计算机组成原理知识点总结
- 格式:docx
- 大小:20.24 KB
- 文档页数:9
大一计算机必备知识点计算机科学作为一门广泛应用的学科,对于大一的计算机专业学生来说,掌握一些基本的计算机知识是非常重要的。
下面我将介绍大一计算机专业学生必备的知识点,希望对你的学习有所帮助。
一、计算机组成原理1. 计算机硬件基本组成:中央处理器(CPU)、存储器、输入设备和输出设备。
2. 计算机的工作原理:指令的执行过程、数据的传输和存储方式等。
3. 计算机的性能指标:时钟频率、存储容量、带宽等。
二、计算机网络基础1. 网络的概念和分类:局域网、广域网、互联网等。
2. 网络协议:TCP/IP协议、HTTP协议、FTP协议等常用的网络协议。
3. 网络通信原理:网络拓扑结构、数据传输方式、IP地址等基本概念。
三、数据结构与算法1. 数据结构的概念和分类:线性结构(数组、链表)、非线性结构(树、图)等。
2. 常用数据结构的特点和应用:队列、栈、堆、散列表等。
3. 常见算法:排序算法(冒泡排序、快速排序)、查找算法(二分查找、哈希查找)等。
四、编程语言1. C语言基础:语法、数据类型、控制结构等。
2. 面向对象编程:类、对象、继承、多态等基本概念。
3. 程序设计方法:模块化、抽象、封装等。
五、操作系统1. 操作系统的概念和功能:进程管理、内存管理、文件管理、设备管理等。
2. 常见操作系统:Windows、Linux、Unix等。
3. 进程调度算法:先来先服务、短作业优先、时间片轮转等。
六、数据库基础1. 数据库的概念和分类:关系型数据库、非关系型数据库等。
2. SQL语言基础:数据查询、插入、更新、删除等基本操作。
3. 数据库设计原则:实体关系模型、范式等。
七、软件工程基础1. 软件开发生命周期:需求分析、设计、编码、测试、维护等阶段。
2. 软件测试方法:单元测试、集成测试、系统测试等。
3. 软件项目管理:进度控制、资源分配、风险管理等。
以上是大一计算机专业学生必备的知识点,希望能够对你的学习有所帮助。
计算机组成原理知识点汇总本文将计算机组成原理的知识点做了系统的整理,方便大家系统学习。
如果您正在学习计算机体系结构,可以按照本文的知识点进行扩展学习。
计算机体系结构一、发展历史1.1946 ENIAC2.冯诺依曼EDVAC1)计算机思想:二进制存储控制2)计算机组成控制器运算器存储器输入输出3)时间轴a)代际划分第一代计算机1946-1957 电子管第二代计算机1958-1964 晶体管第三代计算机1965-1972 中、小规模集成电路第四代计算机1972~至今超大规模集成电路b)我国计算机发展2009研发出天河一号2010天河一号A 成为最快计算机2017神威太湖一号位于榜首4)辅助技术:CADCAMCAECAICIMS二、相关计算1.容量单位1B=8 bit1KB = 2^10 B= 1024 BTB PB EB ZB YB BB NB DB2.进制转换1)二进制、八进制、十进制、十六进制2)换算方法:统一换算成十进制,在转换为其他进制十进制转换为二进制十进制除以2 保留余数倒数3)各个进制的小数点转换:当前位数的值*(1/(进制^位数))3.二进制码表示1)原码:表示范围-2^(n-1)-1 ~ 2^(n-1)-1如8位的就是-127~1272)反码:正数的反码等于补码负数的反码等于除符号位以外取反3)补码:正数的补码=反码负数的补码=反码+1表示范围-2^(n-1) ~ 2^(n-1)-1如8位的就是-128~127 -128的补码是1000000 人为规定4)移码补码的符号位取反5)特性00的补码、移码相同6)运算原码运算反码运算补码运算4.校验码1)奇偶校验码:根据1的位数1位数为奇数则是奇数校验码2)循环冗余CRC:多项式模2除法只能检错不能纠错3)海明校验码:有纠错功能5.ASCII编码1)汉字编码6.浮点数表示三、中央处理器CPU1.组成结构1)运算器a)作用:完成算术和逻辑运算,实现数据加工与处理b)组成:i.算术与逻辑计算单元ALUii.累加器AC(为ALU提供工作区,暂存ALU的操作数或运算结果)iii.状态字寄存器PSW:表征当前运算的状态及程序的工作方式一个保存各种状态条件标志的寄存器保存中断和系统工作状态等信息iv.寄存器组v.多路转换器2)控制器a)作用:取指令分析指令执行指令b)指令的组成指令码操作码c)内部寄存器i.程序计数器PC保存下一条指令的地址ii.指令寄存器IR保存当前执行的指令地址iii.指令译码器对IR中的指令的操作码进行译码iv.关系从PC中取出指令地址,送入IR,由译码器译码以后执行3)寄存器组a)数据寄存器DRi.暂时存放由主存储器读出的一条指令或一个数据字ii.作用作为CPU与外部存储设备的中转站弥补CPU与外部存储设备的速度差异b)地址寄存器AR用来保存当前CPU访问的主存的地址,直到主存信息读取完毕4)内部总线2.指令系统1)周期a)时钟周期:振荡周期计算机中最小、最基本的时间单位,一个时钟周期内,CPU只完成一个基本动作b)机器周期:完成一项基本操作的时间c)指令周期:完成一条指令需要的时间2)周期关系一条指令周期包含若干机器周期,一个机器周期包含若干时钟周期指令周期>机器周期>时钟周期3)流水线技术Pipeline程序执行时多条指令重叠进行操作的一种准并行处理实现技术4)指令集a)复杂指令集CISCi.指令系统复杂,指令数目多ii.设有专用寄存器iii.指令字长不固定,指令格式多,寻址方式多iv.可访存指令不受限制v.各种指令的执行时间差大vi.采用微程序控制器vii.难以用优化编译生成高效的目标代码b)精简指令集RISCi.选取使用频度较高的简单指令以及很有用但不复杂的指令ii.指令长度固定,指令格式种类少,寻址方式种类少iii.只有取数、存数指令访问存储器,其余指令的操作都在寄存器中完成iv.CPU 中有多个通用寄存器v.采用流水线技术,大部分指令在一个时钟周期内完成vi.控制器采用组合逻辑控制为主vii.采用优化编译技术3.寻址方式1)数据寻址a)立即寻址:操作数包含在指令中b)直接寻址:操作数位于内存中,指令中直接给出操作数的内存地址c)间接寻址:操作数位于内存中,指令中给出操作数地址的地址d)寄存器寻址:操作数存放寄存器中,指令中给出存放操作数的寄存器名e)寄存器间接寻址:操作数存放在内存中,操作数的内存地址位于某个寄存器中f)变址寻址:指令给出的形式地址A 与编制寄存器Rx 的内容相加,形成操作数有效地址;应用广泛如一组连续存放在主存中的数据g)基址寻址基址寄存器Rb 的内容与形式地址A 相加,形成操作数有效地址;基址寻址和变址寻址在形成有效地址时所用的算法是相同的;变址寻址是面向用户的,用于访问字符串、向量和数组等成批数据;基址寻址用于逻辑地址和物理地址的变换,解决程序在主存中的再定位和扩大寻址空间h)相对寻址:基址寻址的一种变通,由程序计数器PC 提供基准地址i)隐含寻址:指令中不明显地给出操作数的地址,其操作数的地址隐含在操作码或某个寄存器中j)堆栈寻址2)指令寻址a)顺序寻址:程序计数器PC +1b)跳跃寻址:程序转移执行时的指令寻址方式,它通过转移类指令实现4.性能指标1)主频a)计算机的时钟频率b)时钟周期=1/主频c)单位是GHzd)时钟频率为1GHz,时钟信号周期等于1ns 时钟频率为2GHz,时钟周期为0.5ns2)字长8位32位64位3)MIPS:每秒处理百万级的机器语言指令数4)MFLOPS:每秒百万个浮点操作,反映浮点运算情况5)CPI:每条指令的时钟周期数6)平均无故障时间MTBF:Mean Time Between Failure多次相继失效之间的平均时间该指标和故障率衡量系统的可靠性7)平均修复时间MTTR:多次故障发生到系统修复后的平均时间间隔。
可编辑修改精选全文完整版第一章计算机系统概论1. 什么是计算机系统、计算机硬件和计算机软件?硬件和软件哪个更重要?解:P3计算机系统:由计算机硬件系统和软件系统组成的综合体。
计算机硬件:指计算机中的电子线路和物理装置。
计算机软件:计算机运行所需的程序及相关资料。
硬件和软件在计算机系统中相互依存,缺一不可,因此同样重要。
5. 冯•诺依曼计算机的特点是什么?解:冯•诺依曼计算机的特点是:P8●计算机由运算器、控制器、存储器、输入设备、输出设备五大部件组成;●指令和数据以同同等地位存放于存储器内,并可以按地址访问;●指令和数据均用二进制表示;●指令由操作码、地址码两大部分组成,操作码用来表示操作的性质,地址码用来表示操作数在存储器中的位置;●指令在存储器中顺序存放,通常自动顺序取出执行;●机器以运算器为中心(原始冯•诺依曼机)。
7. 解释下列概念:主机、CPU、主存、存储单元、存储元件、存储基元、存储元、存储字、存储字长、存储容量、机器字长、指令字长。
解:P9-10主机:是计算机硬件的主体部分,由CPU和主存储器MM合成为主机。
CPU:中央处理器,是计算机硬件的核心部件,由运算器和控制器组成;(早期的运算器和控制器不在同一芯片上,现在的CPU内除含有运算器和控制器外还集成了CACHE)。
主存:计算机中存放正在运行的程序和数据的存储器,为计算机的主要工作存储器,可随机存取;由存储体、各种逻辑部件及控制电路组成。
存储单元:可存放一个机器字并具有特定存储地址的存储单位。
存储元件:存储一位二进制信息的物理元件,是存储器中最小的存储单位,又叫存储基元或存储元,不能单独存取。
存储字:一个存储单元所存二进制代码的逻辑单位。
存储字长:一个存储单元所存二进制代码的位数。
存储容量:存储器中可存二进制代码的总量;(通常主、辅存容量分开描述)。
机器字长:指CPU一次能处理的二进制数据的位数,通常与CPU的寄存器位数有关。
指令字长:一条指令的二进制代码位数。
计算机组成原理知识点汇总
计算机组成原理是一门计算机科学基础课程,它主要涉及计算机硬件结构和系统软件两个方面。
以下是一些知识点的汇总:
1. 计算机的基本组成:包括运算器、控制器、存储器和输入输出设备。
2. 计算机的存储器层次结构:主要包括寄存器、高速缓存、内存和外存,每一级存储器速度和价格都有所不同。
3. CPU的工作原理:CPU主要由控制器和ALU两部分组成,通过不同的指令和数据进行运算和控制,实现程序的执行。
4. 指令系统和编程:计算机执行的所有程序都是由一系列指令组成的,不同的指令可以执行不同的操作。
5. 总线和I/O系统:总线是连接不同部件的主要通道,而I/O系统则负责计算机与外部设备的数据传输和控制。
6. 中断和异常:计算机系统在执行程序时可能会遇到不正常的情况,这时就需要通过中断和异常机制来处理。
7. 计算机系统的性能分析与优化:通过各种性能指标和分析方法,可以对计算
机系统的性能进行评估和优化,以实现更高效的计算。
以上是计算机组成原理中的一些重要知识点,掌握它们对于理解计算机硬件和系统软件的设计和优化有重要的作用。
大学计算机科学知识点归纳1. 计算机科学基础1.1 计算机组成原理- 计算机硬件:CPU、内存、I/O设备、存储器等- 计算机指令:机器指令、汇编指令、高级指令等- 计算机体系结构:冯诺依曼结构、哈佛结构等1.2 数据结构与算法- 线性结构:数组、链表、栈、队列、串等- 非线性结构:树、图、哈希表等- 算法:排序算法、查找算法、图算法等1.3 计算机网络- 网络结构:OSI七层模型、TCP/IP四层模型等- 网络设备:交换机、路由器、网关等1.4 操作系统- 进程管理:进程、线程、进程调度、死锁等- 内存管理:内存分配、回收、虚拟内存等- 文件系统:文件、目录、文件系统结构等- 设备管理:设备驱动、I/O调度等2. 编程语言与编译原理2.1 编程语言- 高级语言:C、C++、Java、Python等- 低级语言:汇编、机器码等2.2 编译原理- 词法分析:词法单元、词法分析器等- 语法分析:语法规则、语法分析树、分析算法等- 中间代码生成与优化:三地址码、SSA等- 目标代码生成:汇编代码、机器代码等3. 软件工程- 软件开发过程:需求分析、设计、编码、测试、维护等- 软件设计模式:面向对象设计模式、架构模式等- 软件项目管理:项目计划、进度控制、风险管理等- 软件质量保证:代码审查、测试策略等4. 数据库系统- 数据库概念:数据模型、实体-关系模型、关系模型等- 数据库设计:范式、E-R图、SQL等- 数据库查询:SQL查询、视图、索引等- 数据库事务:ACID属性、并发控制、故障恢复等5. 人工智能与机器- 人工智能基础:知识表示、推理、搜索算法等- 机器算法:线性回归、决策树、神经网络等- 自然语言处理:分词、词性标注、命名实体识别等- 计算机视觉:图像处理、目标检测、人脸识别等6. 计算机科学其他领域- 并行与分布式系统:进程并发、分布式算法、云计算等- 网络安全:加密算法、防火墙、入侵检测等- 物联网:传感器、嵌入式系统、物联网协议等- 人机交互:用户界面设计、交互技术、虚拟现实等以上是对大学计算机科学知识点的简要归纳,希望对您有所帮助。
《计算机组成原理》总结完整版《计算机组成原理》学科复习总结★第⼀章计算机系统概论本章内容:本章主要讲述计算机系统的组成、计算机系统的分层结构、以及计算机的⼀些主要指标等需要掌握的内容:计算机软硬件的概念,计算机系统的层次结构、体系结构和计算机组成的概念、冯.诺依曼的主要思想及其特点、计算机的主要指标本章主要考点:概念1、当前的CPU由哪⼏部分组成?控制器、运算器、寄存器、cache (⾼速缓冲存储器)2、⼀个完整的计算机系统应包括哪些部分?配套的硬件设备和软件系统3、什么是计算机硬件、计算机软件?各由哪⼏部分组成?它们之间有何联系?计算机硬件是指计算机的实体部分,它由看得见摸得着的各种电⼦元器件,各类光、电、机设备的实物组成。
主要包括运算器(ALU)、控制器(CU)、存储器、输⼊设备和输出设备五⼤组成部分。
软件是计算机程序及其相关⽂档的总称,主要包括系统软件、应⽤软件和⼀些⼯具软件。
软件是对硬件功能的完善与扩充,⼀部分软件⼜是以另⼀部分软件为基础的再扩充。
