3-4幂等矩阵
- 格式:ppt
- 大小:1008.50 KB
- 文档页数:3
3-幂零矩阵的Jordan 标准型摘要:本文主要对2-幂零矩阵,3-幂零矩阵的Jordan 标准型进行探讨,对2-幂零矩阵,给出了2-幂零矩阵的Jordan 标准型的形式,并指出若固定秩,则有唯一的Jordan 标准型,对n 阶3-幂零矩阵,文中推导出其秩的范围和其Jordan 标准型的个数,并给予证明,若其秩为一固定值,文中推导出了它的Jordan 标准型的个数,并给予证明。
关键词:k-幂零矩阵征值;2-幂零矩阵;3-幂零矩阵;若当形矩阵;Jordan 标准型;特征多项式;特征根;初等因子;秩0、引言定义1:设n nA C⨯∈(n nP⨯表示复数域C 上全体n n ⨯矩阵),若存在正整数k ,使得10,0k k A A -≠=,则称A 是幂零指数为k 的幂零矩阵记为k-幂零矩阵 特别地,当k=2时,即矩阵A 满足20,0A A ≠=,称A 为2-幂零矩阵当k=3时,即矩阵A 满足230,0A A ≠=,称A 为3-幂零矩阵。
定义2:形式为(,)110t tJ t λλλ⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭的矩阵称为J 块,其中λ是复数,由若干个若当块组成的准对角矩阵称为若当形矩阵。
定义3:每个阶的复数矩阵A 都与一个若当形矩阵相似,这个若当形矩阵除去其中若当块的排列次序外是被矩阵A 唯一决定的,它称为A 的Jordan 标准型。
目前关于幂零矩阵的Jordan 标准型,仅有文[1]的关于2-幂零矩阵的研究探讨,有以下三个性质:性质1:当k=2即复数域C 上的n 阶2-幂零矩阵A 的Jordan 标准型为1J Jm ⎛⎫ ⎪⎪ ⎪⎝⎭,其中0110i ii k k J ⨯⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦(0,1,2;1,2ik i m ==),1mi i k n ==∑,且至少存在一个j ,使2j k =即至少存在一个0010j k J ⎡⎤=⎢⎥⎣⎦性质2:设C 是复数域,而A 是C 上2-幂零矩阵,设A 的秩为r ,则2n r ⎡⎤≤⎢⎥⎣⎦,而A 的Jordan 标准型为0010001000⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,其中对角线上有r 个0010⎡⎤⎢⎥⎣⎦。
JIU JIANG UNIVERSITY毕业论文(设计)题目幂等矩阵的性质及应用英文题目Properties and Applicationof Idempotent Matrix院系理学院专业数学与应用数学姓名邱望华年级A0411指导教师王侃民二零零八年五月幂等矩阵在数学领域以及其他许多领域应用都非常广泛,因此对幂等矩阵进行探讨具有很重要的意义。
本文主要是对幂等矩阵的一些性质和结论进行归纳总结并对相关性质进行推广。
首先对幂等矩阵简单性质进行了归纳总结,接着谈到了实幂等矩阵的等价条件并推广到复矩阵以及高次幂等矩阵,然后研究了幂等变换、幂等矩阵线性组合的幂等性、幂等矩阵线性组合的可逆性、幂等矩阵秩有关的性质。
[关键词] 幂等矩阵,性质,幂等性,线性组合The idempotent matrix is widely applied in mathematics as well as other many places, so there is very vital significance to carry on the discussion to the idempotent matrix . This paper mainly carries on the induction summary some simple nature and the important conclusion of idempotent matrix and carries on the promotion to the related nature. Firstly, this article has carried on the induction summary to its simple nature, then talkes about the equivalence condition of the solid idempotent matrix and extends to the equivalence condition of the plural idempotent matrix and the higher mode idempotent matrix . Then the article studies the idempotent transformation、the idempotency of linear combinations of two idempotent matrices、the invertibility of linear combinations of two idempotent matrices.[Key Words] the idempotent, the nature, the idempotence,linear combination符号表R 实数域n R 实数域n 维列向量空间 n n R ⨯ 实数域上的n ×n 阶矩阵C 复数域n C 复数域n 维列向量空间 n n C ⨯ 复数域上的n ×n 阶矩阵A ' 矩阵A 的转置*A 矩阵A 的伴随1A - 矩阵A 的逆det()A 矩阵A 的行列式 rank()A 矩阵A 的秩()N A 矩阵A 的核空间,即}{()0,n N A x P Ax P =∈=是一个数域()R A 矩阵A 的值域,即}{(),n R A Ax x P P =∈是一个数域dim V 线性空间V 的维数 1T - 线性变换T 的逆变换TV T 的值域,即TV ={}T V ξξ∈1(0)T - T 的核,即{}1(0)0,T T V ξξξ-==∈目录第一章预备知识 (1)1.1幂等矩阵的概念及刻划 (1)1.2幂等矩阵的一些简单性质 (3)第二章相关的重要结论 (7)2.1幂等矩阵的等价条件 (7)2.2幂等变换 (14)2.3幂等矩阵线性组合的幂等性 (17)2.4幂等矩阵线性组合的可逆性 (23)2.5幂等矩阵的秩方面的有关性质 (26)结束语 (29)参考文献 (30)第一章 预备知识1.1 幂等矩阵的概念及刻划定义1[1].对n 阶方阵A ,若2A A =,则称A 为幂等矩阵.为了对一般幂等矩阵作出刻划,下面先对二阶幂等矩阵讨论,再推广到一般幂等矩阵.命题1.若A 是幂等矩阵,则与A 相似的任意矩阵是幂等矩阵. 证明:若A 相似于B (记作~A B ),则有同阶可逆矩阵P ,使B =1p -A P [1],从而2B =1p -A P ·1p -A P =1p -2A P =1p -A P =B . ▌命题2.若A 是对角分块矩阵,设A =12r A A A ⎛⎫⎪⎪ ⎪ ⎪⎝⎭, 则A 是幂等矩阵⇔i A (1,2,,)i r =均是幂等矩阵.由于每个n 级复数域矩阵A 都与一个若尔当矩阵相似[1],据命题1和命题2知, 我们只需要讨论若尔当块的幂等性.若A 是一个2阶复数域矩阵,则A 的若尔当标准型有两种可能的形式:第一种: 10λ⎛⎫ ⎪λ⎝⎭,但它不是幂等矩阵.否则有210λ⎛⎫ ⎪λ⎝⎭=10λ⎛⎫⎪λ⎝⎭,有,212λ=λλ=.矛盾.第二种: 0012λ⎛⎫ ⎪λ⎝⎭,由200001122λλ⎛⎫⎛⎫= ⎪ ⎪λλ⎝⎭⎝⎭ ,有221122,λ=λλ=λ,从而有01λ=或1,20λ=或 1.于是该情况有四种可能的形式:0000⎛⎫ ⎪⎝⎭,1000⎛⎫ ⎪⎝⎭ ,1001⎛⎫ ⎪⎝⎭ ,0001⎛⎫⎪⎝⎭(1)据命题1,于是得到:定理1[19]. A 是二阶幂等矩阵,则A 是零矩阵或单位矩阵或形如1ab c a ⎛⎫ ⎪-⎝⎭.证明: 由以上讨论知A 相似于(1)式中的四个矩阵之一1若A ~0000⎛⎫ ⎪⎝⎭ ,显然有 A =0000⎛⎫⎪⎝⎭02若A ~1001⎛⎫ ⎪⎝⎭ ,显然有 A =1001⎛⎫⎪⎝⎭3若A ~1000⎛⎫⎪⎝⎭ ,则有可逆矩阵P =1234λλλλ⎛⎫⎪⎝⎭,1423(,P )λλλλ≠因为可逆 使A =14121423142313423142314231000a b P P c d λλλλλλλλλλλλλλλλλλλλλλλλ-⎛⎫-⎪--⎛⎫⎛⎫⎪== ⎪ ⎪⎪⎝⎭⎝⎭- ⎪--⎝⎭则有 1d a =- .即 A 1ab c a ⎛⎫= ⎪-⎝⎭ .对剩余的一种与此有同样的结果. ▌设112,1n n J λλλλ⎛⎫⎪⎪⎪≥= ⎪ ⎪ ⎪⎝⎭,由2n n J J = ,有2,21,λλλ==这是不可能的.于是有:命题3.当2n ≥时,n 阶若尔当块n J 不具有幂等性.即2n n J J ≠. 因此,若A 是幂等矩阵,则A 的若尔当标准型如下:12000000n r J λλλ⎛⎫⎪ ⎪= ⎪⎪⎝⎭据命题1即有2n n J J =⇒2,1,2,,i i i r λλ== .于是0i λ= 或1.于是我们得到如下定理:定理2. A 是n 阶幂等矩阵,当且仅当存在n 阶可逆矩阵P ,使 得1A PJP -=.其中J 是主对角线上元素为0或1的对角矩阵. ▌1.2 幂等矩阵的一些简单性质性质1.方阵零矩阵和单位矩阵E 是幂等矩阵. 性质2.方阵A 是幂等矩阵,且A 可逆,则A E =. 因为2A A =,则121A A A A A E --===. ▌据此易知:可逆幂等矩阵的逆矩阵是幂等矩阵.即1A -(如果存在的话)是幂等 矩阵.因为1A E A E -=⇒=.性质3.若A 是实幂等矩阵,则*,,A E A A '-都是幂等矩阵. 证明: 对A ',22()()A A A '''==. 对E A -,有22()22E A E A A E A A E A -=-+=-+=-.对*A ,先证明对任意两个幂等矩阵,A B ,有关系式***[2]()AB B A=.由Cauchy binet -公式有:*(,)()A i j AB B i j =矩阵的第行第列代数余子式=(1)det()({1,,1,1,,},{1,,1,1,,})i j AB j j n i i n +--+-+=1(1){det()({1,,1,1,,},{1,,1,1,,})ni jk A j j n k k n +=--+-+∑det()({1,,1,1,,},{1,,1,1,,})}B k k n i i n ⋅-+-+=**({},{})11.nnjk ki ki jk i j k k A B B A B A ====∑∑于是,*2*****2()()()A A AA A A A ====. ▌性质4.若A 是复数域上的幂等矩阵,则,A E A '-也是幂等矩阵. 证明:222()()()()A A AA A A '''''====.22()22E A E A A E A A E A -=-+=-+=-. ▌ 性质5.若A 是幂等矩阵,则A 的特征值只能是1或0. 即知幂等矩阵是半正定矩阵.证明:由2A A = 知2λλ= (A λ是的特征值)01λ⇒=或. ▌ 由此易知:幂等矩阵是半正定矩阵.性质6.若A 是幂等矩阵,设()ϕλ是A 的最小多项式,则()ϕλ=1λλλλ-或或(-1)从而A 可对角化,且其若尔当标准型为000rE ⎛⎫ ⎪⎝⎭. 其中r E 是r 阶单位矩阵, r 是A 的秩.证明:由于矩阵的最小多项式是该矩阵特征多项式的因式, 据性质5知()ϕλ=1λλλλ-或或(-1).又最小多项式是互素的一次因式的乘积,故可对角化. ▌性质7[17].若A 是幂等矩阵,则()()N A R E A =-,其中}{()0n N A x C Ax =∈=}{()(),n nR E A x C x E A y y C -=∈=-∈.证明:由2A A = 有()0A E A -=,立即知E A -的n 阶列向量都是0AX =的解故有()()R E A N A -⊂又对()a N A ∀∈,有0()()Aa a Aa E A a E A a =⇒=+-=-()a R E A ⇒∈-由a 的任意性知 ()()N A R E A ⊂-. 于是有 ()()N A R E A =- . ▌ 同样地,有结论 ()()N E A R A -=.性质8.若A 是幂等矩阵,对任意实数(0,1)a a ≠,则A aE +是可逆矩阵. 证明:由2A A =有2(1)(1)A A a a E a a E --+=-+()[(1)](1)A aE A a E a a E +-+=-+.又由0,1a ≠ 有1(){[(1)]}(1)A aE A a E E a a +-+=-+故A aE +可逆,且11()[(1)](1)A aE A a E a a -+=-+-+. ▌性质9.任一秩为r 的n n ⨯幂等矩阵A 可分解成A CB =,其中C 是秩为r 的n r ⨯矩阵,且r BC E = .(其中r E 是r 阶单位矩阵)证明:由性质6知, 存在n 阶可逆矩阵P 使1000rEP AP -⎛⎫= ⎪⎝⎭.则()100000rr r E E A P P P E P -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭. 记(),00r r E C P B E ⎛⎫== ⎪⎝⎭.显然,B C 满足要求. ▌性质10.任一幂等矩阵可写成两个实对称矩阵之积.证明:因为1100()0000rr E E A P P P P --⎛⎫⎛⎫''=⋅ ⎪ ⎪⎝⎭⎝⎭.故结论成立 ▌ 性质11.若,A B 均为n n ⨯阶幂等矩阵,且AB BA =,则AB 与A B ''均为幂等矩阵.证明:据题意有:222()AB ABAB AABB A B AB ====.2222()[()]()()()()()A B BA BA BA BABA B A BA A B ''''''''''======. ▌第二章 相关的重要结论本章按节来逐次讨论和探索幂等矩阵的多个等价条件、幂等变换、线性组合的幂等性、线性组合的可逆性、秩方面的有关性质等有关问题.2.1 幂等矩阵的等价条件经过参考多篇文献,并进行归纳和推理可以得出以下定理.定理1:设A 是n n ⨯的实矩阵,则下列命题是互相等价的:1)A 是幂等矩阵.2)A '是幂等矩阵.3)E A -是幂等矩阵.4)对任意的可逆矩阵P ,1P AP -是幂等矩阵.5)2B A E =-是对合矩阵.