体电解质一般是单离子导体,几乎不存在副反应,使用寿命更长。
固态电解质聚合物固态电解质聚合物固态电解质(SPE),由聚合物基体(如聚酯、聚酶和聚胺等)和锂盐(如LiClO4、LiAsF4、LiPF6、LiBF4等)构成,因其质量较轻、黏弹性好、机械加工性能优良等特点而受到了广泛的关注。
发展至今,常见的SPE包括聚环氧乙烷(PEO)、聚丙烯腈(PAN)、聚偏氟乙烯(PVDF)、聚甲基丙烯酸甲酯(PMMA)、聚环氧丙烷(PPO)、聚偏氯乙烯(PVDC)以及单离子聚合物电解质等其它体系。
目前,主流的SPE基体仍为最早被提出的PEO及其衍生物,主要得益于PEO 对金属锂稳定并且可以更好地解离锂盐。
然而,由于固态聚合物电解质中离子传输主要发生在无定形区,而室温条件下未经改性的PEO的结晶度高,导致离子电导率较低,严重影响大电流充放电能力。
研究者通过降低结晶度的方法提高PEO链段的运动能力,从而提高体系的电导率,其中最为简单有效的方法是对聚合物基体进行无机粒子杂化处理。
目前研究较多的无机填料包括MgO、Al2O3、SiO2等金属氧化物纳米颗粒以及沸石、蒙脱土等,这些无机粒子的加入扰乱了基体中聚合物链段的有序性,降低了其结晶度,聚合物、锂盐以及无机粒子之间产生的相互作用增加了锂离子传输通道,提高电导率和离子迁移数。
固态电池正极材料
,用来实现低投入高收益的可行方案。
锂离子固态电池的正极材料一般采用硅基材料,如硅酸锂(Li4SiO4)和胶体硅酸锂(LiSiO2)。
硅基材料在电化学性能方面表现得较好,具有高容量、高性能和低成本优势。
同时,硅基材料还具有抗热和耐用性,可以提高电池的安全性和稳定性。
此外,含有高含量碳的复合材料也经常用于锂离子固态电池正极。
复合材料由经过预处理的活性碳和无机粒子组成,有利于改善电池的电化学性能。
碳活性材料可帮助存储电量,并可以有效减少过充电现象,减少电池的老化速度。
此外,它可以减少放电时的损耗,有助于提高电池的能量密度和使用寿命。
全固态锂离子电池关键材料详解
全固态锂离子电池采用固态电解质替代传统有机液态电解液,有望从根本主解决电池安全性问题,是电动汽车和规模化储能理想的化学电源。
其关键主要包括制备高室温电导率和电化学稳定性的固态电解质以及适用于全固态锂离子电池的高能量电极材料、改善电极/固态电解质界面相容性。
全固态锂离子电池的结构包括正极、电解质、负极,全部由固态材料组成,与传统电解液锂离子电池相比具有的优势有:
①完全消除了电解液腐蚀和泄露的安全隐患,热稳定性更高;
②不必封装液体,支持串行叠加排列和双极结构,提高生产效率;
③由于固体电解质的固态特性,可以叠加多个电极;
④电化学稳定窗口宽(可达5V以上),可以匹配高电压电极材料:
⑤固体电解质一般是单离子导体,几乎不存在副反应,使用寿命更长。
固态电解质
聚合物固态电解质
聚合物固态电解质(SPE),由聚合物基体(如聚酯、聚酶和聚胺等)和锂盐(如LiClO4、LiAsF4、LiPF6、LiBF4等)构成,因其质量较轻、黏弹性好、机械加工性能优良等特点而受到了广泛的关注。
发展至今,常见的SPE包括聚环氧乙烷(PEO)、聚丙烯腈(PAN)、聚偏氟乙烯(PVDF)、聚甲基丙烯酸甲酯(PMMA)、聚环氧丙烷(PPO)、聚偏氯乙烯(PVDC)以及单离子聚合物电解质等其它体系。
目前,主流的SPE基体仍为最早被提出的PEO及其衍生物,主要得益于PEO 对金属锂稳定并且可以更好地解离锂盐。
然而,由于固态聚合物电解质中离子传输主要发生在无定形区,而室温条件下未经改性的PEO的结晶度高,导致离子电导率较低,严重影响大电流充放电能力。
研究者通过降低结晶度的方法提高PEO链段的运动能力,从而提高体系的电导率,其中最为简单有效的方法是对聚合物基体进行无机粒子杂化处理。
目前研究较多的无机填料包括MgO、Al2O3、SiO2等金属氧化物纳米颗粒以及沸石、蒙脱土等,这些无机粒子的加入扰乱了基体中聚合物链段的有序性,降低了其结晶度,聚合物、锂盐以及无机粒子之间产生的相互作用增加了锂离子传输通道,提高电导率和离子迁移
数。
无机填料还可以起到吸附复合电解质中的痕量杂质(如水分)、提高力学性能的作用。
为了进一步提高性能,研究者开发出一些新型的填料,其中由不饱和配位点的过渡金属离子和有机连接链(一般为刚性)进行自组装,形成的金属有机框架(MOF)因其多孔性和高稳定性而受到关注。