4、冯·诺依曼计算机的特点●计算机由运算器、存储器、控制器、输⼊设备和输出设备五⼤部件组成●指令和数据以同等地位存于存储器内,可按地址寻访●指令和数据⽤⼆进制表⽰●指令由操作码和地址码组成,操作码⽤来表⽰操作的性质,地址码⽤来表⽰操作数在存储器中的位置●指令在存储器内按顺序存放●机器以运算器为中⼼,输⼊输出设备和存储器间的数据传送通过运算器完成5、计算机硬件的主要技术指标●机器字长:CPU ⼀次能处理数据的位数,通常与CPU 中的寄存器位数有关●存储容量:存储容量= 存储单元个数×存储字长;MAR(存储器地址寄存器)的位数反映存储单元的个数,MDR(存储器数据寄存器)反映存储字长主频吉普森法●运算速度MIPS 每秒执⾏百万条指令CPI 执⾏⼀条指令所需的时钟周期数FLOPS 每秒浮点运算次数◎第⼆章计算机的发展及应⽤本章内容:本章主要讲述计算机系统、微型计算机系统的发展过程以及应⽤。
计算机组成原理考研知识点-非常全汇编一、计算机系统概述1.计算机的基本组成:计算机硬件系统、计算机软件系统、操作系统。
2.计算机的主要性能指标:运算速度、存储容量、输入输出能力、数据传输速率。
3.计算机的应用和发展趋势:人工智能、大数据、云计算、物联网等。
二、运算方法1.数值数据的表示:二进制数、十进制数、十六进制数、非数值数据的表示:字符、图形、音频、视频等。
2.运算方法:二进制数的运算、十进制数的运算、浮点数的运算、逻辑运算。
三、存储系统1.存储器的分类和特点:半导体存储器、磁表面存储器、光存储器。
2.内存储器的组成和编址方式:单元地址、字地址、字节地址、位地址。
3.外存储器的组成和特点:硬盘、U盘、移动硬盘等。
四、指令系统1.指令的组成和格式:指令操作码、指令地址码。
2.指令的分类和功能:算术运算指令、逻辑运算指令、移位指令等。
3.寻址方式:立即寻址、直接寻址、间接寻址等。
五、中央处理器1.CPU的组成和功能:运算器、控制器、寄存器组。
2.CPU的工作原理:指令的读取和执行、指令流水线技术。
3.CPU的性能指标:吞吐量、响应时间、时钟频率等。
六、输入输出系统1.I/O设备的分类和特点:键盘、鼠标、显示器等。
2.I/O接口的分类和功能:数据缓冲区、控制缓冲区、状态缓冲区等。
3.I/O方式:程序控制I/O、中断I/O、直接内存访问。
七、总线与主板1.总线的分类和功能:数据总线、地址总线、控制总线。
2.总线的基本组成和特点:单总线结构、多总线结构。
3.主板的组成和功能:芯片组、BIOS芯片、总线扩展插槽等。
八、并行计算机的组成和工作原理1.并行计算机的分类和特点:多处理器系统、分布式系统。
2.并行计算机的组成和工作原理:并行处理机、并行存储器等。
3.并行计算机的性能指标:并行度、吞吐量、响应时间等。
1、硬件:输入输出设备,控制器,存储器,运算器。
2、计算机技术指标:机器字长、存储容量、运算速度。
3、多总线结构的原理:双总线结构特点是将速度较低的I/O设备从单总线上分离出来,形成主存总线和I/O总线分开的结构。
三总线1由主存总线用于CPU与主存之间的传输,I/O总线供CPU与各类I/O 设备之间传递信息,DMA总线用于高速IO设备与主存之间直接交换信息,任意时刻只能用一种总线,主存总线与DMA总线不能同时对主存进行存取。
三总线2CPU与Cache之间构成局部总线,而且还直接连到系统总线上,cache可通过系统总线与主存传输信息,还有一条扩展总线可以连接IO设备。
四总线由局部总线,系统总线,告诉总线,扩展总线构成。
4、总线判优分为集中式和分布式两种,集中式分为链式查询、计数器定时查询、独立请求方式(排队器)5、总线通信控制的四种方式:同步通信,异步通信,半同步通信,分离式通信。
6、波特率是每秒传输的位数,比特率是每秒传输的有效数据位数(bps)7、存储器技术指标:存储速度,存储容量和位价。
8、存储器分为主存,闪存,辅存和缓存。
9、分层原因:1缓存-主存层解决CPU与主存速度不匹配问题;2主存-辅存层解决系统存储容量的问题。
10、主存的技术指标:存储容量,存储速度(存取时间和存取周期表示)。
11、存储器带宽的计算方法:如存取周期为500ns,每个存取周期可访问16位,则带宽为32M位/秒。
带宽是衡量数据传输率的重要技术指标。
12、动态RAM的刷新方式:集中刷新(是在规定的一个刷新周期内,对全部存储单元集中一段时间逐行进行刷新,此刻必须停止读写操作‘死时间’)分散刷新(指对每行存储单元的刷新分散到每个存取周期内完成。
不存在死时间,整个系统速度降低)异步刷新(前两种方式的结合,即可缩短死时间,又充分利用最大刷新间隔为2ms的特点)。
13、动态RAM集成度远高于静态RAM;动态RAM行列地址按先后顺序输送,减少了芯片引脚,封装尺寸也减少;动态RAM功耗比静态RAM小;动态RAM的价格比静态RAM便宜;由于使用动态元件,因此速度比静态RAM低;动态RAM需要再生,需配置再生电路,也需要消耗一部分功率。
计算机组成原理知识点总结计算机组成原理是计算机科学与技术专业的一门重要课程,涉及到计算机硬件的各个方面。
下面是对计算机组成原理的一些常见知识点的总结:1. 计算机的基本组成:计算机由中央处理器(CPU)、存储系统(主存储器和辅助存储器)、输入设备和输出设备组成。
2. 中央处理器(CPU):CPU是计算机的核心部件,负责执行指令和控制计算机的运算。
它包括运算器和控制器两个主要部件。
3. 存储系统:存储系统用于存储和访问计算机的数据和程序,分为主存储器(RAM)和辅助存储器(硬盘、固态硬盘等)两种。
主存储器是CPU直接访问的内存空间,辅助存储器则用于长期存储数据。
4. 输入设备和输出设备:输入设备将外部数据和指令输入到计算机中,输出设备将计算机处理后的结果输出给用户。
常见的输入设备有键盘、鼠标等,输出设备有显示器、打印机等。
5. 数据表示与运算:计算机使用二进制系统来表示和处理数据。
常见的数值表示方法有原码、反码和补码。
计算机可以对数据进行加、减、乘、除等基本运算。
6. 指令与程序:计算机通过指令集来执行各种操作。
指令包括操作码和操作数,操作码表示要执行的操作,操作数表示操作的对象。
程序是一系列指令的集合,通过指令的顺序执行来实现特定功能。
7. 控制器:控制器负责解析和执行指令,控制计算机的各个部件的动作,保证指令的正确执行顺序。
控制器包括指令寄存器、程序计数器和时序控制等模块。
8. 总线:计算机中各个部件之间通过总线进行数据和控制信号的传输。
主要包括数据总线、地址总线和控制总线三种。
9. 中断和异常:中断是指计算机在执行中断指令或外部事件发生时,强制暂停当前程序的执行,转而执行中断处理程序。
异常是指计算机执行指令时遇到的错误或特殊情况,需要进行异常处理。
10. 存储器层次结构:计算机的存储器层次结构包括寄存器、高速缓存、主存储器和辅助存储器等多个层次。
不同层次的存储器根据访问速度和容量等特点,提供不同级别的数据存储和访问。
内部资料,转载请注明出处,谢谢合作;一、计算机系统概述(一)计算机发展历程了解知识点一:第一台计算机 ENIAC知识点二:冯诺依曼VanNeumann首次提出存储程序的概念,将数据和程序一起放在存储器中,使得编程更加方便;50多年来,虽然对冯诺依曼机进行了很多改革,但结构变化不大,仍然称为冯诺依曼机;知识点三:一般把计算机的发展分为四个阶段:第一代1946-50‘s后期:电子管计算机时代;第二代50‘s中期-60’s后期:晶体管计算机时代;第三代60‘s中期-70’s前期:集成电路计算机时代;第四代70‘s初-:大规模集成电路计算机时代;知识点四:冯·诺依曼计算机的特点冯·诺依曼体系计算机的核心思想是“存储程序”的概念;它的特点如下:1 计算机由运算器、存储器、控制器和输入设备、输出设备五大部件组成;2 指令和数据都用二进制代码表示;3 指令和数据都以同等地位存放于存储器内,并可按地址寻访;4 指令是由操作码和地址码组成,操作码用来表示操作的性质,地址码用来表示操作数所在存储器中的位置;5 指令在存储器内是顺序存放的;6 机器以运算器为核心,输入输出设备与存储器的数据传送通过运算器;(二)计算机系统层次结构了解计算机系统的层次结构,通常可有五个以上的层次,在每一个层次上都能进行程序设计;由下自上可排序为:第一级微程序机器级,微指令由机器直接执行,第二级传统机器级,用微程序解释机器指令,第三级操作系统级,一般用机器语言程序解释作业控制语句,第四级汇编语言机器级,这一级由汇编程序支持和执行,第五级高级语言机器级,采用高级语言,由各种高级语言编译程序支持和执行;还可以有第六级应用语言机器级,采用各种面向问题的应用语言;1.计算机硬件的基本组成图中实线为控制线,虚线为反馈线,双线为数据线;图中各部件的功能是:1 运算器用来完成算术运算和逻辑运算,并将运算的中间结果暂存在运算器内;2 存储器用来存放数据和程序;3 控制器用来控制、指挥程序和数据的输入、运行及处理运算结果;4 输入设备用来将人们熟悉的信息形式转换为机器能识别的信息形式,常见的有键盘、鼠标等;5 输出设备可将机器运算结果转换为人们熟悉的信息形式如打印机输出、显示器输出等;计算机的五大部件在控制器的统一指挥下,有条不紊地自动工作;由于运算器和控制器在逻辑关系和电路结构上联系十分紧密,尤其在大规模集成电路制作工艺出现后,这两大部件往往制作在同一芯片上,因此,通常将他们合起来统称为中央处理器,简称CPU;把输入设备与输出设备简称为I/O 设备;因此,现代计算机可认为由三大部分组成:CPU、I/O设备及主存储器MM;CPU与MM合起来称为主机,I/O设备叫作外设;存储器分为主存储器MM和辅助存储器;主存可直接与CPU交换信息,辅存又叫外存;2.计算机软件的分类计算机的软件通常又分为两大类:系统软件和应用软件;系统软件又称为系统程序,主要用来管理整个计算机系统,监视服务,使系统资源得到合理调度,确保高效运行;它包括:标准程序库、语言处理程序、操作系统、服务性程序、数据库管理系统、网络软件等等;应用软件又称为应用程序,它是用户根据任务所编制的各种程序;3.计算机的工作过程1.运算器运算器包括三个寄存器和一个算逻单元ALU;其中ACC为累加器,MQ为乘商寄存器,X为操作数寄存器;这三个寄存器在完成不同运算时,所存放在操作数类别也各不相同;2.存储器主存储器包括存储体、各种逻辑部件及控制电路等;主存的工作方式就是按存储单元的地址号来实现对存储字各位的存写入、取读出;这种存取方式叫做按地址存取,也即按地址访问存储器简称访存;为了能实现按地址访问的方式,主存中还必须配置两个寄存器MAR和MDR;MAR是存储器地址寄存器,用来存放欲访问的存储单元的地址,其位数对应存储单元的个数;MDR是存储器数据寄存器,用来存放从存储体某单元取出的代码或者准备往某存储单元存入的代码,其位数与存储字长相等;要想完整地完成一个取或存操作;3.控制器控制器是计算机组成的神经中枢,由它指挥全机各部件自动、协调地工作;具体而言,它首先要命令存储器读出一条指令,这叫取指过程;接着对这条指令进行分析,指出该指令要完成什么样的操作,并按寻址特征指明操作数的地址,这叫分析指令过程;最后根据操作数所在的地址,取出操作数并完成某种操作,这叫作执行过程;以上就是通常所说的完成一条指令操作的取指、分析和执行三阶段; 控制器由程序计数器PC,指令寄存器IR以及控制单元CU几部分组成;PC 用来存放当前欲执行指令的地址, 它与主存的MAR之间有一条直接通路,且具有自动加1的功能, 即可自动形成下一条指令的地址;IR用来存放当前的指令, IR 的内容来自主存的MDR;IR中的操作码送到CU,用来分析指令;其地址码作为操作数的地址送至存储器的MAR; CU用来分析当前指令所需完成的操作,并发出各种微操作命令序列,用以控制所有被控对象;4.I/OI/O子系统包括各种外部设备及相应的接口;每一种设备都是由I/O接口与主机联系的,它接受CU发出的各种控制命令完成相应的操作;计算机的解题过程如下:首先把构成程序的有序指令和数据,通过键盘输入到主存单元中,并置PC的初值为0即令程序的首地址为0;启动机器后,计算机便自动按存储器中所存放的指令顺序,有序地逐条完成取指令、分析指令和执行指令,直至执行到程序的最后一条指令为止;(三)计算机性能指标1. 吞吐量、响应时间1 吞吐量:单位时间内的数据输出数量;2 响应时间:从事件开始到事件结束的时间,也称执行时间;2. CPU时钟周期、主频、CPI、CPU执行时间1 CPU时钟周期:机器主频的倒数,Tc2主频:CPU工作主时钟的频率,机器主频Rc3CPI:执行一条指令所需要的平均时钟周期4CPU执行时间:T CPU=In×CPI×T CIn执行程序中指令的总数CPI执行每条指令所需的平均时钟周期数T C时钟周期时间的长度3. MIPS、MFLOPS1MIPS:MIPSMillion Instructions Per SecondMIPS = In/Te×106= In/In×CPI×Tc×106= Rc/CPI×106Te:执行该程序的总时间In:执行该程序的总指令数Rc:时钟周期Tc的到数MIPS只适合评价标量机,不适合评价向量机;标量机执行一条指令,得到一个运行结果;而向量机执行一条指令,可以得到多个运算结果;2 MFLOPS:MFLOPSMillion Floating Point Operations Per SecondMFLOPS=Ifn/Te×106Ifn:程序中浮点数的运算次数MFLOPS测量单位比较适合于衡量向量机的性能;一般而言,同一程序运行在不同的计算机上时往往会执行不同数量的指令数,但所执行的浮点数个数常常是相同的;二、数据的表示和运算(一)数制与编码1.进位计数制及其相互转换2.真值和机器数3.BCD码4.字符与字符串5.校验码(二)定点数的表示和运算1.定点数的表示无符号数的表示;有符号数的表示;2.定点数的运算定点数的位移运算;原码定点数的加/减运算;补码定点数的加/减运算;定点数的乘/除运算;溢出概念和判别方法;(三)浮点数的表示和运算1.浮点数的表示浮点数的表示范围;IEEE754标准2.浮点数的加/减运算(四)算术逻辑单元ALU1.串行加法器和并行加法器2.算术逻辑单元ALU的功能和机构三、存储器层次机构cache-主存-外存的层次结构、cache的三种不同映象方式、主存芯片的子扩展和位扩展方案设计以及续存相关地址转换的内容是重点(一)存储器的分类1.按存储介质分1半导体存储器;存储元件由半导体器件组成的叫半导体存储器;其优点是体积小、功耗低、存取时间短;其缺点是当电源消失时,所存信息也随即丢失,是一种易失性存储器;2磁表面存储器;按载磁体形状的不同,可分为磁盘、磁带和磁鼓;现代计算机已很少采用磁鼓;由于用具有矩形磁滞回线特性的材料作磁表面物质,它们按其剩磁状态的不同而区分“0”或“1”,而且剩磁状态不会轻易丢失,故这类存储器具有非易失性的特点;3 磁芯存储器不用了4光盘存储器;光盘存储器是应用激光在记录介质磁光材料上进行读写的存储器,具有非易失性的特点;光盘记录密度高、耐用性好、可靠性高和可互换性强等; 2.