(满足2B E =的矩阵B 称为对合矩阵) 6)()()N A R E A =-.7)()()R A N E A =-.8)rank rank()A E A n +-=.9){}()()0R A R E A -=.10){}()()0N A N E A -=.11)()()n R R A R E A =⊕-.12)()()n R N A N E A =⊕-以上给出了实幂等矩阵的几个等价条件,经过研究和分析知:对复幂等矩阵也有平行的结论.定理2:设A 是n n ⨯的复矩阵,则下列命题是互相等价的:1)A 是幂等矩阵.2)A '是幂等矩阵.3)E A -是幂等矩阵.4)对任意的可逆矩阵P ,1P AP -是幂等矩阵.5)2B A E =-是对合矩阵.(满足2B E =的矩阵B 称为对合矩阵) 6)()()N A R E A =-.7)()()R A N E A =-.8)rank rank()A E A n +-=.9){}()()0R A R E A -=.10){}()()0N A N E A -=.11)()()n C R A R E A =⊕-.12)()()n C N A N E A =⊕-证明:1)⇔2) 由2A A =知22()()A A A '''==.反过来,222[()][()]()A A A A A ''''''====.1)⇔3)必要性: 在1.2节性质3中已经给出了证明.充分性:2()()E A E A -=- ⇒222E A A E A A A -+=-⇒=.1)⇔4)由2A A = 知1211121()P AP P AP P AP P A P P AP -----=⋅==.反过来,12111121()P AP P AP P AP P AP P A P P AP ------=⇒⋅==⇒ 2A A =.1)⇔5)由2A A =,有2B =2(2)A E -=244A A E E -+=.反过来,22244B E A A E E A A =⇒-+=⇒=.1)⇔6)必要性: 在1.2节性质7中已经给出了详细证明.充分性: 对,n a R ∀∈有()()()E A a R E A N A -∈-=,故()()E A a N A -∈于是有2[()]0()0A E A a A A a -=⇒-=.由a 的任意性得2A A =.1)⇔7)必要性: 由2A A =知()Aa R A ∀∈,有()0()E A Aa Aa N E A -=⇒∈-()()R A N E A ⇒⊂-.又()a N E A ∀∈-,有()0E A a -=.于是()a Aa E A a =+-()()()Aa R A N E A R A =∈⇒-⊂故有()()R A N E A =-.充分性: 对n a R ∀∈,有()()()Aa R A N E A Aa N E A ∈=-⇒∈-于是有2()()0()0E A Aa A A a -=⇒-=.由a 的任意性得 2A A =.1)⇔8)必要性: 由2A A =知 ()()N A R E A =-.于是有 dim ()dim ()N A R E A =-即有 rank rank()n A E A -=-亦即 rank rank()A E A n +-=.充分性: 由rank rank()A E A n +-= 易知:dim ()dim ()N A R E A =- (*) 又对()a N A ∀∈,有0Aa =则有()E A a a Aa a -=-=.由()()E A a R E A -∈-知()a R E A ∈-即有 ()()N A R E A ⊂-.据(*)式知()()N A R E A =-.再由6)得2A A =.8)⇔9)必要性: 由rank rank()A E A n +-=.即知:dim ()dim ()R A R E A n +-=.又对n a R ∀∈,有()a Aa E A a =+-,而(),Aa R A ∈()()E A a R E A -∈-.故 ()()n C R A R E A =+-.又dim dim ()dim ()dim[()()]n C R A R E A R A R E A =+---n =.故有dim[()()]0R A R E A -=. 于是, {}()()0R A R E A -=.充分性: 由{}()()0R A R E A -= 有dim ()dim ()R A R E A n +-=.即有rank rank()A E A n +-=.9)⇔10)必要性: 由上面的证明知由9)有6)和7),再把6)和7)代入到9),立即得到10).充分性:同理可证.9)⇔11) 这是显然的[1].10)⇔12) 这是显然的[1]. ▌定理3.设A 是秩为r 的n n ⨯矩阵.则A 是幂等矩阵⇔存在n 阶可逆矩阵P ,使1000rE P AP -⎛⎫= ⎪⎝⎭. 证明: 必要性: 在1.2节性质6中已给出了证明.充分性: 由1000rE P AP -⎛⎫= ⎪⎝⎭,有 1000r E A P P -⎛⎫= ⎪⎝⎭. 则2111000000000rr r E E E A P P P P P P A ---⎛⎫⎛⎫⎛⎫=⋅== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ▌ 以上是对二次幂等矩阵进行了一定的讨论.下面来对高次幂等矩阵进行有关的讨论.定理4.设,A B 是三次幂等矩阵,即33,A A B B ==,且满足AB BA =,A B ≠, 记C A B =+.则3()0C C AB A B =⇔+=.证明:由矩阵,A B 是幂等可交换的,于是可同时对角化[6]. 即存在可逆矩阵 P ,使得1112,P AP P BP --Λ=Λ=均为对角矩阵,而且它们对角元素分别是,A B 的特征值.从而有1112,.A P P B P P --=Λ=Λ进而112()C P P -=Λ+Λ.于是3C C =可以等价为322333,1,2,,i i i i i i i i i n λλμλμμλμ+++=+=.其中,i i λμ分别是12,ΛΛ的对角元.又由30,1,1x x x =⇒=-知,A B 的特征值只有0,-1,1.即333,,(1,2,,)i i i i i r λλμμ===于是3C C =等价为220,(1,2,,)i i i i i r λμλμ+==.即221212O ΛΛ+ΛΛ=. 因此3C C =等价为()0AB A B +=. ▌注:当2A A =,立即有32A A A ==,同样地,对k ∀,(2k ≥为正整数) k A A = 即任意的二次幂等矩阵均为k 次幂等矩阵.因此可得以下推论.推论: 设,A B 是二次幂等矩阵,且满足AB BA =,A B ≠,记C A B =+.则 2()0C C AB A B =⇒+=. ▌引理1[1].对任意两个同阶矩阵,A B ,有rank()rank()rank()A B A B +≤+. 引理2[1].设,A B 为n n ⨯矩阵,满足AB O =,则有rank rank A B n +≤. 定理5.设矩阵A 满足3,A A =且A 可逆.则2A E =且rank rank()rank()2A A E A E n +++-=.证明: 由3,A A =A 可逆,有-13-12A A A A A E ⋅=⋅⇒=()()A E A E O ⇒+-=.于是据引理2有rank()rank()A E A E n ++-≤ (1)又2()()E E A E A =++-据引理1有rank(2)rank[()()]n E E A E A ==++-rank()rank()E A E A ≤++-rank()rank()A E A E =++-. (2)有(1)式和(2)式有rank()rank()A E A E n ++-=.由于A 可逆知rank A n =.因此有rank rank()rank()2A A E A E n +++-=. ▌定理6.设矩阵A 满足,(2)k A A k =≥.则*,,A A A ''都是k 此幂等矩阵.证明:对A ',()()k k A A A '''==.对*,A*****()()k k k A A A A A =⋅⋅==个. 对,A '()()()k k k A A A A ''''===. ▌定理7. 设矩阵A 满足,(2)k A A k =≥.则A 的特征值为0和22cossin ,(0,1,,2)11m m m i m k k k ππε=+=---.证明: 由k A A =,有 k λλ=,其中λ是矩阵A 的特征值.解方程k λλ=可得220cossin ,(0,1,,2)11m m i m k k k ππλ=+=---以及. ▌2.2 幂等变换数域F 上n 维线性空间V 的全部线性变换组成的集合()L V 对于线性变换的加法与数量乘法构成F 上的一个线性空间,与数域F 上n 阶方阵构成的线性空间n n F ⨯同构.特别地,与幂等矩阵对应的是幂等变换.因此为了讨论和探索幂等矩阵的性质时很有必要去探索幂等变换的相关性质.定义1.设T 是线性空间V 的一个线性变换,若2T T =,则称T 是幂等变换. 由于矩阵与变换间存在一一对应的关系,因此前面所提到的性质和结论可以平 移到幂等变换上来.限于篇幅,下面只举几个例子.性质1.可逆的幂等变换是恒等变换.证明:恒等变换与单位矩阵相对应.因此该性质与“可逆的幂等矩阵为单位矩 阵”一致. ▌性质2.若T 是幂等变换,则T τ-也是幂等变换.(其中τ是恒等变换) 性质3.T 是幂等变换⇔2T τ-为对合变换. 其中线性变换T 满足2T τ=,则称T 是对合变换. 性质4.T 是线性空间V 上的幂等变换,则1(0)V TV T -=⊕.▌ 我们知道:对于一般的线性变换来说,虽然1dim dim (0)dim TV T V -+=,但未必 有1(0)V TV T -=⊕.这样的例子很多. 例如:在线性空间[]n P x 中令 (())()f x f x ϕ'=.则微分变换是一线性变换[1],其 值域为1[]n P x -,其核是子空间P .它们的维数分别是1,1n -.但显然1[]n P x -+P ≠[]n P x .性质5.设T 和U 是n 维线性空间V 上的线性变换,且22,T T U U ==. 如果2()T U T U +=+,则0TU UT ==. 证明:由2()T U T U +=+,可得0TU UT +=……………………………………①对①式左乘T 得0TU TUT +=…………………………………②对①式右乘T 得0TUT UT +=……………………………………③比较②和③得 TU UT =.代入到①式得到 20TU =.于是就有 0TU UT ==. ▌ 性质6.设T ,U 是n 维线性空间上的线性变换,且22,T T U U ==. 则 1) ,TV UV TU U UT T =⇔==.2) 11(0)(0),T U TU T UT U --=⇔==.证明:1)""⇒ 对,a V ∀∈有Ua UV TV ∈=.故,V β∃∈使Ua T β=. 从而2TUa T T Ua ββ===.因此有TU U =.同样可证得UT T =.""⇐ 据,TU U UT T ==可知, 对Ta TV V ∀∈⊂,有()Ta UTa U Ta UV ==∈,故TV UV ⊂.同样可证得UV TV ⊂.于是TV UV =. 2)""⇒ 对a V ∀∈,作向量a Ta -.据11(0)(0)T U --=,有()T a Ta -20Ta T a Ta Ta =-=-=.故11(0)(0)a Ta T U ---∈=.从而有()0U a Ta -=⇒Ua UTa =⇒UT U = 同理有TU T =.""⇐ 对1(0)a T -∀∈,有0Ta =. 据,TU T UT U ==,有10(0)Ua UTa a U -==⇒∈.即有11(0)(0)T U --⊂.同理可得11(0)(0)U T --⊂. 故有11(0)(0)T U --=. ▌2.3 幂等矩阵线性组合的幂等性在本节中,我们将给出两个幂等矩阵线性组合12P c A c B =+仍是幂等矩阵的一 些充分条件.引理1[15].设2,,0,0n n l A B C A A B B ⨯∈=≠=≠,l 为2≥的整数,且AB BA =. 则存在{}12,0c c C ∈-,使12P c A c B =+为幂等矩阵的充要条件是:22111211(2),c c A E B B B c c c λλ--=-+=. 证明:221212()P P c A c B c A c B =⇔+=+22222111212()c B c B c c A c c AB c c BA ⇔-=-++(令121c c λ-=) 221112(2)c B B A AB A E B c c λλ⇔-+=-=-.▌ 据引理1,下面将给出12P c A c B =+是幂等矩阵的十组充分条件.为了简化过程,先令{}00,s = {}111,l s x x x C -==∈,{}21,,s x x y z y z s ==+∈, 012s s s s =.定理1[8].设2,,0,0(2,)n n l A B C A A B B l l Z ⨯∈=≠=≠≥∈,AB BA =,{}12,0,c c C ∈-13121,,,,,ic u v s u v e a s c πλε-=∈≠=∈若12(,)c c 及,A B 满足下列任意一个条件,则12P c A c B =+必为幂等矩阵.(Ⅰ) ,0s λλ∈=.①.121(,)(1,)c c u =且0,()0AB B uE B =-=.证明:由0,()0AB B uE B =-=易知12()AB B uE B u-=--,又由121(,)(1,)c c u=和0λ=知(2)A E B λ-22111c B B c c =-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.②.121(,)(1,)c c u=-且()0,()0E A B B uE B -=-=.证明: 由()0,()0E A B B uE B -=-=易知2122,0AB B B B u-=-=-.将它们相加得212AB B B u-=--.又由121(,)(1,)c c u=-,0λ=可得22111(2)c A E B B B c c λ-=-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.