氧化物固态电解质
按照物质结构可以将氧化物固态电解质分为晶态和玻璃态(非晶态)两类,其中晶态电解质包括钙钛矿型、NASICON型、LISICON型以及石榴石型等,玻璃态氧化物电解质的研究热点是用在薄膜电池中的LiPON型电解质。
氧化物晶态固体电解质
氧化物晶态固体电解质化学稳定性高,可以在大气环境下稳定存在,有利于全固态电池的规模化生产,目前的研究热点在于提高室温离子电导率及其与电极的相容性两方面。
目前改善电导率的方法主要是元素替换和异价元素掺杂。
另外,与电极的相容性也是制约其应用的重要问题。
LiPON型电解质
1992年,美国橡树岭国家实验室(ORNL)在高纯氮气气氛中采用射频磁控溅射装置溅射高纯Li3P04靶制备得到锂磷氧氮(LiPON)电解质薄膜。
该材料具有优秀的综合性能,室温离子导电率为2.3x10-6S/cm,电化学窗口为5.5V(vs.Li/Li+),热稳定性较好,并且与LiCoO2,、LiMn2O4等正极以及金属锂、锂合金等负极相容性良好。
LiPON薄膜离子电导率的大小取决于薄膜材料中非晶态结构和N的含量,N含量的增加可以提高离子电导率。
普遍认为,LiPON是全固态薄膜电池的标准电解质材料,并且已经得到了商业化应用。
射频磁控溅射的方法可以制备出大面积且表面均匀的薄膜,但同时存在着较难控制薄膜组成、沉积速率小的缺点,因此,研究者尝试采用其它方法制备LiPON薄膜,如脉冲激光沉积、电子束蒸发以及离子束辅助真空热蒸发等。
除了制备方法的改变,元素替换和部分取代的方法也被研究者用来制备出多种性能更加优异的LiPON型非晶态电解质。
硫化物晶态固体电解质
最为典型的硫化物晶态固体电解质是thio-LISICON,由东京工业大学的KANNO 教授最先在Li2S-GeS2-P2S,体系中发现,化学组成为Li4-xGe1-xPxS4,室温离子电导率最高达2.2x10-3S/cm(其中x=0.75),且电子电导率可忽略。
thio-LISICON的化
学通式为Li4-xGe1-xPxS4(A=Ge、Si等,B=P、A1、Zn等)。
硫化物玻璃及玻璃陶瓷固体电解质
玻璃态电解质通常由P2S5、SiS2、B2S3等网络形成体以及网络改性体Li2S 组成,体系主要包括Li2S-P2S5、Li2S-SiS2、Li2S-B2S3,组成变化范围宽,室温离子电导率高,同时具有热稳定高、安全性能好、电化学稳定窗口宽(达5V以上)的特点,在高功率以及高低温固态电池方面优势突出,是极具潜力的固态电池电解质材料。
日本大阪府立大学TATSUMISAGO教授对Li2S-P2S5电解质的研究处于世界前沿位置,他们最先发现对Li2S-P2S5玻璃进行高温处理使其部分晶化形成玻璃陶瓷,在玻璃基体中沉积出的晶体相使得电解质的电导率得到很大提升。
全固态电池电极材料
虽然固态电解质与电极材料界面基本不存在固态电解质分解的副反应,但是固体特性使得电极/电解质界面相容性不佳,界面阻抗太高严重影响了离子的传输,最终导致固态电池的循环寿命低、倍率性能差。
另外,能量密度也不能满足大型电池的要求。
对于电极材料的研究主要集中在两个方面:
一是对电极材料及其界面进行改性,改善电极/电解质界面相容性;
二是开发新型电极材料,从而进一步提升固态电池的电化学性能。
正极材料
全固态电池正极一般采用复合电极,除了电极活性物质外还包括固态电解质和导电剂,在电极中起到传输离子和电子的作用。
LiCoO2、LiFePO4、LiMn2O4等氧化物正极在全固态电池中应用较为普遍。
当电解质为硫化物时,由于化学势相差较大,氧化物正极对Li+的吸引大大强于硫化物电解质,造成Li+大量移向正极,界面电解质处贫锂。
若氧化物正极是离子导体,则正极处也同样会形成空间电荷层,但如果正极为混合导体(如LiCoO2等既是离子导体,又是电子导体),氧化物处Li+浓度被电子导电稀释,空间电荷层消失,此时硫化物电解质处的Li+再次移向正极,电解质处的空间电荷层进一步增大,由此产生影响电池性能的非常大的界面阻抗。
在正极与电解质之间增加只有离子导电氧化物层,可以有效抑制空间电荷层的产生,降低界面阻抗。
此外,提高正极材料自身的离子电导率,可以达到优化电池性能、提高能量密度的目的。
为了进一步提高全固态电池的能量密度及电化学性能,人们也在积极研究和。