按存取方式分类按存取方式可把存储器分为随机存储器、只读存储器、顺序存储器和直接存取存储器四类;1随机存储器RAMRandom Access Memory;RAM是一种可读写存储器, 其特点是存储器的任何一个存储单元的内容都可以随机存取,而且存取时间与存储单元的物理位置无关;计算机系统中的主存都采用这种随机存储器;由于存储信息原理的不同, RAM又分为静态RAM 以触发器原理寄存信息和动态RAM以电容充放电原理寄存信息;2只读存储器ROMRead only Memory;只读存储器是能对其存储的内容读出,而不能对其重新写入的存储器;这种存储器一旦存入了原始信息后,在程序执行过程中,只能将内部信息读出,而不能随意重新写入新的信息去改变原始信息;因此,通常用它存放固定不变的程序、常数以及汉字字库,甚至用于操作系统的固化;它与随机存储器可共同作为主存的一部分,统一构成主存的地址域;只读存储器分为掩膜型只读存储器MROMMasked ROM、可编程只读存储器PROMProgrammable ROM、可擦除可编程只读存储器EPROMErasable Programmable ROM、用电可擦除可编程的只读存储器EEPROMElectrically Erasable Programmable ROM;以及近年来出现了的快擦型存储器Flash Memory,它具有EEPROM的特点,而速度比EEPROM快得多;3串行访问存储器;如果对存储单元进行读写操作时,需按其物理位置的先后顺序寻找地址,则这种存储器叫做串行访问存储器;显然这种存储器由于信息所在位置不同,使得读写时间均不相同;如磁带存储器,不论信息处在哪个位置,读写时必须从其介质的始端开始按顺序寻找,故这类串行访问的存储器又叫顺序存取存储器;还有一种属于部分串行访问的存储器,如磁盘;在对磁盘读写时,首先直接指出该存储器中的某个小区域磁道,然后再顺序寻访,直至找到位置;故其前段是直接访问,后段是串行访问,叫直接存取存储器;3.按在计算机中的作用分类按在计算机系统中的作用不同,存储器又可分为主存储器、辅助存储器、缓冲存储器;(二)存储器的层次化结构主要是为了解决速度匹配问题存储器有3个重要的指标:速度、容量和每位价格,一般来说,速度越快,位价越高;容量越大,位价越低,容量大,速度就越低;上述三者的关系用下图表示:寄存器缓存主存磁盘磁带存储系统层次结构主要体现在缓存-主存-辅存这两个存储层次上,如下图所示:(三)半导体随机存取存储器1.SRAM存储器的工作原理静态RAM由于静态RAM是触发器存储信息,因此即使信息读出后,它仍保持其原状态,不需要再生;但电源掉电时,原存信息丢失,故它属易失性半导体存储器2.DRAM存储器的工作原理(四)只读存储器(五)主存储器与CPU的连接(六)双口RAM和多模块存储器(七)高速缓冲存储器Cache1.程序访问的局部2.Cache的基本工作原理3.Cache和主存之间的映射方式4.Cache中主存块的替换算法5.Cache写策略(八)虚拟存储器1.虚拟存储器的基本概念2.页式虚拟存储器3.段式虚拟存储器4.段页式虚拟存储器5.TLB快表四、指令系统(一)指令格式1.指令的基本格式2.定长操作码指令格式3.扩展操作码指令格式(二)指令的寻址方式1.有效地址的概念2.数据寻址和指令寻址3.常见寻址方式(三)CISC和RISC的基本概念五、中央处理器CPU(一)CPU的功能和基本结构(二)指令执行过程(三)数据通路的功能和基本结构(四)控制器的功能和工作原理1.硬布线控制器2.微程序控制器微程序、微指令和微命令;微指令的编码方式;微地址的形式方式; (五)指令流水线1.指令流水线的基本概念2.超标量和动态流水线的基本概念(一)总线(二)总线概述(三)总线的基本概念总线是连接计算机内部多个部件之间的信息传输线,是各部件共享的传输介质;多个部件和总线相连,在某一时刻,只允许有一个部件向总线发送信号,而多个部件可以同时从总线上接收相同的信息;总线是由许多传输线或通路组成,每条线可传输一位二进制代码,如16条传输线组成的总线,可同时传输16位二进制代码;(四)总线的分类按数据传送方式:并行传输总线和串行传输总线按总线的适用范围:计算机总线,测控总线,网络通信总线按连接部件不同:重点片内总线:片内总线是指芯片内部的总线,如在CPU芯片内部, 寄存器与寄存器之间、寄存器与算术逻辑单元之间都有总线连接;系统总线:系统总线是指CPU、主存、I/O各大部件之间的信息传输线;按传输信息的不同,可分为三类:数据总线、地址总线和控制总线;数据总线用来传输各功能部件之间的数据信息,它是双向传输总线,其位数与机器字长、存储字长有关;数据总线的条数称为数据总线宽度,它是衡量系统性能的一个重要参数;例子:总线宽8位,指令字长16位,CPU需要两次访主存地址总线主要用来指出数据总线上的源数据或目的数据在主存单元的地址或在I/O设备上的地址;它是单向传输的;地址线的位数与存储单元的个数有关,如地址线为20根,则对应的存储单元个数为220;控制总线是用来发出各种控制信号的传输线;对单一控制线来说,传输单向;对控制总线,是双向的;对CPU而言,控制信号既有输入又有输出;通信总线:这类总线用于计算机系统之间或计算机系统与其他系统如控制仪表、移动通讯等之间的通信;(五)总线的组成及性能指标总线的组成:总线组成包括信号线、总线控制器、附属电路;信号线包括数据线、地址线和控制线总线性能指标:1总线宽度:它是指数据总线的根数, 用bit位表示,如8位、16位、32位、64位;2总线带宽:总线的数据传输速率即单位时间内总线上传输数据的位数,通常用每秒传输信息的字节数来衡量,单位为MBps兆每秒;例如,总线频率33MHZ,总线宽度32位4B,则总线带宽334=132MBps;3时钟同步/异步:总线上的数据与时钟同步工作的总线称同步总线,与时钟不同步工作的总线称为异步总线;4总线复用:通常地址总线与数据总线在物理上是分开的两种总线;地址总线传输地址码,数据总线传输数据信息;为了提高总线的利用率,优化设计,特将地址总线和数据总线共用一条物理线路,只是某一时刻该总线传输地址信号,另一时刻传输数据信号或命令信号;这叫总线的多路复用;5信号线数:即地址总线、数据总线和控制总线三种总线数的总和;6总线控制方式:包括并发工作、自动配置、仲裁方式、逻辑方式、计数方式等;7 其他指标:如负载能力问题等;总线结构的三种形式:以CPU为中心的双总线结构:这种结构在I/O设备与主存交换信息时仍然要占用CPU,因此会影响CPU的工作效率;单总线结构:它是将CPU、主存、I/O设备都挂在一组总线上,允许I/O之间、I/O与主存之间直接交换信息;因为只有一组总线,当某一时刻各部件都要占用时,就会出现争夺现象;双总线结构的特点是将速度较低的I/O设备从单总线上分离出来,形成主存总线与I/O总线分开的结构;三总线结构中, 主存总线用于CPU与主存之间的传输;I/O总线供CPU与各类I/O之间传递信息;DMA总线用于高速外设磁盘、磁带等与主存之间直接交换信息;在三总线结构中,任一时刻只能使用一种总线;(六)总线仲裁总线控制总线控制主要包括判优控制和通信控制;总线判优控制可分集中式和分布式两种,前者将控制逻辑集中在一处如在CPU中,后者将控制逻辑分散在与总线连接的各个部件或设备上;集中仲裁方式常见的集中控制有三种优先权仲裁方式:1.链式查询菊花链图中控制总线中有三根线用于总线控制BS总线忙;BR总线请求、BG总线同意,其中总线同意信号BG是串行地从一个I/O接口送到下一个I/O接口;如果BG到达的接口有总线请求,BG信号就不再往下传;意味着该接口获得了总线使用权,并建立总线忙BS信号,表示它占用了总线;这种方式的特点是:只需很少几根线就能按一定优先次序实现总线控制,并且很容易扩充设备,但对电路故障很敏感;2.计数器定时查询计数器定时查询方式如下图所示;它与链式查询方式相比,多了一组设备地址线,少了一根总线同意线BG;总线控制部件接到由BR 送来的总线请求信号后,在总线未被使用BS=0的情况下,由计数器开始计数,向各设备发出一组地址信号;当某个有总线请求的设备地址与计数值一致时,便获得总线使用权,此时终止计数查询;这种方式的特点是:计数可以从“0”开始,此时设备的优先次序是固定的;计数也可以从终止点开始,即是一种循环方法,此外,对电路故障不如链式查询方式敏感,但增加了主控制线设备地址数,控制也较复杂;3.独立请求方式独立请求方式如下图所示;由图可见,每一设备均有一对总线请求线BRi和总线同意线BGi;当设备要求使用总线时,便发出该设备的请求信号;总线控制部件中有一排队电路,可根据优先次序确定响应哪一设备的请求;这种方式的特点是:响应速度快,优先次序控制灵活通过程序改变,但控制线数量多,总线控制更复杂;总线通信控制没要求分布仲裁方式同集中式仲裁相比,分布式仲裁不需要中央仲裁器,而是让各个主设备功能模块都有自己的仲裁号和仲裁电路;需要使用总线时,各个设备的功能模块将自己唯一的仲裁号发送到共享的总线上,各自的仲裁电路再将从仲裁总线上获得的仲裁号和自己的仲裁号相对比,获胜的仲裁号将保留在仲裁总线上,相应设备的总线请求获得响应;分布式仲裁不需要中央仲裁器,每个潜在的主方功能模块都有自己的仲裁号和仲裁器;当它们有总线请求时,把它们唯一的仲裁号发送到共享的仲裁总线上,每个仲裁器将仲裁总线上得到的号与自己的号进行比较;如果仲裁总线上的号大,则它的总线请求不予响应,并撤消它的仲裁号;最后,获胜者的仲裁号保留在仲裁总线上;显然,分布式仲裁是以优先级仲裁策略为基础(七)总线操作和定时总线操作目前在总线上的操作主要有以下几种:1读和写读是将从设备如存储器中的数据读出并经总线传输到主设备如CPU;写是主设备到从设备的数据传输过程;2块传送主设备给出要传输的数据块的起始地址后,就可以利用总线对固定长度的数据一个接一个的读出或写入;3写后读或读后写主设备给出地址一次,就可以进行先写后读或者先读后写操作,先读后写往往用于校验数据的正确性,先写后读往往用于多道程序的对共享存储资源的保护;4广播和广集主设备同时向多个从设备传输数据的操作模式称为广播;广集操作和广播操作正好相反,它将从多个从设备的数据在总线上完成AND或OR操作,常用于检测多个中断源;定时:事件出现在总线上的时序关系;1、同步定时在同步定时协议中,事件出现在总线上的时刻由总线时钟信号来确定;所以包含始终信号线由于采用了公共时钟,每个功能模块什么时候发送或接收信息都由统一时钟规定,因此,同步定时具有较高的传输频率;同步定时适用于总线长度较短、各功能模块存取时间比较接近的情况;2.异步定时在异步定时协议中,后一事件出现在总线上的时刻取决于前一事件的出现,即建立在应答式或互锁机制基础上;在这种系统中,不需要统一的共公时钟信号;总线周期的长度是可变的;(八)总线标准六、输入输出I/O系统(一)I/O系统基本概念(二)外部设备1.输入设备:键盘、鼠标2.输出设备:显示器、打印机3.外存储器:硬盘存储器、磁盘阵列、光盘存储器(三)I/O接口I/O控制器1.I/O接口的功能和基本结构2.I/O端口及其编址(四)I/O方式1.程序查询方式2.程序中断方式中断的基本概念;中断响应过程;中断处理过程;多重中断和中断屏蔽的概念;3.DMA方式DMA控制器的组成;DMA传送过程;4.通道方式七、计算机系统概述(四)计算机发展历程(五)计算机系统层次结构4.计算机硬件的基本组成5.计算机软件的分类6.计算机的工作过程(六)计算机性能指标吞吐量、响应时间;CPU时钟周期、主频、CPI、CPU执行时间;MIPS、MFLOPS;八、数据的表示和运算(五)数制与编码6.进位计数制及其相互转换7.真值和机器数8.BCD码9.字符与字符串10.校验码(六)定点数的表示和运算3.定点数的表示无符号数的表示;有符号数的表示;4.定点数的运算定点数的位移运算;原码定点数的加/减运算;补码定点数的加/减运算;定点数的乘/除运算;溢出概念和判别方法;(七)浮点数的表示和运算3.浮点数的表示浮点数的表示范围;IEEE754标准4.浮点数的加/减运算(八)算术逻辑单元ALU3.串行加法器和并行加法器4.算术逻辑单元ALU的功能和机构九、存储器层次机构(九)存储器的分类(十)存储器的层次化结构(十一)半导体随机存取存储器3.SRAM存储器的工作原理4.DRAM存储器的工作原理(十二)只读存储器(十三)主存储器与CPU的连接(十四)双口RAM和多模块存储器(十五)高速缓冲存储器Cache6.程序访问的局部7.Cache的基本工作原理8.Cache和主存之间的映射方式9.Cache中主存块的替换算法10.Cache写策略(十六)虚拟存储器6.虚拟存储器的基本概念7.页式虚拟存储器8.段式虚拟存储器9.段页式虚拟存储器10.TLB快表十、指令系统(四)指令格式4.指令的基本格式5.定长操作码指令格式6.扩展操作码指令格式(五)指令的寻址方式4.有效地址的概念5.数据寻址和指令寻址6.常见寻址方式(六)CISC和RISC的基本概念十一、中央处理器CPU(六)CPU的功能和基本结构(七)指令执行过程(八)数据通路的功能和基本结构(九)控制器的功能和工作原理3.硬布线控制器4.微程序控制器微程序、微指令和微命令;微指令的编码方式;微地址的形式方式;(十)指令流水线3.指令流水线的基本概念4.超标量和动态流水线的基本概念十二、总线(九)总线概述1.总线的基本概念2.总线的分类3.总线的组成及性能指标(十)总线仲裁1.集中仲裁方式2.分布仲裁方式(十一)总线操作和定时1.同步定时方式。
一、系统概述(一)计算机发展历程(二)计算机系统层次结构1.计算机硬件的基本组成2.计算机软件的分类3.计算机的工作过程(三)性能指标1.吞吐量对网络、设备、端口、虚电路或其他设施,单位时间内成功地传送数据的数量(以比特、字节、分组等测量)。
2.响应时间3.CPU时钟周期(Clock Cycle):又称节拍没冲或T周期,是处理操作的最基本单位,是计算机中最基本的、最小的时间单位。
主频的倒数4.主频: 即CPU内核工作的时钟频率(CPU ClockSpeed)。
CPU的主频表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能力并没有直接关系。