③.121(,)(1,)c c u=且()()0,()0E A B uE B AB uE B --=--=.证明: 由条件易知()(),()0B uE B AB uE B AB uE B -=--+=.将它们相加后,再乘以1u-可得212AB B B u-=-+. 又由121(,)(1,),0c c uλ==知22111(2)c A E B B B c c λ-=-+. 满足引理1.故12P c A c B =+此时为幂等矩阵. (Ⅱ) ,1s λλ∈=.④.121(,)(,(1)),0,1c c a a a u =-≠且()0,()0E A B A uE B -=-=.证明: 由条件易知,B AB AB uA ==.从而有22,()()B uA B uA u uA uB ====.即2B uB =.故有1121(1)1(1)a u a u B B B uB B a a a a-----+=-+=-. 结合上式有(2)22A uE B uA AB AB AB AB B -=-=-=-=- 121(1)(2)a u A uE B B B a a--⇒-=-+.从而可得(2)A E B λ-22111c B B c c =-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.⑤.121(,)(1,)u c c v v =-,且()0,()()0A uE B E A B vE B -=--=.证明: 由()0A uE B -=知uA AB =,从而(2)2A uE B uA AB -=-2uA uA uA =-=-.即(2)A uE B uA -=-.又由()()0E A B vE B --=可得2()()B vE B AB vE B vAB AB -=-=-.又因为22,()AB uA AB AB B uAB u A ====.代入上式可得:2()B vE B uvA u A -=-.即有2()B vE B A uv u-=-. 结合(2)A uE B uA -=-有()(2)B vE B A uE B u v--=-.即有12111(2)11v A uE B B B uv uv----=-+--. 又由121(,)(1,)u c c v v=-知22111(2)c A E B B B c c λ-=-+, 满足引理1.故12P c A c B =+此时为幂等矩阵. ⑥. 121(,)(,)v c c u v u v=---且()0,()()0E A B A uE B vE B -=--=. 证明: 由()0E A B -=知AB B =,从而(2)22A uE B uA AB uA B -=-=-又由()()0A uE B vE B --=展开得2()0AB u v AB uvA -++=. 又22,()AB B AB AB B B ===,结合上式可得2()0B u v B uvA -++=.故2()u v B B A uv+-=.代入到(2)2A uE B uA B -=-得(2)A uE B -=2()2u v B B B v+--. 即21(2)u v A uE B B B v v --=-. 又由121(,)(,)v c c u v u v =--- 可得2211(2)A E B B B c c λ-=-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.⑦. 121(,)(,),1u c c u v v v=-+=且()0,()()0A vE B E A B vE B -=--=.证明: 由()0A vE B -=知()AB u v A =+.从而(()2)A u v E B +-()2()u v A AB u v A =+-=-+.又先把()()0E A B vE B --=展开可得2()0B vE B vAB AB --+=.又将()AB u v A =+及22()()()AB AB B u v AB u v A ==+=+.代入到上式可得2()()()0B vE B v u v A u v A --+++=.即有()()B vE B A u v u-=-+.代入到(()2)A u v E B +-()u v A =-+,可得21(()2)v A u v E B B B u u+-=-. 从而由121(,)(,),u c c u v v vλ=-+=知22111(2)c A E B B B c c λ-=-+满足引理1故12P c A c B =+此时为幂等矩阵.⑧.12(,)(,)c c u εε=-,且2()()0,()()0.A uE B uE B E A B uE B εε--=--=证明: 由()()0A uE B uE B ε--=知 22(())0A u E u u B B εε-++=. 由2()()0E A B uE B ε--=知 222()()A uB B B uE B εε-=-. 将上面两式相加并乘以1u可得 22((1))()A uE B B uE B εεεε+--=-.又3ieπε=满足22112,εεεε--=-=-,结合上式可得(2)A uE B ε-211B B uε=--.从而由12(,)(,)c c uεε=-,u λε=知2211(2)A E B B B c c λ-=-+ 满足引理1.故12P c A c B =+此时为幂等矩阵. (Ⅲ) 2,2s λλ∈=.⑨.1,21()(1,)c c u =-,且()0,()0A uE B B uE B -=-=.证明: 由()0,()0A uE B B uE B -=-=知1(22)0()A uE B B uE B u-==-, 即21(22)()A uE B B B u -=---从而由1,21()(1,)c c u=-,2u λ=知22111(2)c A E B B B c c λ-=-+ 满足引理1.故12P c A c B =+此时为幂等矩阵. (Ⅳ) 2,0,1,2.s λλ∈≠⑩.1,21()(,)u c c v v =-且()0,()()0A uE B E A B vE B -=--=.证明: 由()0A uE B -=知AB uA = 从而22AB uAB u A ==,(()2)A u v E B +-()2()u v A AB u v A =+-=--.又由()()0E A B vE B --=展开得()()B vE B AB vE B -=-. 据22AB uAB u A ==知22()()AB vE B vAB AB uv u A -=-=-.结合上式可得2()()uv u A B vE B -=-()()B vE B A u v u-⇒=--.代入到(()2)A u v E B +-()u v A =--可得2()1(()2)B vE B v A u v E B B B u u u-+-==-. 又由1,21()(,)u c c v v=-,u v λ=+知22111(2)c A E B B B c c λ-=-+满足引理1.故12P c A c B =+此时为幂等矩阵. ▌2.4 幂等矩阵线性组合的可逆性在本节中,我们将给出两个幂等矩阵的线性组合矩阵12c A c B +可逆的一些条件,并给出一些相关的结论.引理1[3].设矩阵A 是n n ⨯阶方阵,则A 可逆{}()0N A ⇔=. ▌定理1.设矩阵,A B 均是幂等矩阵,即22,A A B B ==.若存在两个非零复数1,2k k , 且120k k +≠使得12k A k B +可逆,则对所有的复数1,2c c ,满足120c c +≠,则线性组合12c A c B +都是可逆的.证明:设1212,,0,0c c C c c ∈≠≠且120c c +≠. 对12()x N c A c B ∀∈+,有12()0c A c B x += 即有 12c Ax c Bx =- ……………① 将上式两边依次左乘,A B ,可得:12c Ax c ABx =-,12c BAx c Bx =-. ……②比较上面三个式子可得:,Bx ABx Ax BAx ==. …………………………③又由于22212112122()k A k B k A k k AB k k BA k B +=+++,故22212112122()k A k B x k Ax k k ABx k k BAx k Bx +=+++.将,Bx ABx Ax BAx ==代入上式可得212()k A k B x +22112122k Ax k k ABx k k BAx k Bx =+++112212()()k k k Ax k k k Bx =+++ 1212()()k k k A k B x =++.由于12k A k B +可逆,,将上式两边左乘112()k A k B -+得121212()()k k x k A k B k Ax k Bx +=+=+, …………………④再左乘A 得:1212k Ax k Bx k Ax k ABx +=+即有Ax ABx =.代入12c Ax c ABx =-可得12()00c c Ax Ax ABx +=⇒==.注意到③式有0Bx =,因此由④式可得12()0k k x +=但120k k +≠,所以0x =因此{}12()0N c A c B +=.由引理1知12c A c B +是可逆的. ▌在定理1中令121c c ==,立即有:推论1.设矩阵,A B 均是幂等矩阵,即22,A A B B ==.若A B +可逆,则 对所有的复数1,2c c ,满足120c c +≠,线性组合12c A c B +都是可逆的. ▌ 定理2[18].设矩阵,A B 均是幂等矩阵,对任意的复数1,2c c ,下列命题等价: ⑴ A B -可逆.⑵ 12c A c B +及E AB -可逆. 证明:⑴⇒⑵对12()x N c A c B ∀∈+,由定理1的证明过程知,Bx ABx Ax BAx ==. 故22222()()0A B x A AB BA B x A x ABx BAx B x -=--+=--+=.又由A B -可逆,故0x =.因此 {}12()0N c A c B +=.由引理1知 12c A c B +可逆. 同样地,对()()0x N E AB E AB x x ABx ∀∈-⇒-=⇒=.两边左乘A ,得Ax ABx x BAx Bx ==⇒=.所以 2()0A B x Ax ABx BAx Bx -=--+=. 又由A B -可逆知0x =. 所以{}()0N E AB -=. 由引理1知E AB -可逆. ⑴⇐⑵对()x N A B ∀∈-,有()0A B x -=Ax Bx ⇒= 则 ,Ax ABx BAx Bx ==. 所以121212()()()c A c B E AB x c A c B c AB c BAB x +-=+-+220c Bx c BAx =-=.0x ⇒=.由12c A c B +及E AB -可逆,知{}()0N A B -=. 由引理1知A B -可逆. ▌ 在定理2中令121c c ==,立即有:推论2.设矩阵,A B 均是幂等矩阵,下列命题等价: ⑴ A B -可逆.⑵ A B +及E AB -可逆.定理3[18]. 设矩阵,A B 均是幂等矩阵,1212,,0,0c c C c c ∈≠≠,满足120c c +≠. 则12c AB c BA +可逆12c A c B ⇔+及E A B --可逆. 证明:由2212121212()()c A c B E A B c A c B c A c BA c AB c B +--=+----12()c AB c BA =-+.可见12c AB c BA +可逆12c A c B ⇔+及E A B --可逆. ▌2.5 幂等矩阵的秩方面的有关性质定理1[5]. 设,A B 是n n ⨯的复幂等矩阵,则1 rank()rank rank rank rank 00A B B A A B B A B A ⎛⎫⎛⎫+=-=- ⎪ ⎪⎝⎭⎝⎭.2 rank()rank()rank A B A AB BA BAB B +=--++.3 rank()rank()rank A B B AB BA ABA A +=--++. ▌定理2.设n n A C ⨯∈为Hermite 矩阵,即A A '=.且对某个,k N ∈有2k A A =, 则 rank()()A tr A =.证明:设rank A r =,,x λ分别是矩阵A 的特征值和相应的特征向量. 则λ是实数[1].且2212k k k Ax x A x A x x λλλ-====. 从而有21(1)0k x λλ--=.又0x ≠.于是21(1)0k λλ--=.由λ是实数, 所以111,0r r n λλλλ+======,故结论成立. ▌推论1. 设n n A C ⨯∈,且2A A =,则rank()()A tr A =. 其实,该结论在1.2节中已经很明朗了. 定理2[10]. 设(1,2,,,2)n n i A C i m m ⨯∈=≥为Hermite 矩阵,且存在某个,i k N ∈使2ik ii A A =,又对某个正整数 t 有211tmmii i i A A ===∑∑.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.证明:由定理1可知rank()()i i A tr A =,11rank mmiii i AtrA===∑∑于是有1111rank()rank()mm mmiiiii i i i AtrA tr A A =======∑∑∑∑. ▌推论2. 设(1,2,,,2)n n i A C i m m ⨯∈=≥为Hermite 矩阵,且存在某个,i k N ∈使2ik ii A A =,又1mi i A =∑为幂等矩阵.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.推论3. 设(1,2,,,2)n ni A Ci m m ⨯∈=≥为幂等矩阵,且1mi i A =∑为幂等矩阵.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.推论4. 设(1,2,,,2)n n i A C i m m ⨯∈=≥为Hermite 矩阵,且存在某个,i k N ∈使2ik ii A A =,又1mi i A E ==∑.则 11rank rank()mmi i i i A A n ====∑∑.推论5. 设(1,2,,,2)n ni A Ci m m ⨯∈=≥为Hermite 矩阵,且1mi i A E ==∑.则 11rankrank()mmii i i AA n ====∑∑.定理3[10].设(1,2,,,2)n ni A Ci m m ⨯∈=≥及1mi i A =∑的特征值均为实数,且存在,i k N ∈使2ik ii A A =,又对某个正整数 t 有211tmmii i i A A ===∑∑.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.定理4[20]. 设(1,2,,,2)n ni A Ci m m ⨯∈=≥及1mi i A =∑的特征值均为非负实数,且存在,(2)i i k N k ∈≥使ik i i A A =,又对某个正整数 t 有11t mmii i i AA ===∑∑.则 111rankrank()mmmii ii i i AA trA=====∑∑∑. ▌结束语本文主要是对幂等矩阵的一些性质和结论进行归纳总结并对相关性质进行推广。