5.CPI (Clock cycle Per Instruction)表示每条计算机指令执行所需的时钟周期。
6.CPU执行时间7.MIPS(Million Instruction per second)每秒执行百万条指令某机器每秒执行300万条指令,则记作3 MIPS8.MFLOPS (Million Floationg-point Operations perSecond,每秒百万个浮点操作)衡量计算机系统的主要技术指标之一。
对于一给定的程序,MFLOPS的定义为:MFLOPS=操作浮点数/(执行时间*10E6)(10E6位10的6次方)。
1.指令周期:执行一条指令所需要的时间,一般由若干个机器周期组成,是从取指令、分析指令到执行完所需的全部时间。
2.机器周期:(又称cpu周期)在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。
例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。
完成一个基本操作所需要的时间称为机器周期。
通常用内存中读取一个指令字的最短时间来规定因而又称总线周期3.在电子技术中,脉冲信号是一个按一定电压幅度,一定时间间隔连续发出的脉冲信号。
脉冲信号之间的时间间隔称为周期;而将在单位时间(如1秒)内所产生的脉冲个数称为频率。
第2章数据的表示和运算主要内容:(一)数据信息的表示1.数据的表示2.真值和机器数(二)定点数的表示和运算1.定点数的表示:无符号数的表示;有符号数的表示。
2.定点数的运算:定点数的位移运算;原码定点数的加/减运算;补码定点数的加/减运算;定点数的乘/除运算;溢出概念和判别方法。
(三)浮点数的表示和运算1.浮点数的表示:浮点数的表示范围;IEEE754标准2.浮点数的加/减运算(四)算术逻辑单元ALU1.串行加法器和并行加法器2.算术逻辑单元ALU的功能和机构2.3 浮点数的表示和运算2.3.1 浮点数的表示(1)浮点数的表示范围•浮点数是指小数点位置可浮动的数据,通常以下式表示:N=M·RE其中,N为浮点数,M为尾数,E为阶码,R称为“阶的基数(底)”,而且R为一常数,一般为2、8或16。
在一台计算机中,所有数据的R都是相同的,于是不需要在每个数据中表示出来。
浮点数的机内表示浮点数真值:N=M ×2E浮点数的一般机器格式:数符阶符阶码值 . 尾数值1位1位n位m位•Ms是尾数的符号位,设置在最高位上。
•E为阶码,有n+1位,一般为整数,其中有一位符号位EJ,设置在E的最高位上,用来表示正阶或负阶。
•M为尾数,有m位,为一个定点小数。
Ms=0,表示正号,Ms=1,表示负。
•为了保证数据精度,尾数通常用规格化形式表示:当R=2,且尾数值不为0时,其绝对值大于或等于0.5。
对非规格化浮点数,通过将尾数左移或右移,并修改阶码值使之满足规格化要求。
浮点数的机内表示阶码通常为定点整数,补码或移码表示。
其位数决定数值范围。
阶符表示数的大小。
尾数通常为定点小数,原码或补码表示。
其位数决定数的精度。
数符表示数的正负。
浮点数的规格化字长固定的情况下提高表示精度的措施:•增加尾数位数(但数值范围减小)•采用浮点规格化形式尾数规格化:1/2≤M <1 最高有效位绝对值为1浮点数规格化方法:调整阶码使尾数满足下列关系:•尾数为原码表示时,无论正负应满足1/2 ≤M <1即:小数点后的第一位数一定要为1。
计算机组成原理(考研期末)知识点总结(一)存储系统1.存储器的基本概念●分类●作用(层次):CACHE 主存辅存●存储介质:磁半导体光●存取方式●随机存取:RAM ROM●串行访问●顺序存取:磁带●直接存取:磁盘●信息可保存性--易失性破坏性读出非●性能指标●存储容量字●单位成本每位成本●存储速度(数据传输率主存带宽)●层次化结构●Cache-主存层次:硬件实现,解决速度不匹配问题●主存-辅存层次:硬件+操作系统实现,解决容量问题,逐渐形成虚拟存储系统2.半导体存储器●存储器芯片的基本结构●译码驱动电路(译码器:扩充容量)●存储矩阵●读写电路●地址线,数据线,片选线,读写控制线●半导体存储器RAM(易失性存储器)●SRAM:触发器存储信息,速度快成本高集成度低,用于高速缓存●DRAM:电容存储信息,需要刷新,速度慢成本低,集成度高,用于主存SDRAM●DRAM的刷新:集中刷新,分散刷新,●异步刷新●不需要CPU控制●行为单位,仅需要行地址●存储器中所有芯片同时刷新●RAM的读写周期●ROM(非易失性存储器)●特点:结构简单,位密度比RAM高,非易失性,可靠性高●类型:MROM,PROM,EPPROM,FLASH MEMORY,SSD3.存储器与CPU的协同工作(提高存储系统的工作速度)●主存与CPU的连接●字扩展●位扩展●线选法●译码片选法●译码器的使用●分析地址空间●字位同时扩展●选择存储器芯片●与CPU进行连接●双口RAM和多模块存储器●多模块存储器●单体多字●多体并行●低位交叉编址●高位交叉编址●双端口RAM●高速缓冲存储器●CACHE局部性原理和性能分析●局部性原理●空间局部性●时间局部性●性能分析●命中率和失效率●CACHE----主存体系的平均访问时间●CACHE工作原理●地址映射方式●全相联●直接相联●组相联●替换算法●RAND随机●FIFO先入先出●LRU最近最少使用●LFU最不经常使用●写策略●命中●全写法●写回法●不命中●写分配法●非写分配法●虚拟存储器(主存和辅存共同构成)(增加存储系统的容量)●基本概念:虚地址(逻辑地址)映射到实地址(物理地址)●解决问题:进程并发问题和内存不够用问题●类型●页式●段式●段页式●虚实地址转换(提高速度)●快表TLB●慢表Page(二)指令系统1.指令格式●操作码和地址码组成一条指令●操作码●定长操作码和扩展操作码●操作码类型2.指令寻址方式●指令寻址(通过PC)●顺序寻址●跳跃寻址●数据寻址●隐含寻址●立即寻址:给寄存器赋初值●直接寻址●间接寻址:扩大寻址范围,便于编制程序●寄存器寻址:指令执行速度更快●寄存器间接寻址●偏移寻址(各寄存器内容+形式地址):基址寻址,变址寻址(处理数组,编制循环程序),相对寻址●堆栈寻址3.CISC和RISC●CISC复杂指令系统计算机(用微程序控制器)●更多更复杂,一般为微程序控制,用于计算机系统●RISC精简指令系统计算机(用硬布线控制器)●指令数目少,字长固定,寻址方式少,寄存器数量多,一般为组合逻辑控制,用于手机(三)中央处理器1.CPU的功能和基本结构●CPU的功能:指令控制,操作控制,时间控制,数据加工,中断处理●运算器●功能:对数据进行加工●基本结构:●算术逻辑单元ALU●暂存寄存器●通用寄存器组●累加寄存器ACC●程序状态字寄存器PSW●移位器,计数器●控制器●功能:取指令,分析指令,执行指令●控制器的基本结构●程序计数器PC●指令寄存器IR●指令译码器,时序系统,微操作信号发生器●存储器地址寄存器MAR●存储器数据寄存器MDR●数据通路的基本结构●专用通路●内部总线2.指令执行过程●指令周期●构成:机器周期、CPU周期——CPU时钟周期、节拍●类型:取指周期,间址周期,执行周期,中短周期●标志触发器FE,IND,EX,INT:区别工作周期●数据流●取指周期:根据PC取出指令代码存放在IR●间址周期:根据IR中指令地址码取出操作数的有效地址●执行周期:根据指令字的操作码和操作数进行相应操作●中断周期:保存断点,送中断向量,处理中断请求●执行方案●单指令周期:串行,指令相同执行时间●多指令周期:串行,指令不同执行时间●流水线方案:隔一段时间启动一条指令,多条指令处于不同阶段,同事并行处理3.数据通路的功能和基本结构(连接路径)●CPU内部总线●单总线●多总线●专用数据通路:多路选择器和三态门●了解各阶段微操作序列和控制信号4.控制器的功能和工作原理●控制器的结构和功能●计算机硬件系统连接关系●控制器的功能:取指令,分析指令,执行指令●控制器的输入和输出●硬布线控制器●硬布线控制单元图:组合逻辑电路+触发器●设计步骤(了解)●分析每个阶段的微操作序列●选择CPU的控制方式●安排微操作序列●电路设计●微程序控制器●基本结构●微地址形成部件●微地址寄存器CMAR●控制存储器CM●微指令寄存器CMDR●微指令的格式●水平型:并行操作●字段直接编码方式●直接编码方式●字段间接编码方式●垂直型:类似机器指令●微指令的地址形成方式●下地址字段指出:断定方式●根据机器指令的操作码形成●基本概念●微命令和微操作●微指令和微周期●主存储器和控制存储器●程序和微程序●寄存器:MAR和CMAR,IR和CMDR●硬布线和微程序的比较(微操作控制信号的实现形式)5.指令流水线●指令流水线的概念●指令执行过程划分为不同阶段,占用不同的资源,就能使多条指令同时执行●表示方法●指令流程图:分析影响流水线的因素●时空图:分析性能●性能指标●吞吐率TP●加速比S●效率E●影响流水线的因素●结构相关(资源冲突)●数据相关(数据冲突)●控制相关(控制冲突)●流水线的分类●按使用级别:部件功能级,处理机级,处理机间●按完成功能:单功能,多功能●按连接方式:动态,静态●按有无反馈信号:线性,非线性●多发技术●超标量流水线技术●超流水线技术●超长指令字技术(四)总线1.总线概念和分类●定义:一组能为多个部件分时共享的公共信息传送线路●分类●按数据传输格式●串行,并行●按功能●片内总线●系统总线●数据总线,地址总线,控制总线●通信总线●按时序控制方式●同步,异步●总线结构●单总线结构——系统总线●双总线结构(通道)●主存总线●IO总线●三总线结构●主存总线●IO总线●DMA总线2.总线的性能指标●总线传输周期(总线周期)●总线带宽●总线宽度(位宽)●总线复用:一种信号线传输不同信息3.总线仲裁●集中仲裁方式●链式查询方式●计数器定时查询方式●独立请求方式●分布仲裁方式4.总线操作和定时●总线传输的四个阶段●申请分配阶段●传输请求●总线仲裁●寻址阶段●传输阶段●结束阶段●定时●同步定时方式(同步通信)●异步定时方式(异步通信)●不互锁●半互锁●全互锁●半同步通信●分离式通信5.总线标准(五)IO系统1.IO系统基本概念●演变过程●早期:分散连接,CUP与IO串行,程序查询方式●接口模块和DMA阶段:总线连接,cpu与io并行,中断方式及DMA方式●具有IO通信结构的阶段●具有IO处理机的阶段●IO系统的基本组成●IO软件——IO指令和通道指令●IO硬件——外设,设备控制器和接口,IO总线等●IO方式简介●程序查询方式:IO与CPU串行,CPU有“踏步等待”现象(由程序控制)●程序中断方式:IO准备数据时CPU继续工作,在指令执行结束时响应中断(由程序控制)●DMA方式:主存与IO交换信息时由DMA控制器控制,在存取周期结束时响应DMA请求(由硬件控制)●通道方式:通过IO指令启动通道,通道程序放在主存中(由硬件控制)2.外部设备●输入设备——键盘,鼠标●输出设备●显示器●分类●阴极射线管(CRT)●液晶(LCD)●发光二极管(LED)●参数●屏幕大小,分辨率,灰度级,刷新频率●显示存储器(VRAM)●容量=分辨率*灰度级位数●带宽=容量*帧频●打印机●外存储器●磁盘存储器●组成●存储区域:磁头,柱面,扇区●硬盘存储器:磁盘驱动器,磁盘控制器,盘片●工作过程:寻址,读盘,写盘对应的控制字,串行读写●性能指标●容量●记录密度●平均存取时间●数据传输率●磁盘阵列RAID——利用磁盘廉价的特点提高存储性能,可靠性和安全性●光盘存储器●固态硬盘SSD——采用FLASH Memory记录数据3.IO接口●主要功能●设备选址功能:地址译码和设备选择●传送命令●传送数据:实现数据缓冲和格式转换●反应IO设备的工作状态●基本结构●设备选择电路,命令寄存器和命令译码器,数据缓冲寄存器DBR,设备状态标记,控制逻辑电路●内部接口和外部接口●编址●统一编址——与存储器共用地址,用访存命令访问IO设备●独立编址:单独使用一套地址,有专门的IO指令●分类●数据传送方式:并行接口,串行接口●主机访问IO设备的控制方式●程序查询接口●中断接口●DMA接口●功能选择的灵活性●可编程接口●不可编程接口4.IO方式●程序查询方式:CPU与IO串行工作,鼠标,键盘●程序中断方式●中断系统●中断的基本概念●工作流程●中断请求●分类●中断请求标记触发器INTR●中断响应●中断响应的条件●中断判优●软件:查询程序●硬件:排队器●优先级的设置●中断处理●中断隐指令●关中断●保存断点PC●引出中断服务程序●中断服务程序●单重中断与多重中断●中断服务程序的具体步骤●中断屏蔽技术●屏蔽字●程序执行轨迹●程序中断方式●工作流程●CPU占用情况●中断响应(隐指令)●中断服务程序●DMA方式●DMA控制器●组成●主存地址计数器:存放要交换数据的主存地址●传送长度计数器:记录传送数据的长度●数据缓冲寄存器:暂存每次传送的数据●DMA请求触发器:设备准备好数据后将其置位●控制/状态逻辑:由控制和时序电路及状态标志组成●中断机构:数据传送完毕后触发中断机构,提出中断请求●主要功能●传送前:接受外设的DMA请求,向CPU发出总线请求,接管总线控制权●传送时:管理总线,控制数据传送,确定主存单元地址及长度,能自动修改对应参数●传送后: 向CPU报告DMA操作的结束●传送过程●预处理:CPU完成寄存器初值设置等准备工作●数据传送:CPU继续执行主程序,DMA控制器完成数据传送●后处理:CPU执行中断服务程序做DMA结束处理。
计算机组成原理白中英复习第一章计算机系统概论电子数字计算机的分类P1通用计算机超级计算机、大型机、服务器、工作站、微型机和单片机和专用计算机;计算机的性能指标P5数字计算机的五大部件及各自主要功能P6五大部件:存储器、运算器、控制器、输入设备、输出设备;存储器主要功能:保存原始数据和解题步骤;运算器主要功能:进行算术、逻辑运算;控制器主要功能:从内存中取出解题步骤程序分析,执行操作;输入设备主要功能:把人们所熟悉的某种信息形式变换为机器内部所能接收和识别的二进制信息形式;输出设备主要功能:把计算机处理的结果变换为人或其他机器所能接收和识别的信息形式;计算机软件P11系统程序——用来管理整个计算机系统应用程序——按任务需要编制成的各种程序第二章运算方法和运算器课件+作业第三章内部存储器存储器的分类P65按存储介质分类:易失性:半导体存储器非易失性:磁表面存储器、磁芯存储器、光盘存储器按存取方式分类:存取时间与物理地址无关随机访问:随机存储器RAM——在程序的执行过程中可读可写只读存储器ROM——在程序的执行过程中只读存取时间与物理地址有关串行访问:顺序存取存储器磁带直接存取存储器磁盘按在计算机中的作用分类:主存储器:随机存储器RAM——静态RAM、动态RAM只读存储器ROM——MROM、PROM、EPROM、EEPROMFlash Memory高速缓冲存储器Cache辅助存储器——磁盘、磁带、光盘存储器的分级P66存储器三个主要特性的关系:速度、容量、价格/位多级存储器体系结构:高速缓冲存储器cache、主存储器、外存储器;主存储器的技术指标P67存储容量:存储单元个数M×每单元位数N存取时间:从启动读写操作到操作完成的时间存取周期:两次独立的存储器操作所需间隔的最小时间 ,时间单位为ns;存储器带宽:单位时间里存储器所存取的信息量,位/秒、字节/每秒,是衡量数据传输速率的重要技术指标;SRAM存储器P67基本存储元:用一个锁存器触发器作为存储元;基本的静态存储元阵列P68双译码方式P68读周期、写周期、存取周期P70DRAM存储器P70基本存储元:由一个MOS晶体管和电容器组成的记忆电路;存储原理:所存储的信息1或0由电容器上的电荷量来体现充满电荷:1;没有电荷:0;一个DRAM存储元的写、读、刷新操作P71DRAM的刷新:集中式刷新和分散式刷新P73存储器容量的扩充P73位扩展——增加存储字长P73字扩展——增加存储字的数量P73字、位扩展P74例题P73只读存储器ROM P80掩模ROM、PROM、EPROM、EEPROM、Flash 存储器P80-86并行存储器P86双端口存储器:指同一个存储器具有两组相互独立的读写控制线路;多模块交叉存储器:连续地址分布在相邻的不同模块内,同一个模块内的地址都是不连续的;对连续字的成块传送可实现多模块流水式并行存取,大大提高存储器的带宽; cache基本原理P92避免 CPU“空等”现象CPU 和主存DRAM的速度差异程序访问的局部性原理cache由高速的SRAM组成cache的基本原理P93命中、未命中、命中率P93例题P94cache与主存的地址映射P94全相联映像:主存中的任一块可以映象到缓存中的任一块;直接映像:每个缓存块可以和若干个主存块对应;每个主存块只能和一个缓存块对应;组相联映像:某一主存块 j 按模 u 映射到缓存的第i 组中的任一块;替换算法P98先进先出算法FIFO:把一组中最先调入cache的块替换出去,不需要随时记录各个块的使用情况,所以实现容易,开销小;近期最少使用算法LRU:将近期内长久未被访问过的行块换出;每行设置一个计数器,cache每命中一次,命中行计数器清零,其它各行计数器增1;当需要替换时,比较各特定行的计数值,将计数值最大的行换出;最不经常使用LFU:被访问的行计数器增加1,换值小的行,不能反映近期cache的访问情况;随机替换:从特定的行位置中随机地选取一行换出; cache的写操作策略P99写回法、全写法、写一次法P99-100第四章指令系统指令系统P103程序、高级语言、机器语言、指令、指令系统、复杂指令系统计算机CISC、精简指令系统计算机RISCP103指令格式P105操作码:指令操作性质的二进制数代码地址码:指令中的地址码用来指出该指令的源操作数地址一个或两个、结果地址及下一条指令的地址;三地址指令、二地址指令、一地址指令、零地址指令;三种二地址指令SS、RR、RSP106指令字长度、机器字长P107例题P110操作数类型P110地址数据、数值数据、字符数据、逻辑数据寻址方式P112确定本条指令的操作数地址,下一条欲执行指令的指令地址指令寻址顺序寻址——PC+1跳跃寻址——转移类指令数据寻址P112-116立即寻址——形式地址就是操作数直接寻址——有效地址由形式地址直接给出隐含寻址——操作数地址隐含在操作码中间接寻址——有效地址由形式地址间接提供寄存器寻址——有效地址即为寄存器编号寄存器间接寻址——有效地址在寄存器中基址寻址——有效地址=形式地址+基地址变址寻址——有效地址=形式地址+变址寄存器的内容相对寻址——有效地址=PC的内容+形式地址堆栈寻址——栈顶指针段寻址例题P118指令的分类119数据处理、数据存储、数据传送、程序控制RISC技术P121RISC——精简指令系统计算机CISC——复杂指令系统计算机RISC指令系统的特点P121第五章中央处理器CPU的功能P127指令控制、操作控制、时间控制、数据加工CPU的基本组成P127控制器、运算器、cacheCPU中的主要寄存器P128数据缓冲寄存器DR、指令寄存器IR、程序计数器PC、数据地址寄存器AR、通用寄存器、状态字寄存器PSW操作控制器的分类P130时序逻辑型:硬布线控制器存储逻辑型:微程序控制器指令周期P131取出并执行一条指令所需的全部时间;指令周期、机器周期、时钟周期P131一个指令周期含若干个机器周期一个机器周期包含若干个时钟周期取指周期数据流P132执行周期数据流P133—138时序信号的作用和体制P141时序信号的基本体制是电位—脉冲制;数据加在触发器的电位输入端D ,打入数据的控制信号加在触发器的时钟脉冲输入端 CP;电位高低表示数据是1还是0,要求打入数据的控制信号来之前电位信号必须已稳定;节拍电位、节拍脉冲P142控制器的控制方式P144同步控制方式:即固定时序控制方式,各项操作都由统一的时序信号控制,在每个机器周期中产生统一数目的节拍电位和工作脉冲;异步控制方式:不受统一的时钟周期节拍的约束;各操作之间的衔接与各部件之间的信息交换采取应答方式;联合控制方式:同步控制和异步控制相结合的方式,大部分指令在固定的周期内完成,少数难以确定的操作采用异步方式;微程序控制原理P145微程序控制是指运行一个微程序来实现一条机器指令的功能;微程序控制的基本思想:仿照计算机的解题程序,把微操作控制信号编制成通常所说的“微指令”,再把这些微指令按时序先后排列成微程序,将其存放在一个只读存储器里,当计算机执行指令时,一条条地读出这些微指令,从而产生相应的操作控制信号,控制相应的部件执行规定的操作;微程序、微指令、微命令、微操作P145机器指令与微指令的关系P150微命令的编码方法P151直接表示法:微指令的每一位代表一个微命令,不需要译码;编码表示法:把一组相斥性的微命令信号组成一个小组即一个字段,然后通过小组字段译码器对每一个微命令信号进行译码,译码输出作为操作控制信号;混合表示法:把直接表示法与字段编码表示法混合使用,以便能综合考虑微指令字长、灵活性、速度等方面的要求;微指令格式P153水平型微指令:是指一次能定义并能并行执行多个微命令的微指令;垂直型微指令:微指令中设置微操作码字段,采用微操作码编译法,由微操作码规定微指令的功能,称为垂直型微指令;垂直型微指令的结构类似于机器指令的结构;硬连线控制器P155基本思想:通过逻辑电路直接连线而产生的,又称为组合逻辑控制方式;这种逻辑电路是一种由门电路和触发器构成的复杂树形逻辑网络;三个输入:来自指令操作码译码器的输出;来自执行部件的反馈信息;来自时序产生器的时序信号,包括节拍电位信号M和节拍脉冲信号T;一个输出:微操作控制信号硬布线控制器的基本原理:某一微操作控制信号C用一个逻辑函数来表达;并行处理技术P161并行性的概念:问题中具有可以同时进行运算或操作的特性;时间并行:让多个处理过程在时间上相互错开,轮流使用同一套硬件设备的各个部件,以加快硬件周转而赢得速度,实现方式就是采用流水处理部件;空间并行:以数量取胜;它能真正的体现同时性时间+空间并行:综合应用;Pentium中采用了超标量流水线技术;流水线的分类P163指令流水线:指指令步骤的并行;将指令流的处理过程划分为取指令、译码、取操作数、执行、写回等几个并行处理的过程段;算术流水线:指运算操作步骤的并行;如流水加法器、流水乘法器、流水除法器等;处理机流水线:是指程序步骤的并行;由一串级联的处理机构成流水线的各个过程段,每台处理机负责某一特定的任务;流水线中的主要问题P164资源相关:指多条指令进入流水线后在同一机器时钟周期内争用一个功能部件所发生的冲突;数据相关:在一个程序中,如果必须等前一条指令执行完毕后,才能执行后一条指令;解决数据相关冲突的办法:为了解决数据相关冲突,流水CPU的运算器中特意设置若干运算结果缓冲寄存器,暂时保留运算结果,以便于后继指令直接使用,称为“向前”或定向传送技术;控制相关:由转移指令引起的;解决控制相关冲突的办法:延迟转移法、转移预测法;例题P165第六章总线系统总线的概念P184总线是构成计算机系统的互联机构,是多个系统功能部件之间进行数据传送的公共通路;总线的分类P184内部总线——CPU内部连接各寄存器及运算部件之间的总线;系统总线——CPU和计算机系统中其他高速功能部件相互连接的总线;按系统传输信息的不同,又可分为三类:数据总线,地址总线和控制总线;I/O总线——中、低速I/O设备之间互相连接的总线;总线性能指标P185总线宽度:指数据总线的根数;寻址能力:取决于地址总线的根数;PCI总线的地址总线为32位,寻址能力达4GB;传输率:也称为总线带宽,是衡量总线性能的重要指标;例题P193总线上信息传送方式P190串行传送:使用一条传输线,采用脉冲传送有脉冲为1,无脉冲为0;连续几个无脉冲的处理方法:位时间;并行传送:每一数据位需要一条传输线,一般采用电位传送电位高为1,电位低为0;分时传送:总线复用、共享总线的部件分时使用总线;总线接口P192I/O接口,也叫适配器,和CPU数据的交换一定是并行的方式,和外设数据的交换可以是并行的,也可以是串行的;总线的仲裁P193集中式仲裁:有统一的总线仲裁器;链式查询方式、计数器定时查询方式、独立请求方式P193—195分布式仲裁:不需要中央仲裁器,每个潜在的主方功能模块都有自己的仲裁器和仲裁号;P195总线的定时P196同步定时:事件出现在总线上的时刻由总线时钟信号来确定;异步定时:后一事件出现在总线上的时刻取决于前一事件的出现,即建立在应答式或互锁机制基础上;PCI总线P200PCI:外围设备互连,PCI总线:连接各种高速的PCI设备;PCI是一个与处理器无关的高速外围总线,又是至关重要的层间总线;它采用同步时序协议和集中式仲裁策略,并具有自动配置能力;PCI总线支持无限的猝发式传送;即插即用;第七章外围设备外围设备的定义和分类P209除了CPU和主存外,计算机系统的每一部分都可作为一个外围设备来看待;外围设备可分为输入设备、输出设备、外存设备、数据通信设备和过程控制设备几大类;磁记录原理P210计算机的外存储器又称磁表面存储设备;所谓磁表面存储,是用某些磁性材料薄薄地涂在金属铝或塑料表面作载磁体来存储信息;磁盘存储器、磁带存储器均属于磁表面存储器;磁性材料上呈现剩磁状态的地方形成了一个磁化元或存储元,是记录一个二进制信息位的最小单位;磁表面存储器的读写原理P211在磁表面存储器中,利用一种称为磁头的装置来形成和判别磁层中的不同磁化状态;通过电-磁变换,利用磁头写线圈中的脉冲电流,可把一位二进制代码转换成载磁体存储元的不同剩磁状态;通过磁-电变换,利用磁头读出线圈,可将由存储元的不同剩磁状态表示的二进制代码转换成电信号输出;磁盘的组成和分类P213硬磁盘是指记录介质为硬质圆形盘片的磁表面存储设备; 它主要由磁记录介质、磁盘控制器、磁盘驱动器三大部分组成;温彻斯特磁盘简称温盘,是一种采用先进技术研制的可移动磁头固定盘片的磁盘机;它是一种密封组合式的硬磁盘,即磁头、盘片、电机等驱动部件乃至读写电路等组装成一个不可随意拆卸的整体;磁盘上信息的分布P215记录面、磁道、扇区P215磁道编号P215磁盘地址由记录面号也称磁头号、磁道号和扇区号三部分组成;磁盘存储器的技术指标P216存储密度:存储密度分道密度、位密度和面密度;道密度:沿磁盘半径方向单位长度上的磁道数,单位道/英寸;位密度:磁道单位长度上能记录的二进制代码位数,单位为位/英寸;面密度:位密度和道密度的乘积,单位为位/平方英寸;平均存储时间=寻道时间+等待时间+数据传送时间P216数据传输率P217例题P217磁盘cacheP218磁盘cache是为了弥补慢速磁盘和主存之间速度上的差异;磁盘阵列RAIDP218RAID:独立磁盘冗余阵列廉价冗余磁盘阵列,或简称磁盘阵列;简单的说, RAID 是一种把多块独立的硬盘物理硬盘按不同方式组合起来形成一个硬盘组逻辑硬盘,从而提供比单个硬盘更高的存储性能和提供数据冗余的技术;组成磁盘阵列的不同方式成为 RAID 级别;RAID 0 提高存储性能的原理是把连续的数据分散到多个磁盘上存取, 这样,系统有数据请求就可以被多个磁盘并行的执行,每个磁盘执行属于它自己的那部分数据请求;这种数据上的并行操作可以充分利用总线的带宽,显着提高磁盘整体存取性能;第八章输入输出系统外围设备的速度分级P236在CPU和外设之间数据传送时加以定时:速度极慢或简单的外设:CPU只需要接受或者发送数据即可;慢速或者中速的设备:可以采用异步定时的方式;高速外设:采用同步定时方式;I/O和主机信息交换方式P237程序查询方式、程序中断方式、直接内存访问DMA方式、通道方式程序查询方式P239数据在CPU和外围设备之间的传送完全靠计算机程序控制;当需要输入/输出时,CPU暂停执行主程序,转去执行设备输入/输出的服务程序,根据服务程序中的I/O指令进行数据传送;这是一种最简单、最经济的输入/输出方式,只需要很少的硬件;但由于外围设备动作很慢,程序进入查询循环时将浪费CPU时间;中断的概念P242中断是指CPU暂时中止现行程序,转去处理随机发生的紧急事件,处理完后自动返回原程序的功能和技术;程序中断方式的原理P242在程序中断方式中,某一外设的数据准备就绪后,它“主动”向CPU发出请求中断的信号,请求CPU暂时中断目前正在执行的程序而进行数据交换;当CPU响应这个中断时,便暂停运行主程序,并自动转移到该设备的中断服务程序;当中断服务程序结束以后,CPU又回到原来的主程序;中断处理过程中的几个问题P243CPU只有在当前一条指令执行完毕后,即转入公操作时才受理设备的中断请求;保存现场P243中断屏蔽P243中断处理过程P243单级中断和多级中断P245单级中断系统中,所有的中断源都属于同一级,所有中断源触发器排成一行,其优先次序是离CPU近的优先权高; 