JIU JIANG UNIVERSITY毕业论文(设计)题目幂等矩阵的性质及应用英文题目Properties and Applicationof Idempotent Matrix 院系理学院专业数学与应用数学姓名邱望华年级 A0411指导教师王侃民二零零八年五月幂等矩阵在数学领域以及其他许多领域应用都非常广泛,因此对幂等矩阵进行探讨具有很重要的意义。
本文主要是对幂等矩阵的一些性质和结论进行归纳总结并对相关性质进行推广。
首先对幂等矩阵简单性质进行了归纳总结,接着谈到了实幂等矩阵的等价条件并推广到复矩阵以及高次幂等矩阵,然后研究了幂等变换、幂等矩阵线性组合的幂等性、幂等矩阵线性组合的可逆性、幂等矩阵秩有关的性质。
[关键词] 幂等矩阵,性质,幂等性,线性组合The idempotent matrix is widely applied in mathematics as well as other many places, so there is very vital significance to carry on the discussion to the idempotent matrix . This paper mainly carries on the induction summary some simple nature and the important conclusion of idempotent matrix and carries on the promotion to the related nature. Firstly, this article has carried on the induction summary to its simple nature, then talkes about the equivalence condition of the solid idempotent matrix and extends to the equivalence condition of the plural idempotent matrix and the higher mode idempotent matrix . Then the article studies the idempotent transformation、the idempotency of linear combinations of two idempotent matrices、the invertibility of linear combinations of two idempotent matrices.[Key Words] the idempotent, the nature, the idempotence,linear combination符号表R 实数域n R 实数域n 维列向量空间 n n R ⨯ 实数域上的n ×n 阶矩阵 C 复数域n C 复数域n 维列向量空间 n n C ⨯ 复数域上的n ×n 阶矩阵 A ' 矩阵A 的转置*A 矩阵A 的伴随1A - 矩阵A 的逆det()A 矩阵A 的行列式 rank()A 矩阵A 的秩()N A 矩阵A 的核空间,即}{()0,n N A x P Ax P =∈=是一个数域()R A 矩阵A 的值域,即}{(),n R A Ax x P P =∈是一个数域 dim V 线性空间V 的维数1T - 线性变换T 的逆变换 TV T 的值域,即TV ={}T V ξξ∈1(0)T - T 的核,即{}1(0)0,T T V ξξξ-==∈目录第一章预备知识 (1)1.1幂等矩阵的概念及刻划 (1)1.2幂等矩阵的一些简单性质 (3)第二章相关的重要结论 (7)2.1幂等矩阵的等价条件 (7)2.2幂等变换 (14)2.3幂等矩阵线性组合的幂等性 (17)2.4幂等矩阵线性组合的可逆性 (23)2.5幂等矩阵的秩方面的有关性质 (26)结束语 (29)参考文献 (30)第一章 预备知识1.1 幂等矩阵的概念及刻划定义1[1].对n 阶方阵A ,若2A A =,则称A 为幂等矩阵.为了对一般幂等矩阵作出刻划,下面先对二阶幂等矩阵讨论,再推广到一般幂等矩阵.命题1.若A 是幂等矩阵,则与A 相似的任意矩阵是幂等矩阵. 证明:若A 相似于B (记作~A B ),则有同阶可逆矩阵P ,使B =1p -A P [1],从而2B =1p -A P ·1p -A P =1p -2A P =1p -A P =B . ▌命题2.若A 是对角分块矩阵,设A =12r A A A ⎛⎫⎪⎪ ⎪ ⎪⎝⎭, 则A 是幂等矩阵⇔i A (1,2,,)i r = 均是幂等矩阵.由于每个n 级复数域矩阵A 都与一个若尔当矩阵相似[1],据命题1和命题2知, 我们只需要讨论若尔当块的幂等性.若A 是一个2阶复数域矩阵,则A 的若尔当标准型有两种可能的形式:第一种: 10λ⎛⎫ ⎪λ⎝⎭,但它不是幂等矩阵.否则有210λ⎛⎫ ⎪λ⎝⎭=10λ⎛⎫⎪λ⎝⎭,有,212λ=λλ=.矛盾.第二种: 0012λ⎛⎫⎪λ⎝⎭ ,由20001122λλ⎛⎫⎛⎫= ⎪ ⎪λλ⎝⎭⎝⎭,有221122,λ=λλ=λ,从而有01λ=或1,20λ=或 1.于是该情况有四种可能的形式:0000⎛⎫ ⎪⎝⎭,1000⎛⎫ ⎪⎝⎭ ,1001⎛⎫ ⎪⎝⎭ ,0001⎛⎫ ⎪⎝⎭(1)据命题1,于是得到:定理1[19]. A 是二阶幂等矩阵,则A 是零矩阵或单位矩阵或形如1ab c a ⎛⎫ ⎪-⎝⎭.证明: 由以上讨论知A 相似于(1)式中的四个矩阵之一1若A ~0000⎛⎫ ⎪⎝⎭ ,显然有 A =0000⎛⎫ ⎪⎝⎭02若A ~1001⎛⎫ ⎪⎝⎭ ,显然有 A =1001⎛⎫⎪⎝⎭3若A ~1000⎛⎫⎪⎝⎭ ,则有可逆矩阵P =1234λλλλ⎛⎫⎪⎝⎭,1423(,P )λλλλ≠因为可逆 使A =14121423142313423142314231000a b P P c d λλλλλλλλλλλλλλλλλλλλλλλλ-⎛⎫-⎪--⎛⎫⎛⎫⎪== ⎪ ⎪⎪⎝⎭⎝⎭-⎪--⎝⎭则有 1d a =- .即 A 1ab c a ⎛⎫= ⎪-⎝⎭ .对剩余的一种与此有同样的结果. ▌设112,1n n J λλλλ⎛⎫⎪⎪⎪≥= ⎪ ⎪⎪⎝⎭,由2n n J J = ,有2,21,λλλ==这是不可能的.于是有:命题3.当2n ≥时,n 阶若尔当块n J 不具有幂等性.即2n n J J ≠.因此,若A 是幂等矩阵,则A 的若尔当标准型如下:1200000n r J λλλ⎛⎫⎪⎪= ⎪⎪⎝⎭据命题1即有2n n J J =⇒2,1,2,,i i i r λλ== .于是0i λ= 或1.于是我们得到如下定理:定理2. A 是n 阶幂等矩阵,当且仅当存在n 阶可逆矩阵P ,使 得1A PJP -=.其中J 是主对角线上元素为0或1的对角矩阵. ▌1.2 幂等矩阵的一些简单性质性质1.方阵零矩阵和单位矩阵E 是幂等矩阵. 性质2.方阵A 是幂等矩阵,且A 可逆,则A E =. 因为2A A =,则121A A A A A E --===. ▌据此易知:可逆幂等矩阵的逆矩阵是幂等矩阵.即1A -(如果存在的话)是幂等 矩阵.因为1A E A E -=⇒=.性质3.若A 是实幂等矩阵,则*,,A E A A '-都是幂等矩阵. 证明: 对A ',22()()A A A '''==. 对E A -,有22()22E A E A A E A A E A -=-+=-+=-.对*A ,先证明对任意两个幂等矩阵,A B ,有关系式 ***[2]()AB B A =.由Cauchy binet -公式有:*(,)()A i j AB B i j =矩阵的第行第列代数余子式=(1)det()({1,,1,1,,},{1,,1,1,,})i j AB j j n i i n +--+-+=1(1){det()({1,,1,1,,},{1,,1,1,,})ni jk A j j n k k n +=--+-+∑det()({1,,1,1,,},{1,,1,1,,})}B k k n i i n ⋅-+-+=**({},{})11.nnjk ki ki jk i j k k A B B A B A ====∑∑于是,*2*****2()()()A A AA A A A ====. ▌性质4.若A 是复数域上的幂等矩阵,则,A E A '-也是幂等矩阵. 证明:222()()()()A A AA A A '''''====.22()22E A E A A E A A E A -=-+=-+=-. ▌ 性质5.若A 是幂等矩阵,则A 的特征值只能是1或0. 即知幂等矩阵是半正定矩阵.证明:由2A A = 知2λλ= (A λ是的特征值)01λ⇒=或. ▌ 由此易知:幂等矩阵是半正定矩阵.性质6.若A 是幂等矩阵,设()ϕλ是A 的最小多项式,则()ϕλ=1λλλλ-或或(-1)从而A 可对角化,且其若尔当标准型为 000rE ⎛⎫ ⎪⎝⎭. 其中r E 是r 阶单位矩阵, r 是A 的秩.证明:由于矩阵的最小多项式是该矩阵特征多项式的因式, 据性质5知()ϕλ=1λλλλ-或或(-1).又最小多项式是互素的一次因式的乘积,故可对角化. ▌性质7[17].若A 是幂等矩阵,则()()N A R E A =-,其中}{()0n N A x C Ax =∈=}{()(),n nR E A x C x E A y y C -=∈=-∈.证明:由2A A = 有()0A E A -=,立即知E A -的n 阶列向量都是0AX =的解故有()()R E A N A -⊂又对()a N A ∀∈,有0()()Aa a Aa E A a E A a =⇒=+-=-()a R E A ⇒∈-由a 的任意性知 ()()N A R E A ⊂-. 于是有 ()()N A R E A =- . ▌ 同样地,有结论 ()()N E A R A -=.性质8.若A 是幂等矩阵,对任意实数(0,1)a a ≠,则A aE +是可逆矩阵. 证明:由2A A =有2(1)(1)A A a a E a a E --+=-+()[(1)](1)A aE A a E a a E +-+=-+.又由0,1a ≠ 有1(){[(1)]}(1)A aE A a E E a a +-+=-+故A aE +可逆,且11()[(1)](1)A aE A a E a a -+=-+-+. ▌性质9.任一秩为r 的n n ⨯幂等矩阵A 可分解成A CB =,其中C 是秩为r 的n r ⨯矩阵,且r BC E = .(其中r E 是r 阶单位矩阵)证明:由性质6知, 存在n 阶可逆矩阵P 使1000rEP AP -⎛⎫= ⎪⎝⎭.则()100000r r rE E A P P P E P -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.记(),00r r E C P B E ⎛⎫== ⎪⎝⎭.显然,B C 满足要求. ▌性质10.任一幂等矩阵可写成两个实对称矩阵之积.证明:因为1100()0000r r E E A P P P P --⎛⎫⎛⎫''=⋅ ⎪ ⎪⎝⎭⎝⎭.故结论成立 ▌性质11.若,A B 均为n n ⨯阶幂等矩阵,且AB BA =,则AB 与A B ''均为幂等矩阵.证明:据题意有:222()AB ABAB AABB A B AB ====.2222()[()]()()()()()A B BA BA BA BABA B A BA A B ''''''''''======.▌第二章 相关的重要结论本章按节来逐次讨论和探索幂等矩阵的多个等价条件、幂等变换、线性组合的幂等性、线性组合的可逆性、秩方面的有关性质等有关问题.2.1 幂等矩阵的等价条件经过参考多篇文献,并进行归纳和推理可以得出以下定理.定理1:设A 是n n ⨯的实矩阵,则下列命题是互相等价的:1)A 是幂等矩阵.2)A '是幂等矩阵.3)E A -是幂等矩阵.4)对任意的可逆矩阵P ,1P AP -是幂等矩阵.5)2B A E =-是对合矩阵.(满足2B E =的矩阵B 称为对合矩阵)6)()()N A R E A =-.7)()()R A N E A =-.8)rank rank()A E A n +-=.9){}()()0R A R E A -= .10){}()()0N A N E A -= .11)()()n R R A R E A =⊕-.12)()()n R N A N E A =⊕-以上给出了实幂等矩阵的几个等价条件,经过研究和分析知:对复幂等矩阵也有平行的结论.定理2:设A 是n n ⨯的复矩阵,则下列命题是互相等价的:1)A 是幂等矩阵.2)A '是幂等矩阵.3)E A -是幂等矩阵.4)对任意的可逆矩阵P ,1P AP -是幂等矩阵.5)2B A E =-是对合矩阵.(满足2B E =的矩阵B 称为对合矩阵)6)()()N A R E A =-.7)()()R A N E A =-.8)rank rank()A E A n +-=.9){}()()0R A R E A -= .10){}()()0N A N E A -= .11)()()n C R A R E A =⊕-.12)()()n C N A N E A =⊕-证明:1)⇔2) 由2A A =知22()()A A A '''==.