当响应某一中断请求时,执行该中断源的中断服务程序;在此过程中,不允许其他中断源再打断中断服务程序,既使优先权比它高的中断源也不能再打断;多级中断系统是指计算机系统中有相当多的中断源,根据各中断事件的轻重缓急程度不同而分成若干级别,每一中断级分配给一个优先权;优先权高的中断级可以打断优先权低的中断服务程序,以程序嵌套方式工作;一维多级中断是指每一级中断里只有一个中断源,二维多级中断是指每一级中断里又有多个中断源;DMA的基本概念P253直接内存访问DMA是一种完全由硬件执行I/O交换的工作方式;在这种方式中,DMA控制器从CPU完全接管对总线的控制,数据交换不经过CPU,而直接在内存和I/O设备之间进行;DMA方式一般用于高速传送成组数据;DMA方式的优点P253DMA能执行的一些操作P254从外围设备发出DMA请求;CPU响应请求,把CPU工作改成DMA操作方式,DMA控制器从CPU接管总线的控制;由DMA 控制器对内存寻址,即决定数据传送的内存单元地址及数据传送个数的计数,并执行数据传送的操作;发中断,向CPU报告DMA操作的结束;DMA传送方式P254停止CPU访问内存、周期挪用、DMA与CPU交替访内P254 DMA数据传送过程P257传送前预处理;正式传送;传送后处理;P257通道的基本概念P261通道是一个特殊功能的处理器,它有自己的指令和程序专门负责数据输入输出的传输控制,而CPU将“传输控制”的功能下放给通道后只负责“数据处理”功能;这样,通道与CPU 分时使用内存,实现了CPU内部运算与I/O设备的平行工作;通道的功能P253通道具有两种类型的总线:存储总线:承担通道与内存、CPU与内存之间的数据传输任务;通道总线即I/O总线,承担外围设备与通道间的数据传送任务;从逻辑结构上讲,I/O系统一般具有四级连接:CPU与内存通道设备控制器外围设备优先级别:由于大多数I/O设备的读写信号具有实时性,不及时处理会丢失数据;所以通道与CPU同时要求访内时,通道优先权高于CPU;CPU对通道的管理P262CPU是通过执行I/O指令以及处理来自通道的中断,实现对通道的管理;来自通道的中断有两种,一种是数据传送结束中断,另一种是故障中断;通道对I/O模块的管理P262通道通过使用通道指令控制I/O模块进行数据传送操作,并以通道状态字接收I/O模块反映的外围设备的状态;通道的类型P262选择通道、数组多路通道、字节多路通道P263第九章操作系统支持虚拟存储器的概念P282虚拟存储器是借助于磁盘等辅助存储器来扩大主存容量,使之为更大或更多的程序所使用;是一个容量非常大的存储器的逻辑模型,不是任何实际的物理存储器;它指的是主存-外存层次;以透明的方式给用户提供了一个比实际主存空间大得多的程序地址空间;实地址:或物理地址,计算机物理内存的访问地址,由CPU引脚送出,是用于访问主存的地址,对应的存储空间——物理存储空间或主存空间;虚地址:或逻辑地址,在编制程序时独立编址,使用的地址,对应的存储空间——虚存空间或逻辑地址空间;虚地址到实地址的转换过程——程序的再定位;虚存的访问过程P283虚拟存储器的用户程序以虚拟地址编址并存放在辅存中;程序运行时CPU以虚地址访问主存,由辅助硬件找出虚地址和物理地址的对应关系,判断这个虚地址指示的存储单元是否已装入主存:如果在主存,CPU就直接执行已在主存的程序;如果不在,要进行辅存向主存的调度;虚存与cache的异同P283几种虚拟存储器P284段式、页式、段页式页式虚拟存储器P284页、页表:页式虚拟存储系统中,虚地址空间被分成等长大小的页,称为逻辑页;主存空间也被分成同样大小的页,称为物理页;相应地,虚地址分为两个字段:高字段为逻辑页号,低字段为页内地址偏移量;实存地址也分两个字段:高字段为物理页号,低字段为页内地址;通过页表可以把虚地址逻辑地址转换成物理地址;页式虚存地址映射:地址变换时,用逻辑页号作为页表内的偏移地址索引页表,并找到相应物理页号,用物理页号作为实存地址的高字段,再与虚地址的页内偏移量拼接,就构成完整的物理地址;虚页内容若没有调入主存,则计算机启动输入输出系统,把虚地址指示的一页内容从辅存调入主存,再提供CPU访问;转换后援缓冲器P285段式虚拟存储器P286段式虚拟存储器,是以程序的逻辑结构所形成的段如主程序、子程序、过程、表格等作为主存分配单位的虚拟存储器管理方式的存储器;每个段的大小可以不相等;每个程序都有一个段表映象表,用于存放该道程序各程序段从辅存装入主存的状况信息;段表一般驻留在主存中;段式虚存地址映射P287段页式虚拟存储器P287把程序按逻辑单位分段以后,再把每段分成固定大小的页;程序对主存的调入调出是按页面进行的,但它又可以按段实现共享和保护,兼备页式和段式的优点;虚存的替换算法P289虚拟存储器中的替换策略一般采用LRU Least Recent1y Used算法、LFU算法、FIFO算法,或将两种算法结合起来使用;例题P289。
一,冯.诺依曼机的特点:1.计算机由运算器,存储器,控制器和输入设备,输出设备五大部件组成2.指令和数据以同等地位存于存储器内,并可按地址访问3.指令和数据均用二进制代码表示4.指令由操作码和地址码组成,操作码用来表示操作的性质,地址码用来表示操作数在存储器中的位置。
5.指令在存储器内按顺序存放6.以运算器为中心计算机与日常使用的袖珍计算机的本质区别在于自动化程度的高低二,计算机的硬件指标(1)机器字长:C P U一次能处理数据的位数,通常与C P U寄存器位数有关(2)存储容量:包括主存和辅存,是存放二进制代码的总和,可以用位或字节来衡量。
(3)运算速度:可以用MI P S,C PI (每执行一条指令所需要的时钟周期数)或F L OP S (每秒浮点运算次数)。
三,电子管-----晶体管--------中小规模集成电路----------大规模集成电路计算机分类方法很多,按信息的形式可以分为数字计算机和模拟计算机,前者以离散型数字脉冲形式传递,而后者的信息是以连续型电波形式传递的,两者结合为数字模拟混合式计算机。
1 94 6年研制成功的第一台计算机称为EN I A C.数控机床是计算机在过程控制方面的应用,邮局实现信息自动分拣是计算机在模式识别方面的应用。
计算机在过程控制应用中,除计算机外,A/D转换器是重要部件,能把模拟量转换成计算机能识别的信号。
计算机发展至今,虽然与早期相比面貌全非,但存储程序的特点不变四,摩尔定律:微芯片上集成的晶体管数目以每三年翻两番的规律递增,由于受到物理极限的制约,不能永远生效五,什么是总线?特点?总线是连接多个部件的信息传输线,是各个部件共享的传输介质。
而且在某一个时刻允许有一个部件向总线发送信息,但多个部件可以同时从总线上接受相同的信息。
总线周期:申请分配阶段,寻址阶段,传送阶段,结束阶段六,总线控制包括:总线判优控制和总线通信控制。
前者又分为集中式和分布式良种,其中集中式总线判优逻辑有链式查询,计数器定时查询,独立请求方式。
知识点计算机组成原理知识点-计算机组成原理计算机组成原理重要知识点第一章绪论一、冯.诺依曼思想体系――计算机(硬件)由运算器、控制器、存储器、输入输出设备五部分组成,存储程序,按地址出访、顺序继续执行二、总线的概念。
按传送信息的不同如何划分;按逻辑结构如何划分三、冯.诺依曼结构(普林斯顿结构)与哈弗结构的存储器设计思想四、计算机系统的概念,软件与硬件的关系、计算机系统的层次结构(实际机器与交互式机器)五、计算机的主要性能指标的含义(机器字长,数据通路宽度,主存容量,运算速度)六、cpu和主机两个术语的含义,完备的计算机系统的概念,硬件、软件的功能分割七、总线概念和总线分时共享资源的特点、三态门与总线电路第二章数据的机器层次表示一、真值和机器数的概念数的真值变为机器码时存有四种则表示方法:原码表示法,反码表示法,补码表示法,移码则表示码。
其中移码主要用作则表示浮点数的阶码e,以利比较两个指数的大小和对阶操作方式二、一个定点数由符号位和数值域两部分组成。
按小数点位置不同,定点数有纯小数和纯整数两种表示方法。
几种定点机器数的数值则表示范围。
三、浮点数浮点数的标准表示法:符号位s、阶码e、尾数m三个域组成。
其中阶码e通常用移码表示(其值等于指数的真值e加上一个固定偏移值)。
规格化浮点数(原码,补码则表示的规格化浮点数的区别)五、处理字符信息(符号数据即非数值信息),七、常用的bcd码:8421码、2421码、余3码、格雷码(有权码,无权码,特点)八、检错纠错码:奇偶校验(掌握奇偶校验原理及校验位的形成及检测方法),海明码的纠错原理(理解)第三章指令系统一、指令格式:指令的基本格式,指令的地址码结构(3、2、1、0地址指令的区别),非规整型指令的操作码(扩展览会操作码)二、编址方式(位,字节,字…)三、操作数串行方式――立即串行、轻易串行、间接串行、寄存器串行、寄存器间接串行、相对串行、基址寻址、变址寻址、页面寻址四、指令串行方式――顺序对串行方式、弹跳串行方式五、指令类型及功能六、不同的计算机的i/o指令差别很大,通常有两种方式:独立编址方式,统一编址方式第四章数值的机器运算一、为运算器构造的简单性,运算方法中算术运算通常采用补码加减法,原码乘除法或补码乘除法。
1.各种进制之间的转换2.冯诺依曼机器特点,基本思想P81)计算机由五大部件组成:运算器,存储器,控制器,输入设备,输出设备2)指令和数据以同等地位存于存储器,可按地址寻访3)指令和数据用二进制表示4)指令由操作码和地址码组成5)指令在存储器内顺序存放6)以运算器为中心3.总线分类P43总线是连接各个部件的信息传输线,是各个部件共享的传输介质。
1)片内总线:芯片内部的总线(CPU内部,寄存器与寄存器之间,寄存器与逻辑单元)2)系统总线(CPU、主存I/O设备等各大部件间信息传输线)A.数据总线双向数据信息传输,与机器字长,存储字长有关B.地址总线单向由CPU输出C.控制总线双向发出各种控制信号3)通信总线A.串行数据在单条1位宽的传输线上,适用于远距离B.并行数据在多条1位宽的传输线上,适用于近距离4.总线带宽,宽度P46带宽:总线的数据传输速率,通常用每秒传输的字节数来衡量,单位MBps (即为:频率*字节数)◆宽度:数据总线的根数5.总线的判优控制方式P57◆主设备(模块) 对总线有控制权◆从设备(模块) 响应从主设备发来的总线命令◆总线判优控制A.集中式:将逻辑集中在一处(1.链式查询2.计数式定时查询3.独立请求方式)B.分布式:将逻辑分散在各个部件中6.总线通信控制P59◆四种方式A.同步通信:通信双方统一时标控制数据传送B.异步通信:采用应答方式,没有公共时钟标准C.半同步通信:同步异步结合D.分离式通信:各模块有权申请占用总线;采用同步方式通信,不等对方回答;各模块准备数据时,不占用总线;总线被占用时,无空闲;7.总线接口的功能使外部设备或用户电路与微型计算机成为一体,控制数据缓存状态设置,数据转换整理程序中断8.存取周期=存取时间+恢复时间9.存储器分类及其特点P69◆按存储介质分类1)半导体存储器2)磁表面存储器3)磁芯存储器4)光盘存储器◆按存取方式分类1)随机存储器2)只读存储器串行访问存储器◆按在计算机中的作用分类主存储器可与CPU直接交换信息,速度快、容量小、价位高辅助存储器是主存储器的后援存储器,不能与CPU直接交换,速度慢、容量大、价位低缓冲存储器用在两个不同的部件之中起到缓冲作用。
计算机组成原理(考研+期末)重点知识点总结一、Ch01&02: 概论与数据表示●计算机系统组成1.硬件系统●冯·诺依曼思想●提出使用二进制作为计算机数制基础|●二进制运算规则简单●0/1状态更容易用物理状态实现●适合采用布尔代数方法实现运算电路●存储程序将程序存放在计算机的存储器中●程序控制计算机中控制器逐条取出存储器中的指令并按顺序执行●五大部件●运算器运算器完成算术运算,逻辑运算●控制器控制器控制指令的执行,根据指令功能给出实现指令功能所需的控制信号●存储器主存储器存放程序及数据●输入设备●输出设备●系统互联总线(Bus)是连接两个或多个设备的公共通信线路2.软件系统●应用软件●系统软件●操作系统●固件(Firmware)固化的软件,兼具硬件和软件的特性,如BIOS3.层次结构●高层是底层功能的扩展,低层是高层的基础●计算机性能指标与评价1.非时间指标●字长CPU一次操作能处理的最大数据位宽,一般与寄存器、运算器、数据总线的位宽相等●主存容量主存能存储的最大信息量,一般用MxN表示(M表示存储单元数,又称子容量;N表示每个存储单元存储的二进制位数,也称位容量)2.与时间有关的性能指标●时钟周期时钟周期是计算机中最小最基本的时间单元,在一个时钟周期内CPU完成一个最基本的动作时钟周期是时钟频率的倒数,也称节拍周期或T周期,随着主频的提高时钟周期将变短●CPI(Clock Cycles Per Instruction)执行每条指令所需要的平均时钟周期数●计算机数据表示1.进制转换●十进制转二进制真值●整数部分除2取余,倒着取,直到商为0为止●小数部分乘2取整,正着取,直到满足位数或小数部分为0为止2.数值编码●真值用正负号+/-表示正负的二进制数值●机器码将符号和数值一起编码表示的二进制数●原码符号位0正1负,数值位不变●表示区间●定点小数●定点整数●反码符号位与原码相同,数值位上正数与原码相同,负数为原码取反●表示区间与原码一致●补码●模的概念a ≡b (mod m) 模为m●时钟原理:表示负数时可以使用模的性质转换成正数,即把减法变成加法●负数的补码可以用模数加上该负数获得●有字长限制的二进制运算为有模运算,模数为最高位进位的权值●计算机中补码的定义●设定点小数x0.x1x2...xn 其中x0为符号位,该数模数为最高位进位2●根据补码定义可知●扩展至n位定点整数而言●求补码的简便方法●反码法(适合机器运算)当X为负数时,补码等于反码末位加1当x为正数时,补码与原码一致●扫描法(适合手工计算)当X为负数时,对真值部分从右到左扫描,右起第一个1及其右边的0保持不变,左边的真值位全部取反●移码●只能用于定点正数的表示,通常用于表示浮点数的阶码●移码与补码只有符号位相反,其余全相同3.浮点数表示●二进制浮点数采用了类似十进制科学计数法的表示方法●阶码E(Exponent)是定点整数,用移码表示●尾数M(Mantisa)是定点小数,用补码表示●浮点数表示范围●IEEE754标准4.汉字区位码●GB2312编码●双字节编码,16位,其中两个字节的最高位都是1,实际有14位编码空间●实际没有填满,使用94x94的矩阵表示所有汉字字符,矩阵的每一行称为“区”,每一列称为“位”●转换公式:区位码 + A0A0H = GB2312编码●汉字机内码计算机内部存储的汉字编码,如GB系列编码●汉字输入码(外码)使用英文键盘输入汉字的编码,即输入方案●流水码●音码(拼音)●形码(五笔)●音形码●汉字字形码(输出码)输出汉字的图形点阵数据,字形码按区位码排列的二进制文件称为汉字库●数据校验1.