反过来,222[()][()]()A A A A A ''''''====.1)⇔3)必要性: 在1.2节性质3中已经给出了证明.充分性:2()()E A E A -=- ⇒222E A A E A A A -+=-⇒=.1)⇔4)由2A A = 知1211121()P AP P AP P AP P A P P AP -----=⋅==.反过来,12111121()P AP P AP P AP P AP P A P P AP ------=⇒⋅==⇒ 2A A =.1)⇔5)由2A A =,有2B =2(2)A E -=244A A E E -+=.反过来,22244B E A A E E A A =⇒-+=⇒=.1)⇔6)必要性: 在1.2节性质7中已经给出了详细证明.充分性: 对,n a R ∀∈有()()()E A a R E A N A -∈-=,故()()E A a N A -∈于是有2[()]0()0A E A a A A a -=⇒-=.由a 的任意性得2A A =.1)⇔7)必要性: 由2A A =知()Aa R A ∀∈,有()0()E A Aa Aa N E A -=⇒∈-()()R A N E A ⇒⊂-.又()a N E A ∀∈-,有()0E A a -=.于是()a Aa E A a =+-()()()Aa R A N E A R A =∈⇒-⊂故有()()R A N E A =-.充分性: 对n a R ∀∈,有()()()Aa R A N E A Aa N E A ∈=-⇒∈-于是有2-=⇒-=.E A Aa A A a()()0()0由a的任意性得2A A=.1)⇔8)必要性: 由2A A=知()()=-.N A R E A于是有dim()dim()=-N A R E A即有rank rank()n A E A-=-亦即rank rank()+-=.A E A n充分性: 由rank rank()+-=易知:A E A ndim()dim()=- (*)N A R E A又对()∀∈,有a N AAa=则有-=-=.E A a a Aa a()由()()a R E A∈--∈-知()E A a R E A即有()()⊂-.N A R E A据(*)式知=-.N A R E A()()=.再由6)得2A A8)⇔9)必要性: 由rank rank()+-=.即知:A E A n+-=.dim()dim()R A R E A n又对n∀∈,有a R=+-,()a Aa E A a而(),Aa R A ∈()()E A a R E A -∈-.故 ()()n C R A R E A =+-.又dim dim ()dim ()dim[()()]n C R A R E A R A R E A =+--- n =.故有dim[()()]0R A R E A -= .于是, {}()()0R A R E A -= .充分性: 由{}()()0R A R E A -= 有dim ()dim ()R A R E A n +-=.即有rank rank()A E A n +-=.9)⇔10)必要性: 由上面的证明知由9)有6)和7),再把6)和7)代入到9),立即得到10).充分性:同理可证.9)⇔11) 这是显然的[1].10)⇔12) 这是显然的[1]. ▌定理3.设A 是秩为r 的n n ⨯矩阵.则A 是幂等矩阵⇔存在n 阶可逆矩阵P ,使1000rE P AP -⎛⎫= ⎪⎝⎭. 证明: 必要性: 在1.2节性质6中已给出了证明.充分性: 由1000rE P AP -⎛⎫= ⎪⎝⎭,有 1000r E A P P -⎛⎫= ⎪⎝⎭. 则2111000000000rr r E E E A P P P P P P A ---⎛⎫⎛⎫⎛⎫=⋅== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ▌ 以上是对二次幂等矩阵进行了一定的讨论.下面来对高次幂等矩阵进行有关的讨论.定理4.设,A B 是三次幂等矩阵,即33,A A B B ==,且满足AB BA =,A B ≠, 记C A B =+.则3()0C C AB A B =⇔+=.证明:由矩阵,A B 是幂等可交换的,于是可同时对角化[6]. 即存在可逆矩阵 P ,使得1112,P AP P BP --Λ=Λ=均为对角矩阵,而且它们对角元素分别是,A B 的特征值.从而有1112,.A P P B P P --=Λ=Λ进而112()C P P -=Λ+Λ.于是3C C =可以等价为322333,1,2,,i i i i i i i i i n λλμλμμλμ+++=+= . 其中,i i λμ分别是12,ΛΛ的对角元.又由30,1,1x x x =⇒=-知,A B 的特征值只有0,-1,1.即333,,(1,2,,)i i i i i r λλμμ===于是3C C =等价为220,(1,2,,)i i i i i r λμλμ+== .即221212O ΛΛ+ΛΛ=.因此3C C =等价为()0AB A B +=. ▌注:当2A A =,立即有32A A A ==,同样地,对k ∀,(2k ≥为正整数) k A A = 即任意的二次幂等矩阵均为k 次幂等矩阵.因此可得以下推论.推论: 设,A B 是二次幂等矩阵,且满足AB BA =,A B ≠,记C A B =+.则 2()0C C AB A B =⇒+=. ▌引理1[1].对任意两个同阶矩阵,A B ,有rank()rank()rank()A B A B +≤+. 引理2[1].设,A B 为n n ⨯矩阵,满足AB O =,则有rank rank A B n +≤. 定理5.设矩阵A 满足3,A A =且A 可逆.则2A E =且rank rank()rank()2A A E A E n +++-=.证明: 由3,A A =A 可逆,有-13-12A A A A A E ⋅=⋅⇒=()()A E A E O ⇒+-=.于是据引理2有r a n k ()r a n k ()A E A E n ++-≤ (1)又2()()E E A E A =++-据引理1有rank(2)rank[()()]n E E A E A ==++-rank()rank()E A E A ≤++-rank()rank()A E A E =++-. (2)有(1)式和(2)式有rank()rank()A E A E n ++-=.由于A 可逆知rank A n =.因此有rank rank()rank()2A A E A E n +++-=. ▌定理6.设矩阵A 满足,(2)k A A k =≥.则*,,A A A ''都是k 此幂等矩阵.证明:对A ',()()k k A A A '''==.对*,A*****()()k k k A A A A A =⋅⋅==个. 对,A '()()()k k k A A A A ''''===. ▌定理7. 设矩阵A 满足,(2)k A A k =≥.则A 的特征值为0和22cossin ,(0,1,,2)11m m m i m k k k ππε=+=--- . 证明: 由k A A =,有 k λλ=,其中λ是矩阵A 的特征值.解方程k λλ=可得220cossin ,(0,1,,2)11m m i m k k k ππλ=+=--- 以及. ▌2.2 幂等变换数域F 上n 维线性空间V 的全部线性变换组成的集合()L V 对于线性变换的加法与数量乘法构成F 上的一个线性空间,与数域F 上n 阶方阵构成的线性空间n n F ⨯同构.特别地,与幂等矩阵对应的是幂等变换.因此为了讨论和探索幂等矩阵的性质时很有必要去探索幂等变换的相关性质.定义1.设T 是线性空间V 的一个线性变换,若2T T =,则称T 是幂等变换.由于矩阵与变换间存在一一对应的关系,因此前面所提到的性质和结论可以平 移到幂等变换上来.限于篇幅,下面只举几个例子.性质1.可逆的幂等变换是恒等变换.证明:恒等变换与单位矩阵相对应.因此该性质与“可逆的幂等矩阵为单位矩 阵”一致. ▌性质2.若T 是幂等变换,则T τ-也是幂等变换.(其中τ是恒等变换) 性质3.T 是幂等变换⇔2T τ-为对合变换. 其中线性变换T 满足2T τ=,则称T 是对合变换. 性质4.T 是线性空间V 上的幂等变换,则1(0)V TV T -=⊕.▌ 我们知道:对于一般的线性变换来说,虽然1dim dim (0)dim TV T V -+=,但未必 有1(0)V TV T -=⊕.这样的例子很多. 例如:在线性空间[]n P x 中令 (())()f x f x ϕ'=.则微分变换是一线性变换[1],其 值域为1[]n P x -,其核是子空间P .它们的维数分别是1,1n -.但显然1[]n P x -+P ≠[]n P x .性质5.设T 和U 是n 维线性空间V 上的线性变换,且22,T T U U ==. 如果2()T U T U +=+,则0TU UT ==. 证明:由2()T U T U +=+,可得0TU UT +=……………………………………①对①式左乘T 得0TU TUT +=…………………………………②对①式右乘T 得0TUT UT +=……………………………………③比较②和③得 TU UT =.代入到①式得到 20TU =.于是就有 0TU UT ==. ▌ 性质6.设T ,U 是n 维线性空间上的线性变换,且22,T T U U ==. 则 1) ,TV UV TU U UT T =⇔==. 2) 11(0)(0),T U TU T UT U --=⇔==.证明:1)""⇒ 对,a V ∀∈有Ua UV TV ∈=.故,V β∃∈使Ua T β=. 从而2TUa T T Ua ββ===.因此有TU U =.同样可证得UT T =.""⇐ 据,TU U UT T ==可知,对Ta TV V ∀∈⊂,有()Ta UTa U Ta UV ==∈,故TV UV ⊂.同样可证得UV TV ⊂.于是TV UV =. 2)""⇒ 对a V ∀∈,作向量a Ta -.据11(0)(0)T U --=,有()T a Ta -20Ta T a Ta Ta =-=-=.故11(0)(0)a Ta T U ---∈=.从而有()0U a Ta -=⇒Ua UTa =⇒UT U = 同理有TU T =.""⇐ 对1(0)a T -∀∈,有0Ta =.据,TU T UT U ==,有10(0)Ua UTa a U -==⇒∈.即有11(0)(0)T U --⊂.同理可得11(0)(0)U T --⊂. 故有11(0)(0)T U --=. ▌2.3 幂等矩阵线性组合的幂等性在本节中,我们将给出两个幂等矩阵线性组合12P c A c B =+仍是幂等矩阵的一 些充分条件.引理1[15].设2,,0,0n n l A B C A A B B ⨯∈=≠=≠,l 为2≥的整数,且AB BA =. 则存在{}12,0c c C ∈-,使12P c A c B =+为幂等矩阵的充要条件是:22111211(2),c c A E B B B c c c λλ--=-+=. 证明:221212()P P c A c B c A c B =⇔+=+22222111212()c B c B c c A c c AB c c BA ⇔-=-++(令121c c λ-=) 221112(2)c B B A AB A E B c c λλ⇔-+=-=-.▌ 据引理1,下面将给出12P c A c B =+是幂等矩阵的十组充分条件.为了简化过程,先令{}00,s = {}111,l s x x x C -==∈,{}21,,s x x y z y z s ==+∈, 012s s s s = .定理1[8].设2,,0,0(2,)n n l A B C A A B B l l Z ⨯∈=≠=≠≥∈,AB BA =,{}12,0,c c C ∈-13121,,,,,i c u v s u v e a s c πλε-=∈≠=∈ 若12(,)c c 及,A B 满足下列任意一个条件,则12P c A c B =+必为幂等矩阵.(Ⅰ) ,0s λλ∈=.①.121(,)(1,)c c u=且0,()0AB B uE B =-=.证明:由0,()0AB B uE B =-=易知12()AB B uE B u-=--,又由121(,)(1,)c c u=和0λ=知(2)A E B λ-22111c B B c c =-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.②.121(,)(1,)c c u=-且()0,()0E A B B uE B -=-=.证明: 由()0,()0E A B B uE B -=-=易知2122,0AB B B B u-=-=-. 将它们相加得212AB B B u-=--. 又由121(,)(1,)c c u=-,0λ=可得22111(2)c A E B B B c c λ-=-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.③.121(,)(1,)c c u=且()()0,()0E A B uE B AB uE B --=--=.证明: 由条件易知()(),()0B uE B AB uE B AB uE B -=--+=.将它们相加后,再乘以1u-可得212AB B B u-=-+. 又由121(,)(1,),0c c uλ==知22111(2)c A E B B B c c λ-=-+. 满足引理1.故12P c A c B =+此时为幂等矩阵. (Ⅱ) ,1s λλ∈=.④.121(,)(,(1)),0,1c c a a a u=-≠且()0,()0E A B A uE B -=-=.证明: 由条件易知,B AB AB uA ==.从而有22,()()B uA B uA u uA uB ====.即2B uB =.故有1121(1)1(1)a u a u B B B uB B a a a a-----+=-+=-. 结合上式有(2)22A uE B uA AB AB AB AB B -=-=-=-=-121(1)(2)a u A uE B B B a a--⇒-=-+.从而可得(2)A E B λ-22111c B B c c =-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.