码距与校验●校验码在原始数据中引入部分冗余信息用于校验●码距/海明距离一个编码集内两个不同编码对应二进制位不同的个数●校验码的目的在于提高编码集中最小码距●码距越大,抗干扰能力越大,纠错能力越强,数据冗余越大,编码效率越低2.奇偶校验●冗余位:1位校验位P●检验串中1的个数●检错位G=1一定出错●只能提供奇数位错误的检错3.二维奇偶校验/交叉奇偶校验●将一个串分成很多等长的子串,按行分布在二维矩阵里,同时进行行和列的奇偶校验●一个数据位参加多个检验组,发生错误可在多个检测码中反馈4.海明校验5.CRC循环冗余校验●模2运算不考虑进位和借位的运算●生成步骤●1. 将原数值M左移r位得到R●2. 找一个r+1位的二进制串G●3. 用模2除法求R除以G得到的余数填在右边的空白r位上就是冗余码部分●解码将校验码除以生成多项式(约定的二进制串G)后余数为0表示数据正常二、Ch03: 运算器●定点加减法运算1.运算定义●补码加法●补码减法2.溢出检测●监测符号位:正正得负 & 负负得正 -> 溢出●监测进位:符号位进位与数值位进位不同为溢出●双符号位:将符号位扩展成两位进行运算●若相加后两个符号位不同为溢出●符号位最高位永远是正确符号位3.逻辑实现●全加器(FA)带进位的一位加法器●逻辑表达式●逻辑电路●半加器(HA)没有进位输入●多位串行加法器●先行进位加法器●定点乘法运算1.原码一位乘法●符号位:异或●真值部分:普通竖式运算●部分积使用累加寄存器存储2.补码一位乘法●符号位参与运算,可以采用单符号位,双符号位用于溢出检验●运算步骤●先写出[X]补,[-X]补,[Y]补备用,画出运算表格,注意[Y]补要在最右边扩充一个0●判断乘数[Y]补最后两位,决定部分积加哪个数●01:[X]补●00/11:0●10:[-X]补●将部分积和乘数都右移一位,注意左边移出的位接在右边●部分积是算术右移,即符号位扩展右移,且右边没有限制●乘数右边是位宽墙,不需要扩展●重复上述步骤直到乘数不足一位,将最终结果与移出位拼起来形成答案●浮点运算1.浮点加减法运算●阶码和尾数均采用补码表示●对阶:使两浮点数阶数相等,尾数就可以直接相加●规则:小阶向大阶看齐小阶放大,尾数减小,右移损失的是影响较小的低位●步骤●求阶差:减法运算●尾数移位●保留附加位移除的低位部分(的最高位),作为附加位参与中间运算提高精度●通常保留三个保留附加位,从右到左排序(高位到低位)●保护位●舍入位●粘位舍入位右侧还有数则粘位为1,否则为0●尾数运算●结果规格化目的是保证浮点数编码唯一性,真值格式是数据位的最高位一定是1●规格化方法●左移规格化(左规放大)●绝对值小于0.5需要放大●移动(逻辑左移,补0)多少位阶码减多少●注意符号位一起移●右移规格化(右规减小)●绝对值超过1,发生上溢●只需要算术右移(保留符号位)一位,阶码+1●舍入●末位恒置1法只要移位丢失的位中有一位是1,结果末位就是1●0舍1入法丢失位最高位若是1则将尾数末位+1●舍入可能破坏规格化结果,因此需要再次规格化●溢出判断●只有阶码移除才算溢出●当阶码符号位为01或10时结果溢出●IEE754浮点数●阶码用移码表示,尾数用原码表示,且尾数的最高位隐藏●对阶和规格化采用移码的计算规则●尾数隐藏位参与运算,采用原码运算规则2.浮点乘法运算●第一步:阶码相加●第二步:尾数相乘●第三步:规格化舍入三、Ch04: 存储系统●存储系统概述1.存储器的分类●按存储介质●磁存储器包含机械装置,体积大,速度慢,成本低●半导体存储器了解其是什么,不必掌握原理●双极型存储器●MOS存储器●静态MOS存储器(SRAM)●动态MOS存储器(DRAM)●光存储器(光盘)●按存储方式●随机存储器(RAM,Random Access Memory)根据地址随机读写数据单元,访问时间与访问位置顺序无关半导体存储器是随机存储器●顺序存储器(SAM,Sequential Access Memory比如磁带存储器●直接存储器(DAM,Direct Access Memory)不需要顺序搜索就能直接存取信息,兼具RAM和SAM的特性(根据地址读写,但时间和位置并非完全没有关系)磁盘是DAM,由于机械结构的延迟导致其时间和磁头与目标扇区的距离有关●按可写性●读写存储器●只读存储器(ROM,Read-Only Memory)●按可保存性●易失性存储器●非易失性存储器●按功能和速度●寄存器存储器●高速缓冲存储器(高速缓存Cache)隐藏在寄存器和主存之间的高速小容量存储器,用于存放CPU常用或即将使用的指令和数据,一般由SRAM构成,用于缓冲CPU寄存器和主存之间的性能差异●主存储器(主存)CPU除寄存器外唯一能直接访问的存储器,用于存放指令和数据,通过地址直接、随机地读写主存主存一般是半导体存储器,但还包括BIOS和硬件端口等●外存储器(外存/辅助存储器)容量大,但速度块,如磁盘、磁带、光盘、网络存储阵列等2.存储器性能指标●存储容量●位表示法用存储器中存储单元总数与存储字长(每个单元的位数)的乘积表示,如1K*4位(K=1024)●字节表示法带B表示法,1B=8位●存取速度●存取时间(访问时间)启动一次存储器操作到操作完成的时间,注意读写时间可能不同(DRAM读慢写快,闪存读快写慢)●存取周期连续启动两次操作之间最短的间隔时间,略大于存取时间对于主存而言,周期除了包括存取时间还包括状态恢复时间●存储器带宽单位时间内存储器能传输的信息量,与存储时间的长短和一次传输的数据位多少有关一般来说,存取时间越短,数据位宽越大,存储带宽越高3.存储系统层次结构4.DRAM刷新●刷新的概念定期补充电荷以避免电荷泄露(泄露电流)引起的信息丢失●刷新周期●刷新周期是存储器实际完成两次完整刷新的时间间隔●最大刷新周期:信息存储到数据丢失之前的时间间隔●按行刷新动态存储器的刷新按行进行●减少存储矩阵的行数,增加列数,可以减少刷新周期●刷新地址由刷新地址计数器产生,而不是CPU发出,位数与存储芯片的行数有关●每个刷新周期内,刷新地址计数器从0到最大值循环遍历一次●刷新时DRAM不能响应CPU访问,称为死时间●刷新方式由于CPU和内存刷新控制器存在内存争用问题,由不同的解决方案决定了不同的刷新方式●集中刷新●最大刷新周期:2ms●在数据丢失之前集中刷新所有行,即一个最大刷新周期的时间的最后部分全部用于刷新,其余时间用于读写●存在死区(集中刷新的区段CPU长时间无法访问),用于实时要求不高的场合●分散刷新●最大刷新周期:2ms●一次读写操作后紧跟着一个刷新操作,一个读写+刷新操作被称作一个存储周期●刷新次数过多,浪费了时间,用于低速系统●异步刷新(最常用)●最大刷新周期:2ms●各刷新周期分散地安排在一个最大刷新周期中●假设存储矩阵有有128行,每隔2ms/128=15.5微秒刷新一行,将128次刷新分散●主存系统1.主存特征●基本结构●空间逻辑上可以看作一个一维数组,每个数组元素存储一个m位的数据单元,主存地址就是数组的下标索引●硬件结构由存储体(DRAM)和外围电路(包括译码器、数据寄存器和读写控制电路构成)●存储体有2^n个m位的存储单元●地址译码器接受来自CPU的n位地址信号,转换成2^n根地址译码信号,其中每根译码信号都连接一个存储单元,2^n个译码信号中有且只有一个信号有效●数据暂存器暂存CPU送来写入的数据或主存读出的数据●读写控制电路接受CPU的读写控制信号,决定存储器的读写模式●数据存放●存储字长主存中每个存储单元存储的位数●数据字长(字长)计算机一次能处理的二进制位数,存储字长和数据字长不一定相同●地址访问模式存储字长都是字节(8-bit)的整倍数,通常按字节编址●字节地址(8位)●半字地址(16位)●字地址(32位)●小端(Little-Endian)存储数字中低位先存(在地位内存),大端存储与之相反●边界对齐●跨n个字节地址的变量访问需要消耗n个存取周期●对齐后访问速度高,不对齐节约主存空间2.主存的组织与CPU连接●存储器扩展左侧是4片2K x 2位的字长扩展右侧是4片8K x 8位的字数扩展●位扩展(DBUS,字长扩展/数据总线扩展)适用于存储芯片的数据总线位宽小于CPU数据总线位宽●各芯片同时并行工作●字扩展(ABUS,字数扩展/容量扩展/地址总线扩展)适用于存储芯片的单元字长小于要求的存储单元字长●CPU给出地址后,经译码器片选后,同一时刻只有一个芯片在工作●综合扩展●考察重点●根据要求对存储器的组合●不同存储器之间的关系(串联OR并联/多合一OR一分多)3.并行主存系统●SDRAM(同步DRAM,Sync Dynamic Random Access Memory)●普通DRAM的访问过程是CPU给出地址和控制信号 -> 经过存取时间后完成操作,存取时间内CPU只能等待●同步DRAM与CPU的数据交换时钟信号同步,不需要等待●DDR(Double Data Rate)SDRAM●在时钟周期的上/下沿各进行两次数据传输●DDRn代表2^n路总线,提升总带宽●双端口存储器双端口存储器有两组相互独立的端口,分别可独立地进行读写操作●两个端口地址不同时,不会发生冲突,可以并行读写●两个端口地址相同时,发生冲突●每个端口有一个阻塞标志BUSY,置0时表示阻塞,置1表示复位●冲突发生时由逻辑判断哪个端口优先操作,并将另一个端口置0,优先端口操作完成后再复位另一个端口,继续操作●多通道内存技术组织方式与存储扩展中的字长扩展方式一致(并联)●单体多字存储器(联动模式)多个存储模块共享地址总线,因此读取一个地址时可以并行读取到多个模块中同一地址的单元,从而实现在一个周期内访问多个存储字,m个存储模块可以提升m倍带宽●所有存储模块同步并发,共用同一个地址寄存器●单存储周期访问多个存储字,数据线为合并结果●性能线性增长,总线位宽变换●要求内存的容量、频率、时许完全一致●多体多字存储器(非联动模式)两个模块之间通过独立的片选信号、地址总线和读写控制线,数据总线也彼此独立,因此两根内存不需要同步,但仍是并发工作●多体单字存储器(多体交叉存储器/编址方式)由多个容量、存取速度相同的存储模块构成,但彼此之间不是并发运行,根据其编址方式的不同进行分类(把地址中哪一部分交给选片器)●高位多体交叉(顺序编址)●多模块串行,相邻地址在同一存储体内先顺着编完一个模块,再编下一个模块●可以扩充容量,但由于程序具有局部性和连续性的特点,往往会导致一个存储体访问频繁而其他存储器空闲●方便故障隔离,无性能提升●低位多体交叉(交叉编址)●多模块流水并行,相邻地址在不同存储体中●可以扩充容量并提升性能(减少恢复时间的影响)●适合突发的顺序访问,是带cache的主存(SDRAM和多通道内存)编址模式●考察重点:不同编址方式下的带宽计算(时间)●存储周期公式:T=nt●T=存储模块的存储周期●n=交叉模块数(通常为2的幂次方)●t=总线的反应时间/存储体切换时间●顺序编址读写时间:t总=nT●T=存储周期●n=读写的存储字个数●交叉编址读写:t总=T+(n-1)t●T=存储周期●n=读写的存储字个数●t=最短反应时间●带宽:W=B*n/t总●B=总线位宽度●n=读写的存储字个数●t总=读写总时间4.高速缓冲存储器(cache)SRAM相比DRAM速度更快,但容量小、功耗大、价格高,可用于缓冲(cache),缓解主存与CPU之间的性能差异,推而广之,一切有性能差异的地方都可以有cache●cache 工作原理●根据SRAM中cache块的大小,将主存进行分块(块大小与cache块大小相同),并对主存块进行编号●使用cache的理论依据:程序局部性在一段时间内,整个程序的执行仅限于程序中的某一部分,而执行程序所需的指令也仅限于某个存储区域●时间局部性(反复调用)当程序访问一个存储位置时,该程序在未来可能被多次访问(如循环体)●空间局部性(连续存放)一旦程序访问了某个存储单元,其临近的存储单元大概率也即将被访问(代码、数组等数据在主存中均按顺序存放)●cache 读操作流程●CPU接受要读取的地址,解码并在cache中查找地址●如果命中,则根据地址读出cache中数据并返回CPU●如果缺失,则为缺失的数据分配cache块(可能发生块替换),载入内容并更新cache,然后再读取数据返回CPU●cache 写操作流程●CPU接受地址,解码并在cache中寻找对应地址●若查找命中,则直接进行数据写入;若查找缺失,则根据是否采用写分配法进行下一步操作●写分配法(Write-Allocate)需要先将数据块载入cache,重新进行写命中流程●非写分配法则直接将数据写入主存●在写命中后,将数据写入到cache中●若采用写回(Write-Back, WB)策略,则将该cache行的修改位(脏位,Dirty Bit)置为1,并在该cache块被替换时才会将修改写入主存●若采用写穿(Write-Through, WT)策略(又称直写法),当写命中时,同时修改cache和主存中的同一数据块多CPU/多核系统下,各CPU都有自己的cache,因此这种情况下写穿法无法保证其他CPU中cache的同步更新●cache 相关术语●数据命中(Hit)CPU访问的数据在cache中找到●命中访问时间 tc命中时数据访问所需的时间,包括查找时间和cache访问时间●数据缺失(Miss)CPU访问的数据不能在cache中找到●缺失补偿(Miss Penalty)数据缺失时访问所需时间,包括查找时间、主存访问时间和cache访问时间,其中主存访问时间占大头,通常用tm表示●数据块(Block)cache和主存都被分为若干固定大小的数据块(cache和主存中块大小相同),每个块包含若干字(节),以块为单位交换数据,这也是一种预读策略●进行分块后,主存和cache地址都可以用块地址(序号):块内偏移地址(偏移字节数)的二维地址空间进行描述●命中率(Hit Ratio)h=Nc/(Nc+Nm)某程序运行期间,命中cache的次数比上访问主存的总次数●缺失率(Miss Ratio)1-命中率●平均访问时间 ta = htc + (1-h)tm●访问效率 e = tc/ta●各种因素间的关系●cache 命中率与容量的关系●块容量与命中率的关系空间局部性越好,时间局部性越差●地址映射方式与命中率的关系●cache 行/槽(Line/Slot)将一个cache数据块和相关的标记标志信息合称一个cache行●cache 