⑤.121(,)(1,)u c c v v=-,且()0,()()0A uE B E A B vE B -=--=.证明: 由()0A uE B -=知uA AB =,从而(2)2A uE B uA AB -=-2uA uA uA =-=-.即(2)A uE B uA -=-. 又由()()0E A B vE B --=可得2()()B vE B AB vE B vAB AB -=-=-.又因为22,()AB uA AB AB B uAB u A ====.代入上式可得:2()B vE B uvA u A -=-.即有2()B vE B A uv u -=-.结合(2)A uE B uA -=-有()(2)B vE B A uE B u v--=-.即有12111(2)11v A uE B B B uv uv----=-+--. 又由121(,)(1,)u c c v v=-知22111(2)c A E B B B c c λ-=-+, 满足引理1.故12P c A c B =+此时为幂等矩阵. ⑥. 121(,)(,)v c c u v u v=---且()0,()()0E A B A uE B vE B -=--=. 证明: 由()0E A B -=知AB B =,从而(2)22A uE B uA AB uA B -=-=-又由()()0A uE B vE B --=展开得2()0AB u v AB uvA -++=. 又22,()AB B AB AB B B ===,结合上式可得2()0B u v B uvA -++=.故2()u v B B A uv+-=.代入到(2)2A uE B uA B -=-得(2)A uE B -=2()2u v B B B v+--. 即21(2)u v A uE B B B v v --=-. 又由121(,)(,)v c c u v u v=--- 可得2211(2)A E B B B c c λ-=-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.⑦. 121(,)(,),1u c c u v v v=-+=且()0,()()0A vE B E A B vE B -=--=.证明: 由()0A vE B -=知()AB u v A =+.从而(()2)A u v E B +-()2()u v A AB u v A =+-=-+.又先把()()0E A B vE B --=展开可得2()0B vE B vAB AB --+=.又将()AB u v A =+及22()()()AB AB B u v AB u v A ==+=+.代入到上式可得2()()()0B vE B v u v A u v A --+++=.即有()()B vE B A u v u-=-+.代入到(()2)A u v E B +-()u v A =-+,可得21(()2)v A u v E B B B u u+-=-. 从而由121(,)(,),u c c u v v v λ=-+=知22111(2)c A E B B B c c λ-=-+满足引理1故12P c A c B =+此时为幂等矩阵.⑧.12(,)(,)c c u εε=-,且2()()0,()()0.A uE B uE B E A B uE B εε--=--=证明: 由()()0A uE B uE B ε--=知 22(())0A u E u u B B εε-++=. 由2()()0E A B uE B ε--=知 222()()A uB B B uE B εε-=-. 将上面两式相加并乘以1u可得 22((1))()A uE B B uE B εεεε+--=-.又3i eπε= 满足22112,εεεε--=-=-,结合上式可得(2)A uE B ε-211B B uε=--. 从而由12(,)(,)c c uεε=-,u λε=知2211(2)A E B B B c c λ-=-+ 满足引理1.故12P c A c B =+此时为幂等矩阵. (Ⅲ) 2,2s λλ∈=.⑨.1,21()(1,)c c u=-,且()0,()0A uE B B uE B -=-=.证明: 由()0,()0A uE B B uE B -=-=知1(22)0()A uE B B uE B u-==-, 即21(22)()A uE B B B u -=---从而由1,21()(1,)c c u=-,2u λ=知22111(2)c A E B B B c c λ-=-+ 满足引理1.故12P c A c B =+此时为幂等矩阵. (Ⅳ) 2,0,1,2.s λλ∈≠⑩.1,21()(,)u c c v v=-且()0,()()0A uE B E A B vE B -=--=.证明: 由()0A uE B -=知AB uA = 从而22AB uAB u A ==,(()2)A u v E B +-()2()u v A AB u v A =+-=--.又由()()0E A B vE B --=展开得()()B vE B AB vE B -=-. 据22AB uAB u A ==知22()()AB vE B vAB AB uv u A -=-=-.结合上式可得2()()uv u A B vE B -=-()()B vE B A u v u-⇒=--.代入到(()2)A u v E B +-()u v A =--可得2()1(()2)B vE B v A u v E B B B u u u-+-==-. 又由1,21()(,)u c c v v =-,u v λ=+知22111(2)c A E B B B c c λ-=-+满足引理1.故12P c A c B =+此时为幂等矩阵. ▌2.4 幂等矩阵线性组合的可逆性在本节中,我们将给出两个幂等矩阵的线性组合矩阵12c A c B +可逆的一些条件,并给出一些相关的结论.引理1[3].设矩阵A 是n n ⨯阶方阵,则A 可逆{}()0N A ⇔=. ▌定理1.设矩阵,A B 均是幂等矩阵,即22,A A B B ==.若存在两个非零复数1,2k k , 且120k k +≠使得12k A k B +可逆,则对所有的复数1,2c c ,满足120c c +≠,则线性组合12c A c B +都是可逆的.证明:设1212,,0,0c c C c c ∈≠≠且120c c +≠. 对12()x N c A c B ∀∈+,有12()0c A c B x += 即有 12c Ax c Bx =- ……………① 将上式两边依次左乘,A B ,可得:12c Ax c ABx =-,12c BAx c Bx =-. ……②比较上面三个式子可得:,Bx ABx Ax BAx ==. …………………………③又由于22212112122()k A k B k A k k AB k k BA k B +=+++,故22212112122()k A k B x k Ax k k ABx k k BAx k Bx +=+++.将,Bx ABx Ax BAx ==代入上式可得212()k A k B x +22112122k Ax k k ABx k k BAx k Bx =+++ 112212()()k k k Ax k k k Bx =+++ 1212()()k k k A k B x =++.由于12k A k B +可逆,,将上式两边左乘112()k A k B -+得121212()()k k x k A k B k Ax k Bx +=+=+, …………………④再左乘A 得:1212k Ax k Bx k Ax k ABx +=+即有Ax ABx =.代入12c Ax c ABx =-可得12()00c c Ax Ax ABx +=⇒==.注意到③式有0Bx =,因此由④式可得12()0k k x +=但120k k +≠,所以0x =因此{}12()0N c A c B +=.由引理1知12c A c B +是可逆的. ▌在定理1中令121c c ==,立即有:推论1.设矩阵,A B 均是幂等矩阵,即22,A A B B ==.若A B +可逆,则 对所有的复数1,2c c ,满足120c c +≠,线性组合12c A c B +都是可逆的. ▌ 定理2[18].设矩阵,A B 均是幂等矩阵,对任意的复数1,2c c ,下列命题等价: ⑪ A B -可逆.⑫ 12c A c B +及E AB -可逆. 证明:⑪⇒⑫对12()x N c A c B ∀∈+,由定理1的证明过程知,Bx ABx Ax BAx ==. 故22222()()0A B x A AB BA B x A x ABx BAx B x -=--+=--+=.又由A B -可逆,故0x =.因此 {}12()0N c A c B +=.由引理1知 12c A c B +可逆. 同样地,对()()0x N E AB E AB x x ABx ∀∈-⇒-=⇒=.两边左乘A ,得Ax ABx x BAx Bx ==⇒=.所以 2()0A B x Ax ABx BAx Bx -=--+=. 又由A B -可逆知0x =. 所以{}()0N E AB -=. 由引理1知E AB -可逆. ⑪⇐⑫对()x N A B ∀∈-,有()0A B x -=Ax Bx ⇒= 则 ,Ax ABx BAx Bx ==. 所以121212()()()c A c B E AB x c A c B c AB c BAB x +-=+-+ 220c Bx c BAx =-=.0x ⇒=.由12c A c B +及E AB -可逆,知{}()0N A B -=. 由引理1知A B -可逆. ▌ 在定理2中令121c c ==,立即有:推论2.设矩阵,A B 均是幂等矩阵,下列命题等价: ⑪ A B -可逆.⑫ A B +及E AB -可逆.定理3[18]. 设矩阵,A B 均是幂等矩阵,1212,,0,0c c C c c ∈≠≠,满足120c c +≠. 则12c AB c BA +可逆12c A c B ⇔+及E A B --可逆. 证明:由2212121212()()c A c B E A B c A c B c A c BA c AB c B +--=+----12()c AB c BA =-+.可见12c AB c BA +可逆12c A c B ⇔+及E A B --可逆. ▌2.5 幂等矩阵的秩方面的有关性质定理1[5]. 设,A B 是n n ⨯的复幂等矩阵,则1rank()rank rank rank rank 00A B B A A B B A B A ⎛⎫⎛⎫+=-=- ⎪ ⎪⎝⎭⎝⎭.2 rank()rank()rank A B A AB BA BAB B +=--++.3 rank()rank()rank A B B AB BA ABA A +=--++. ▌定理2.设n n A C ⨯∈为Hermite 矩阵,即A A '=.且对某个,k N ∈有2k A A =, 则 rank()()A tr A =.证明:设rank A r =,,x λ分别是矩阵A 的特征值和相应的特征向量. 则λ是实数[1].且2212k k k Ax x A x A x x λλλ-====. 从而有21(1)0k x λλ--=.又0x ≠.于是21(1)0k λλ--=.由λ是实数,所以111,0r r n λλλλ+====== ,故结论成立. ▌ 推论1. 设n n A C ⨯∈,且2A A =,则rank()()A tr A =. 其实,该结论在1.2节中已经很明朗了.定理2[10]. 设(1,2,,,2)n n i A C i m m ⨯∈=≥ 为Hermite 矩阵,且存在某个,i k N ∈ 使2ik ii A A =,又对某个正整数 t 有211tmmii i i A A ===∑∑.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.证明:由定理1可知rank()()i i A tr A =,11rank mmiii i AtrA===∑∑于是有1111rank()rank()mm mmiiiii i i i AtrA tr A A =======∑∑∑∑. ▌推论2. 设(1,2,,,2)n n i A C i m m ⨯∈=≥ 为Hermite 矩阵,且存在某个,i k N ∈ 使2ik ii A A =,又1mi i A =∑为幂等矩阵.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.推论3. 设(1,2,,,2)n ni A Ci m m ⨯∈=≥ 为幂等矩阵,且1mi i A =∑为幂等矩阵.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.推论4. 设(1,2,,,2)n n i A C i m m ⨯∈=≥ 为Hermite 矩阵,且存在某个,i k N ∈ 使2ik ii A A =,又1m i i A E ==∑.则 11rank rank()m mi i i i A A n ====∑∑.推论5. 设(1,2,,,2)n ni A Ci m m ⨯∈=≥ 为Hermite 矩阵,且1mi i A E ==∑.则 11rankrank()mmii i i AA n ====∑∑.定理3[10].设(1,2,,,2)n ni A Ci m m ⨯∈=≥ 及1mi i A =∑的特征值均为实数,且存在,i k N ∈使2ik ii A A =,又对某个正整数 t 有211tmmii i i A A ===∑∑.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.定理4[20]. 设(1,2,,,2)n ni A Ci m m ⨯∈=≥ 及1mi i A =∑的特征值均为非负实数,且存在,(2)i i k N k ∈≥使ik i i A A =,又对某个正整数 t 有11t mmii i i AA ===∑∑.则 111rankrank()mmmii ii i i AA trA=====∑∑∑. ▌结束语本文主要是对幂等矩阵的一些性质和结论进行归纳总结并对相关性质进行推广。
0引言幂等矩阵是一类性质特殊的矩阵,不仅在高等代数中有着重要的应用,在其它课程中,如计量经济学、统计学课程中也有着重要应用。
在代数学中,线性变换的许多问题都可以转化为幂等矩阵来解决。
但是在通常的高等代数的教材中关于幂等矩阵的讨论是比较少的。
因此本文对幂等矩阵的性质做出相关讨论。
本文主要给出幂等矩阵特征值、特征子空间和Jordan标准型的基本性质,同时给出了一些相关的应用。
1主要结果首先给出幂等矩阵的定义和基本性质。
定义1:若n阶方阵A满足A2=A,则称A为幂等矩阵。
下面给出关于幂等矩阵的一些简单的性质。
定理1:幂等矩阵A的特征值只能是0或者1。
证明:设A为任意一个幂等矩阵。
由A2=A,可得λ2=λ其中λ为A的特征值。
于是有λ=1或0,命题得证。
推论:可逆的幂等矩阵的特征值均为1。
证明:设A为一可逆的幂等矩阵。
由A2=A可得A2A-1=AA-1即A=E。
此时有λE-E=0即λ=1其中,λ为A的特征值。
命题得证。
定理2:任意的幂等矩阵A都相似于对角阵,即存在可逆阵P,使得:P-1AP=Er0 00 (),其中r=R(A)。
证明:A为任意幂等矩阵,J为其Jordan标准型,即存在可逆矩阵P,使得P-1AP=J=J10⋱0J s (),其中J i=λi1…0⋱┋⋱1 0λi ⎛⎝⎜⎜⎜⎜⎜⎜⎜⎜⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟。
由此可得J2=J。
于是有,J i2=J i。
此时,J i只能为数量矩阵λi E。
又因为A2=A,所以λi=0或1,且r=R(A)。
命题得证。
定理3:幂等矩阵的特征值为1的特征子空间为其值域,特征值为0的特征子空间为其零(核)空间。
证明:(i)A为一n阶幂等矩阵。
α为其特征值1对应的特征向量。
则有,Aα=α。
由此可得α属于A的值域。
反之,对于任意一个A的值域中的向量α,总能找到一个向量β,使得Aβ=α,于是有Aα=A2β=β,即α=β。
综上可知,幂等矩阵的特征值为1的特征子空间与其值域等价。
(ii)A为一n阶幂等矩阵。
摘要幂等变换是一类特殊的线性变换,它不是孤立存在的,而是与其它线性变换紧密相连,在物理、化学等学科中也有着广泛的应用,极大地推动和丰富了它们的发展,许多新的理论、技巧和方法的诞生与发展都是幂等变换理论的应用与推广.本文首先简要叙述了一般线性变换的基本理论,在此基础上给出幂等变换的定义,并指出几类特殊的幂等变换;其次,归纳总结了幂等变换的性质,如幂等矩阵的形式、幂等变换的特征值与特征向量、特征多项式、秩与迹及幂等变换的对角化问题,讨论过程由浅入深,层层推进,对幂等变换的相关知识形成了较为完整的知识体系,对幂等变换的一些特殊的性质理解深刻;最后,结合幂等变换的概念与性质,给出常见的习题及解题技巧,并举例说明幂等变换与其它线性变换的联系与转化.关键词:幂等变换;幂等矩阵;性质;应用AbstractIdempotent transformations are a special type of linear transformation.It's not isolated,but closely connected with other linear transformation.In physics,chemistry,and other disciplines also has a wide range of applications,greatly promote and enrich their development.Birth of many new theories,techniques and methods are idempotent transformations and development application and popularization of the theory.This paper begins with a brief description of the basic theory of linear transformations,on this basis for idempotent transformation defined,the idempotent transformation and pointed out that some kinds of special.Second,discussed the nature of power transform,idempotent matrix of the form,idempotent transformation characteristic value and characteristic vector,characteristic polynomial,diagonalization of rank and track and idempotent transformation problems,discussion easy-to-digest,layers of promoting.For idempotent transformation knowledge formed a relatively complete system of knowledge,some special properties for idempotent transformation understand deep.Finally,with idempotent transformation and the concept of nature,out common problems and problem-solving skills,descriptions and examples of power-link,and other linear transforms and transformation.Key words: Idempotent transformation; Idempotent matrix; Nature; Application目录摘要 (I)Abstract .................................................................................................................................... I I绪论 (1)第1章幂等变换的基本概念 (2)第2章幂等变换的性质 (3)2.1 幂等变换的运算性质 (3)2.2 幂等变换与幂等矩阵的关系 (4)2.2.1 幂等变换的特征值与特征向量 (10)2.2.2 幂等变换的特征多项式、秩与迹 (15)2.2.3 幂等变换的对角化 (20)第3章幂等变换的应用 (23)3.1 幂等变换性质的应用 (23)3.2 幂等变换与其它线性变换 (25)结论 (32)参考文献 (33)致谢........................................................................................................... 错误!未定义书签。
幂等矩阵的性质及证明定义:若$AA=A$,则称$A$为幂等矩阵。
1.幂等矩阵的特征值只取1和0两个数值证明:设$\lambda$是幂等矩阵$A$的特征值,$\bold{v}$是与$\lambda$对应的特征向量,则$\lambda \bold{v}=A\bold{v}=A^2 \bold{v}=\lambda^2 \bold{v}$即$(\lambda^2-\lambda)\bold{v}=\bold{0}$因为 $\bold{v}\not=\bold{0}$,所以$(\lambda^2-\lambda)=0$,故$\lambda=0$或$1$.2.幂等矩阵⼀定可以对⾓化证明:证明此性质需⽤到两个引理:引理1:$r(A+B) \leq r(A)+r(B)$ (这⾥$r$表⽰矩阵的秩)引理2:$A_{m \times n} B_{n \times k} \leq n$现假设A为$n \times n$的幂等矩阵,且$r(A)=r$因为$A(E-A)=A-AA=A-A=0$所以$n=r(E)=r(A+(E-A)) \leq r(A)+r(E-A) \leq n$故有$r(A)+r(E-A) = n$设$\lambda$是矩阵$A$的特征值,根据上⾯的性质1,$\lambda=0$或$1$对应于$\lambda=0$的有$n-r(0 \times E-A)$个线性⽆关的特征向量(即⽅程$(0 \times E-A)x=0$基础解系有$n-r(0 \times E-A)$个基向量)对应于$\lambda=1$的有$n-r(1 \times E-A)$个线性⽆关的特征向量由于$r(0 \times E-A) + r(1 \times E-A) = r(A)+r(E-A) = n$所以$A$有$[n-r(0 \times E-A)] + [n-r(1 \times E-A)] = n$个线性⽆关的特征向量,所以$A$⼀定可以对⾓化,其对⾓化之后的形式可表⽰为3.所有幂等矩阵的秩与迹相等,即$r(A)=tr(A)$证明:由性质2容易导出该性质。
可交换矩阵的几个充要条件及其性质在高等代数中,矩阵是一个重要的内容.由矩阵的理论可知,矩阵的乘法不同于数的乘法,矩阵的乘法不满足交换律,即当矩AB 有意义时,矩阵BA 未必有意义,即使AB ,BA 都有意义时它们也不一定相等.但是当A ,B 满足一定条件是,就有BA AB =,此时也称A 与B 是可交换的,可交换矩阵有许多良好的性质,本文主要研究矩阵可交换的几个条件及其常见的性质.本文矩阵均指n 阶实方阵.§1矩阵可交换成立的几个充分条件定理1.1(1)设A ,B 至少有一个为零矩阵,则A ,B 可交换;(2)设A ,B 至少有一个为单位矩阵,则A ,B 可交换;(3)设A ,B 至少有一个为数量矩阵,则A ,B 可交换;(4)设A ,B 均为对角矩阵,则A ,B 可交换;(5)设A ,B 均为准对角矩阵,则A ,B 可交换;(6)设*A 是A 的伴随矩阵,则A 与*A 可交换;(7)设A 可逆,则A 与1-A 可交换;(8)设E AB =,则A ,B 可交换.证(1)对任意矩阵A ,均有OA AO =,O 表示零距阵,所以A ,B 至少有一个为零矩阵时,A ,B 可交换;(2)对任意矩阵A ,均有EA AE =,E 表示单位矩阵,所以A ,B 至少有一个为单位矩阵时,A ,B 可交换;(3)对任意矩阵A ,均有A kE kE A )()(=,k 为任意实数,则)(kE 为数量矩阵,所以A ,B 至少有一个为数量矩阵时,A ,B 可交换;(4),(5)显然成立; (6)A A E A AA **==,所以矩阵A 与其伴随矩阵可交换;(7)A A E AA 11--==,所以矩阵A 与其逆矩阵可交换;(8)当E AB =时,A ,B 均可逆,且互为逆矩阵,所以根据(7)可知A ,B 可交换. 定理1.2(1)设B A AB βα+=,其中α,β为非零实数,则A ,B 可交换,(2)设E AB A m =+α,其中m 为正整数,α为非零实数,则A ,B 可交换. 证(1)由B A AB βα+=可得E E B E A αβαβ=--))((,即E E B E A =--))((1αβαβ,故依定理1.1(8)得E E A E B =--))((1βααβ,于是E E B A BA αβαββα=+--,所以AB B A BA =+=βα;(2)由E AB A m =+α得E B A A m =+-)(1α,故依定理1.1(8)得E A B A m =+-)(1α,于是E BA A m =+α,所以可得BA AB =.定理1.3(1)设A 可逆,若O AB =或AB A =或BA A =,则A ,B 可交换;(2)设A ,B 均可逆,若对任意实数k ,均有B kE A A )(-=,则A ,B 可交换. 证(1)若O AB =,由A 可逆得O AB A B A A B ===--)()(11,从而O BA =,故BA AB =; 若AB A =,同理可得E AB A B A A B ===--)()(11,故BA AB =;若BA A =,则E A BA AA B B ===--11)()(,故BA AB =.(2)因A ,B 均可逆,故由B kE A A )(-=得kE A -可逆,且A kE A B 1)(--=,则 两边取转置可得BA AB =.或由两边取逆可得BA AB =.§2矩阵可交换成立的几个充要条件定理2.1下列均是A ,B 可交换的充要条件:(1)***)(B A AB =;(2)''')(B A AB =;(3)))(())((22B A B A B A B A B A +-=-+=-;(4)2222)(B AB A B A +±=±.证(1))⇐因为***)(B A AB =,两边同时取伴随矩阵可得BA AB =; )⇒因为BA AB =,两边同时取伴随矩阵可得***)(B A AB =;(2))⇐因为''')(B A AB =,两边取转置可得BA AB =;)⇒因为BA AB =,两边取转置可得''')(B A AB =;(3))⇐因为22))((B BA AB A B A B A -+-=-+,))((22B A B A B A -+=-, 所以BA AB =;同理由22))((B BA AB A B A B A --+=+-,可证BA AB =,)⇒因为BA AB =,且22))((B BA AB A B A B A -+-=-+,所以))((22B A B A B A -+=-;同理由22))((B BA AB A B A B A --+=+-,可证))((22B A B A B A -+=-;(4))⇐因为222)(B BA AB A B A -±±=±,又由条件知2222)(B AB A B A +±=±,所以BA AB =;)⇒因为BA AB =,222)(B BA AB A B A -±±=±,所以2222)(B AB A B A +±=±; 定理2.2可逆矩阵A ,B 可交换的充要条件是111)(---=B A AB . 证)⇐因为111)(---=B A AB ,两边取逆可得BA AB =;)⇒因为BA AB =,两边取逆可得111)(---=B A AB ;定理2.3(1)设A ,B 均为(反)对称矩阵,则A ,B 可交换的充要条件是AB 为对称矩阵;(2)设A ,B 有一个为对称矩阵,另一个为反对称矩阵,则A ,B 可交换的充要条件是AB 为反对称矩阵.证(1)设A ,B 均为对称矩阵,由定理2.1(2)AB B A AB ==''')(,因此AB 为对称矩阵;若A ,B 均为反对称矩阵,则AB B A B A AB =--==))(()(''',因此AB 也为对称矩阵.(2)若A ,B 中有一个为对称矩阵,不妨设A 为对称矩阵,则B 为反对称矩阵,则,)()('''AB B A B A AB -=-==因此AB 为反对称矩阵.定理2.4设A ,B 均为对称正定矩阵,则A ,B 可交换的充要条件是AB 为对称正定矩阵.证充分性由定理2.3(1)可得,下面证明必要性.因A ,B 为对称正定矩阵,故有可逆矩阵P ,Q ,使'PP A =,'QQ B =,于是''QQ PP AB =,'''1))((Q P Q P ABP P =-所以ABP P 1-为对称正定矩阵,其特征值全为正数.而AB 与ABP P 1-相似,从而AB 的特征值也全为正数,因此AB 为对称正定矩阵.§3可交换矩阵的一些性质定义3.1(1)幂等矩阵:若A 为矩阵,且A A =2,则A 幂等矩阵.(2)幂零矩阵:若A 为矩阵,且)(*Z k O A k ∈=,则A 为幂零距阵.(3)幂幺矩阵:若A 为矩阵,且E A k =,E 为单位矩阵,则A 为幂幺矩阵.性质3.1设A ,B 可交换,则有:(1)))(B ()B )((1-m 211-m 21B A B AA B A A B A B A m m m m m m -+⋯++=+⋯++-=-----; (2)∑=-=+nk k k n k nn B A C B A 0)((矩阵二项式定理). (3)A B AB m m =,k k k B A AB =)(,l l BA B A =,其中l k m ,,都是正整数;(4)A B f B Af )()(=,其中)(B f 是B 的多项式,即A 与B 的多项式可交换; 证(1)对m 用数学归纳法可证得.当1=m 时,明显成立.假设当k m =时,有下证当1+=k m 时结论也成立.故对一切正整数m ,结论成立.(2)用数学归纳法当1=n 时,B A B A B A +=+=+111)(,结论成立.假设当k n =时,有下面证当1+=k n 时结论也成立.由BA AB =得i j j i A B B A =,于是 而i k i k i k C i k i k i k i i k i k k i k i k i k i k C C 11)!1(!)!1()!1(!!)1(!)!1()!1(!)!(!!+-=-++=-++-+=-+-+-=+. 所以11k 1111C )(+++++++⋯++=+k k k k k k k BAB B A C A B A . 故对一切正整数n ,二项式定理成立.(3)由BA AB =可得A B A B BB B B m m )1(=⋯⋯=⋯⋯=⋯⋯=⋯⋯=-个个个m m m BB BA BB A AB , 同理可证k k k B A AB =)(,l l BA B A =.(4)由(3)可证得.性质3.2设A ,B 可交换,(1)若A ,B 均为幂等矩阵,则AB ,AB B A -+也为幂等矩阵;(2)若A ,B 均为幂零距阵,则AB ,B A +均为幂零距阵;(3)若A ,B 均为幂幺矩阵,则AB 也为幂幺矩阵;证(1)由BA AB =,A A =2,B B =2,AB B A AB ==222)(,及即可证得;(2)设O A k =,O B l =,取},max{l k h =,则O B A AB h h h =)(,即AB 为幂零距阵;令1-+=l k m ,则O B A C B A mk k k m k m m==+∑=-0)(,所以B A +为幂零距阵. (3)由BA AB =,E A k =,E B k =,E E B A AB k k k ===2)(可证得; 性质3.3设A ,B 可交换,若A ,B 分别为n 阶Hermite 正定矩阵和非负定矩阵,则AB 为Hermite 非负定矩阵;证因为AB BA A B AB H H H ===)(,所以AB 是Hermite 矩阵.又因为0>A ,所以存在n 阶可逆Hermite 矩阵C 使2C A =.于是 则AB 与BC C H 具有相同的特征值.由0≥B 知0≥BC C H ,故BC C H 的特征值均为非负数,从而AB 的特征值均为非负数.即0≥AB .性质3.4(1)AB 与BA 的特征多项式相等,即)()(λλBA AB f f =,从而AB 与BA 的特征值也相同(包括重数也一致).(2)多项式||AB E +λ与||BA E +λ相等,即||||BA E AB E +=+λλ. 推论3.4.1(1)AB E -与BA E -的特征多项式相等.(2)AB E +与BA E +的特征多项式相等.证因为|)1(||)(|AB E AB E E +-=+-λλ,|)1(||)(|BA E BA E E +-=--λλ,由性质3.4可知|)1(||)1(|BA E AB E +-=+-λλ,所以|)(||)(|BA E E AB E E --=--λλ. 同理可证|)(||)(|BA E E AB E E +-=+-λλ.推论3.4.2(1)A AB -与A BA -的特征多项式相等.(2)A AB +与A BA +的特征多项式相等.证(1)因为)(E B A A AB -=-,A E B A BA )(-=-.根据性质3.4知)(E B A -与A E B )(-的特征多项式相等,故A AB -与A BA -的特征多项式相等. 同理可证A AB +与A BA +的特征多项式相等.性质3.5(1)矩阵AB E +λ与BA E +λ的秩相等)0(≠λ,即秩)(AB E +λ=秩)(BA E +λ.特别地,秩)(AB E +=秩)(BA E +.(2)AB 与BA 的特征矩阵的秩相等)0(≠λ,即秩)(AB E -λ=秩)(BA E -λ.特别地,秩)(AB E -=秩)(BA E -.性质3.6若A ,B 中有一个是可逆的,则AB 与BA 相似.证不妨设A 可逆,由A AB A BA )(1-=知,AB 与BA 相似.性质3.7(1)AB 与BA 同为可逆矩阵或同为不可逆矩阵.(2)||||BA AB =.(3)AB 与BA 的迹相等,即)()(BA tr AB tr =.性质3.8(1)BA AB -不可能相似于)0(≠k kE .(2)对可逆矩阵A ,不可能有A BA AB =-.证(1)因为0)()()(=-=-BA tr AB tr BA AB tr ,而0(≠=kn kE tr (当0≠k 时),由于相似矩阵的迹相等,所以BA AB -不可能相似于非零矩阵kE .(2)若存在可逆矩阵A ,使A BA AB =-则E BA A B =--1,于是E B BA A -=-1,即B 与E B -相似,从而)()()(B tr n B tr E B tr =-=-这是不可能的.性质3.9(1)设A ,B 同为(反)对称矩阵,则BA AB +是对称矩阵,BA AB -是反对称矩阵.(2)设A ,B 有一个为对称矩阵,另一个为反对称矩阵,则BA AB +是反对称矩阵,BA AB -是对称矩阵.推论3.9.1(1)设A ,B 同为实(反)对称矩阵,则BA AB -的特征值的实部为零.(2)设A ,B 有一为实对称矩阵,另一个为实反对称矩阵,则BA AB +的特征值的实部为零.证(1)由性质3.9(1)知BA AB -是实反对称矩阵.因为实反对称矩阵的特征值只能是零或纯虚数,所以BA AB -的特征值的实部为零.同理可证(2).参考文献[1]北京大学数学系几何与代数教研室代数小组.高等代数(第三版)[M].高等教育出版社,2003.[2]戴华.矩阵论[M].北京:科学出版社,2001.[3]戴立辉等.矩阵可交换的条件及可交换矩阵的性质[J].华东地质学院学报.2002:353-355.[4]闫家灏,赵锡英.可交换矩阵[J].兰州工业高等专科学校学报.2002:51-54.[5]李瑞娟,张厚超.可交换矩阵浅析[J].和田师范专科学校学报.2009:199-200.。
三幂等矩阵的一些性质陆洪宇【摘要】Some properties are mainly explored about the triple idempotent matrix.Be generalized by the properties of the idempotent matrix,15 different conclusions of the triple idempotent matrix, about the sides of matrix product, linear transformation and rank of matrix, have been obtained by complete and detailed derivations.%重点探索了三幂等矩阵的性质.主要从矩阵乘积、线性变换和矩阵的秩等角度出发,将幂等矩阵的性质向三幂等矩阵推广,对三幂等矩阵的性质进行探究,得到了15个相关结论,并给出部分性质的详细推导过程.【期刊名称】《大学数学》【年(卷),期】2017(033)002【总页数】3页(P119-121)【关键词】三幂等矩阵;幂等矩阵;线性变换;秩【作者】陆洪宇【作者单位】东北师范大学数学与统计学院,长春130024【正文语种】中文【中图分类】O151.21文献[1]至文献[7]中已有关于幂等矩阵的多条性质,这些性质被广泛应用于矩阵论及其他领域.本文证明了存在一类具有三幂等特性的矩阵,即矩阵的三次幂仍等于矩阵自身,主要研究了这类三幂等的矩阵的若干性质.定义2.1[8] 设矩阵A∈Cn×n, Cn×n是所有n×n复矩阵集合,若A3=A,则称A是三幂等矩阵.例如设n阶矩阵A=diag(1,-1,-1,0,…,0),则A3=A.定义2.2[9] 设A是m×n复矩阵,n是n维复数空间,称集合R(A)={Ax|x∈n}和N(A)={x∈n|Ax=0}分别为A的值域和核.根据三幂等矩阵的定义,从矩阵运算及行列式等角度探索三幂等矩阵性质,得到性质2.1-性质2.6.性质2.1 若三幂等矩阵A,B满足AB=BA,则AB也是三幂等矩阵.性质2.2 如果A为三幂等矩阵,那么对于任意正整数k,始终有成立.推论2.3 如果A为三幂等矩阵,那么A2是幂等矩阵.性质2.4 如果A为三幂等矩阵,那么|A|=0或|A|=±1.性质2.5 可逆的三幂等矩阵是对合矩阵.证设n阶三幂等矩阵A的逆A-1存在,那么由此得A-1=A.性质2.6 如果三幂等矩阵A∈Cn×n,那么矩阵E-A2是幂等矩阵.文献[9]第七章中提到,在同一组基下,矩阵与线性变换一一对应.下面从线性变换的角度讨论三幂等矩阵,得到性质2.7至性质2.11.性质2.7 三幂等矩阵A的特征值只能为0或±1,并且特征值±1的重数的和是A的秩.证设A是n阶三幂等矩阵,且λ是A的特征值,即存在x∈n使得Ax=λx,又因为A3=A,所以因此λ3=λ,即λ为0或±1.又根据矩阵秩的定义,显然有特征值±1的重数的和是A的秩.性质2.8 三幂等矩阵A的特征值为1的特征子空间是A2+A的值域.证即证若A3=A,则N(E-A)=R(A2+A).一方面,对任意x∈N(E-A),则有另一方面,对任意x∈R(A2+A),存在y∈n满足(A2+A)y=x,则同理可以得到下面两个性质.性质2.9 三幂等矩阵A的特征值为0的特征子空间是E-A2的值域.证即证若A3=A,则N(A)=R(E-A2).性质2.10 三幂等矩阵A的特征值为-1的特征子空间是A2-A的值域.证即证若A3=A,则N(A+E)=R(A2-A).性质2.3和性质2.6分别给出当A3=A时矩阵A2与矩阵E-A2都是幂等矩阵,根据文献[4]中幂等矩阵的性质容易得出如下结论:性质2.11 如果A为n阶三幂等矩阵,那么从三幂等矩阵的秩的角度探索性质.文献[10]中得出三幂等矩阵的秩具有如下两个性质性质2.12[10] 如果矩阵A∈Cn×n,则A为三幂等矩阵的充分必要条件是性质2.13[10] 如果矩阵A∈Cn×n,且A为三幂等矩阵,即A3=A,则有下面,在三幂等条件下将上述的性质2.12进行推广,如下推论2.14 如果矩阵A∈Cn×n,则A为三幂等矩阵的充分必要条件是对任意正整数a,b,有证必要性.一方面,由A3=A知A(A2-E)=O,那么对任意正整数a,有Aa(A2-E)=0,根据矩阵乘法运算性质知另一方面,由A3=A知,多项式是矩λ3-λ阵A的零化多项式,那么矩阵A的最小多项式只能是λ3-λ的因式,无重根,根据文献[5]知此时矩阵A可对角化. 又根据性质2.7,不妨设矩阵A的特征值为r个1,s个-1和t个0(r+s+t=n). 因此,存在n阶可逆矩阵P使得由此得,对任意正整数a,b,有故rank[Aa+(A2-E)b]=n,那么因此n.充分性.即考虑对任意正整数a,b,如果n阶矩阵A的秩满足条件,那么这个矩阵A一定是三幂等矩阵,具体证明如下.设矩阵A的秩满足上述等式关系,不妨取b=1,那么,当a=1时,由性质2.12即可得到矩阵A是三幂等矩阵,这是因为因此A3-A=O.当a≥2时,同样,其中,当a为奇数时,c=1,则与a=1的情况相同,得到A3-A=O.当a为偶数时,c=0,则显然有A3=A成立.性质2.15 如果B1,B2,…,Bk为Cn×n中的k个三幂等矩阵,又有n阶方阵,则证因为当i=1,…,k时,有,所以). 则【相关文献】[1] 史荣昌,魏丰. 矩阵分析[M]. 2版. 北京: 北京理工大学出版社,2005.[2] 张慧. 对幂等矩阵的研究[J]. 陕西科技大学学报,2012,30(6): 139-146.[3] 刘嘉仑,杨传胜. 幂等矩阵的性质及其应用[J]. 科技视界,2012,31: 73-79.[4] 王松桂,杨振海. 广义逆等矩阵及其应用[M]. 北京:北京工业大学出版社, 1996.[5] 钱吉林. 高等代数题解精粹[M]. 北京: 中国民族大学出版,2002.[6] 杨子胥. 高等代数精选题解[M]. 北京: 高等教育出版社,2008.[7] 王秀芳. 幂等矩阵的性质研究[J]. 连云港师范高等专科学校学报,2007,3: 83-84.[8] 杨凯凡.三次幂等矩阵的线性组合的三次幂等性[J].喀什师范学院学报,2009, 30(3): 9-12.[9] 王萼芳,石明生. 高等代数 [M]. 3版.北京:高等教育出版社,2003.[10] 杨忠鹏,陈梅香,林国钦.关于三幂等矩阵的秩的特征的研究[J].数学研究,2008,41(2): 311-315.[11] 何东林. n-幂等矩阵[J].甘肃高师学报,2013,18(5): 8-9.。