关键技术●数据查找(Data Identification)如何快速判断数据是否在cache中●全相联映射中使用相联存储器(Content Addressable Memory, CAM)实现快速查找●CAM是一种直接按内容进行访问(输入的不是地址而是要查询的key)的存储器,用于存放查找表,其基本存储数据单元是键值对●硬件成本高(比较器多),通常用于存放查找表/全相联cache●存储容量=查找表容量=表项数*表项大小cache中用于存放块表,虚拟存储器中用于存放段/页表●CPU片内缓存●查找表与缓存副本一体●存放cache行(有效位+主存块序号+数据块副本)●片外缓存/片内查找表●查找表与缓存副本分离●只存放查找信息(有效位+主存块序号+cache块地址)●读逻辑实现●Valid位用于判定当前键值对是否有效(若无效直接不输出)●所有存储单元中的Key要与输入的关键字进行并发比较,有n个存储单元就有n个比较器●所有比较器的输出结果取或,输出为Hit结果●将每个比较器的输出结果输入三态门控制端,若Hit成功则输出对应Value●地址映射(Address Mapping)如何将主存数据放入cache行中●全相联(Full Associative Mapping)映射全相联模式下,主存中每一个数据块都可以放入cache中的任意数据块(任意行)中●新的主存数据块可以载入cache中的任意一个空行,只有cache满时才会进行替换,因此利用率最高,但需要CAM提供的快速查找功能,查找成本较高●优点:映射灵活,cache利用率高,冲突率低,命中率高●缺点:淘汰算法复杂,查找成本高●主存地址分为主存块地址/序号(tag,长度为s)和块内偏移量(offset,长度为w)两部分●cache块(数据块副本)应与主存中数据块大小相同,即容纳偏移量最大值数量的字节数,因此cache块大小为2^w字节●主存容量对应为2^(s+w)字节●所有cache行的实际容量为 n*(1+s+8*2^w)位●n:cache行数●1:每行有效位●s:每行tag部分(主存块序号)●8*2^w:数据块容量从字节转换成位●逻辑硬件实现假设cache块大小为4W(=4*16Bit),共8行主存按字访问,地址长度为9位,采用全相联映射●块大小为4W,且读取单位是字(W),则偏移地址为0~4,则w=2●tag部分由于地址总长度为9位,则s=9-2=7●其后过程与CAM类似,只是需要使用偏移地址选择最后的输出●查找表和数据块副本分开存放,用相联存储器连接●直接相联(Direct Mapping)直接相联模式下,每一个(类)主存块地址(序号)只能映射到cache中固定的行●映射规则:cache块号 i = 主存块号 j mod (cache行数 n)上述规则等价于将主存按cache总大小进行分区,每个分区中包含的数据块数量与cache行数相同,每个分区中的数据块只能填入对应序号的cache行中●主存地址可以细分为区地址(tag)、区内行索引(index)和偏移地址(offset)三部分●tag字段表示主存中分区的序号(查找标记)●index字段表示当前分区下cache行的序号●offset与全关联相同●cache的实际容量为n*(1+s-r+8*2^w)位●s是块地址总长度,r是行索引长度,s-r是区地址长度(直接相连cache只用存储区地址用于查询)●硬件逻辑实现●由于主存块只能放置在index对应的cache行中,因此不需要全相联查找,也不需要将查找表放在CAM中,直接通过index就可以访问对应数据●结构中没有相联存储器,所有cache行共用一个比较器●查找表和数据副本一起存放,无需相联存储器●优点是映射速度快,查找成本低,替换算法简单;缺点是命中率低,易冲突导致cache利用率低●组相联(Set Associative Mapping)组相联映射是将直接相联映射和全相联映射两种方式的折中,既能提高命中率,又能降低查找硬件的开销●k-路组相联将cache分成固定大小的组,每组有k行●主存数据块首先采用直接相联映射的方式定位到cache中固定的组,映射规则为cache组号 = 主存块号 mod (cache组数)等价于把k组cache块看成一个数据块进行映射,其中具体某一块的映射则由完全映射决定●然后采用全相联映射到组内任何一个cache行●主存地址可以分为标记字段(tag),组索引(index)和块内偏移(offset)三部分●tag字段与直接相联中分区序号类似●index字段是cache组的索引,即映射规则中得到的余数●cache的实际容量为 kn*(1+s-d+8*2^w)位●k为k路中的每组行数●n为cache组数●s-d是标记位长度●逻辑硬件实现●直接相联映射让数据查找的范围快速缩小到一个cache组,大大减少了查找范围,降低了硬件开销;组内采取全相联映射规则,避免了高冲突率,提高了cache的命中率●k路组相联只需要k个并发比较器●大容量cache可采用直接映射方式(cache够大可以提升命中率),小容量cache一般采用全相联映射或组相联映射●替换策略(Placement Policy)cache满后如何处理●先进先出法(FIFO)●最近不经常使用方法(LFU,Least Frequent Used)每行设置一个计数器,统计自处理器启动以来每个cache行的调用次数,当需要替换时替换掉调用次数最少的行。
《计算机组成原理》(白中英)复习第一章计算机系统概论电子数字计算机的分类(P1)通用计算机(超级计算机、大型机、服务器、工作站、微型机和单片机)和专用计算机。
计算机的性能指标(P5)数字计算机的五大部件及各自主要功能(P6)五大部件:存储器、运算器、控制器、输入设备、输出设备。
存储器主要功能:保存原始数据和解题步骤。
运算器主要功能:进行算术、逻辑运算。
控制器主要功能:从内存中取出解题步骤(程序)分析,执行操作。
输入设备主要功能:把人们所熟悉的某种信息形式变换为机器内部所能接收和识别的二进制信息形式。
输出设备主要功能:把计算机处理的结果变换为人或其他机器所能接收和识别的信息形式。
计算机软件(P11)系统程序——用来管理整个计算机系统应用程序——按任务需要编制成的各种程序第二章运算方法和运算器课件+作业第三章内部存储器存储器的分类(P65)按存储介质分类:易失性:半导体存储器非易失性:磁表面存储器、磁芯存储器、光盘存储器按存取方式分类:存取时间与物理地址无关(随机访问):随机存储器RAM——在程序的执行过程中可读可写只读存储器ROM——在程序的执行过程中只读存取时间与物理地址有关(串行访问):顺序存取存储器磁带直接存取存储器磁盘按在计算机中的作用分类:主存储器:随机存储器RAM——静态RAM、动态RAM只读存储器ROM——MROM、PROM、EPROM、EEPROMFlash Memory高速缓冲存储器(Cache)辅助存储器——磁盘、磁带、光盘存储器的分级(P66)存储器三个主要特性的关系:速度、容量、价格/位多级存储器体系结构:高速缓冲存储器(cache)、主存储器、外存储器。
主存储器的技术指标(P67)存储容量:存储单元个数M×每单元位数N存取时间:从启动读(写)操作到操作完成的时间存取周期:两次独立的存储器操作所需间隔的最小时间,时间单位为ns。
存储器带宽:单位时间里存储器所存取的信息量,位/秒、字节/每秒,是衡量数据传输速率的重要技术指标。
SRAM存储器(P67)基本存储元:用一个锁存器(触发器)作为存储元。
基本的静态存储元阵列(P68)双译码方式(P68)读周期、写周期、存取周期(P70)DRAM存储器(P70)基本存储元:由一个MOS晶体管和电容器组成的记忆电路。
存储原理:所存储的信息1或0由电容器上的电荷量来体现(充满电荷:1;没有电荷:0)。
一个DRAM存储元的写、读、刷新操作(P71)DRAM的刷新:集中式刷新和分散式刷新(P73)存储器容量的扩充(P73)位扩展——增加存储字长(P73)字扩展——增加存储字的数量(P73)字、位扩展(P74)例题(P73)只读存储器ROM(P80)掩模ROM、PROM、EPROM、EEPROM、Flash 存储器(P80-86)并行存储器(P86)双端口存储器:指同一个存储器具有两组相互独立的读写控制线路。
多模块交叉存储器:连续地址分布在相邻的不同模块内,同一个模块内的地址都是不连续的。
对连续字的成块传送可实现多模块流水式并行存取,大大提高存储器的带宽。
cache基本原理(P92)避免CPU“空等”现象CPU 和主存(DRAM)的速度差异程序访问的局部性原理cache由高速的SRAM组成cache的基本原理(P93)命中、未命中、命中率(P93)例题(P94)cache与主存的地址映射(P94)全相联映像:主存中的任一块可以映象到缓存中的任一块。
直接映像:每个缓存块可以和若干个主存块对应;每个主存块只能和一个缓存块对应。
组相联映像:某一主存块j 按模u 映射到缓存的第i 组中的任一块。
替换算法(P98)先进先出算法(FIFO):把一组中最先调入cache的块替换出去,不需要随时记录各个块的使用情况,所以实现容易,开销小。
近期最少使用算法(LRU):将近期内长久未被访问过的行(块)换出。
每行设置一个计数器,cache 每命中一次,命中行计数器清零,其它各行计数器增1。
当需要替换时,比较各特定行的计数值,将计数值最大的行换出。
最不经常使用(LFU):被访问的行计数器增加1,换值小的行,不能反映近期cache的访问情况。
随机替换:从特定的行位置中随机地选取一行换出。
cache的写操作策略(P99)写回法、全写法、写一次法(P99-100)第四章指令系统指令系统(P103)程序、高级语言、机器语言、指令、指令系统、复杂指令系统计算机(CISC)、精简指令系统计算机(RISC)(P103)指令格式(P105)操作码:指令操作性质的二进制数代码地址码:指令中的地址码用来指出该指令的源操作数地址(一个或两个)、结果地址及下一条指令的地址。
三地址指令、二地址指令、一地址指令、零地址指令;三种二地址指令(SS、RR、RS)(P106)指令字长度、机器字长(P107)例题(P110)操作数类型(P110)地址数据、数值数据、字符数据、逻辑数据寻址方式(P112)确定本条指令的操作数地址,下一条欲执行指令的指令地址指令寻址顺序寻址——PC+1跳跃寻址——转移类指令数据寻址(P112-116)立即寻址——形式地址就是操作数直接寻址——有效地址由形式地址直接给出隐含寻址——操作数地址隐含在操作码中间接寻址——有效地址由形式地址间接提供寄存器寻址——有效地址即为寄存器编号寄存器间接寻址——有效地址在寄存器中基址寻址——有效地址=形式地址+基地址变址寻址——有效地址=形式地址+变址寄存器的内容相对寻址——有效地址=PC的内容+形式地址堆栈寻址——栈顶指针段寻址例题(P118)指令的分类(119)数据处理、数据存储、数据传送、程序控制RISC技术(P121)RISC——精简指令系统计算机CISC——复杂指令系统计算机RISC指令系统的特点(P121)第五章中央处理器CPU的功能(P127)指令控制、操作控制、时间控制、数据加工CPU的基本组成(P127)控制器、运算器、cacheCPU中的主要寄存器(P128)数据缓冲寄存器(DR)、指令寄存器(IR)、程序计数器(PC)、数据地址寄存器(AR)、通用寄存器、状态字寄存器(PSW)操作控制器的分类(P130)时序逻辑型:硬布线控制器存储逻辑型:微程序控制器指令周期(P131)取出并执行一条指令所需的全部时间。
指令周期、机器周期、时钟周期(P131)一个指令周期含若干个机器周期一个机器周期包含若干个时钟周期取指周期(数据流)(P132)执行周期(数据流)(P133—138)时序信号的作用和体制(P141)时序信号的基本体制是电位—脉冲制。
数据加在触发器的电位输入端 D ,打入数据的控制信号加在触发器的时钟脉冲输入端CP。
电位高低表示数据是1还是0,要求打入数据的控制信号来之前电位信号必须已稳定。
节拍电位、节拍脉冲(P142)控制器的控制方式(P144)同步控制方式:即固定时序控制方式,各项操作都由统一的时序信号控制,在每个机器周期中产生统一数目的节拍电位和工作脉冲。
异步控制方式:不受统一的时钟周期(节拍)的约束;各操作之间的衔接与各部件之间的信息交换采取应答方式。
联合控制方式:同步控制和异步控制相结合的方式,大部分指令在固定的周期内完成,少数难以确定的操作采用异步方式。
微程序控制原理(P145)微程序控制是指运行一个微程序来实现一条机器指令的功能。
微程序控制的基本思想:仿照计算机的解题程序,把微操作控制信号编制成通常所说的“微指令”,再把这些微指令按时序先后排列成微程序,将其存放在一个只读存储器里,当计算机执行指令时,一条条地读出这些微指令,从而产生相应的操作控制信号,控制相应的部件执行规定的操作。
微程序、微指令、微命令、微操作(P145)机器指令与微指令的关系(P150)微命令的编码方法(P151)直接表示法:微指令的每一位代表一个微命令,不需要译码。
编码表示法:把一组相斥性的微命令信号组成一个小组(即一个字段),然后通过小组(字段)译码器对每一个微命令信号进行译码,译码输出作为操作控制信号。
混合表示法:把直接表示法与字段编码表示法混合使用,以便能综合考虑微指令字长、灵活性、速度等方面的要求。
微指令格式(P153)水平型微指令:是指一次能定义并能并行执行多个微命令的微指令。
垂直型微指令:微指令中设置微操作码字段,采用微操作码编译法,由微操作码规定微指令的功能,称为垂直型微指令。
垂直型微指令的结构类似于机器指令的结构。
硬连线控制器(P155)基本思想:通过逻辑电路直接连线而产生的,又称为组合逻辑控制方式。
这种逻辑电路是一种由门电路和触发器构成的复杂树形逻辑网络。
三个输入:来自指令操作码译码器的输出;来自执行部件的反馈信息;来自时序产生器的时序信号,包括节拍电位信号M和节拍脉冲信号T。
一个输出:微操作控制信号硬布线控制器的基本原理:某一微操作控制信号C用一个逻辑函数来表达。
并行处理技术(P161)并行性的概念:问题中具有可以同时进行运算或操作的特性。
时间并行:让多个处理过程在时间上相互错开,轮流使用同一套硬件设备的各个部件,以加快硬件周转而赢得速度,实现方式就是采用流水处理部件。
空间并行:以数量取胜。
它能真正的体现同时性时间+空间并行:综合应用。
Pentium中采用了超标量流水线技术。
流水线的分类(P163)指令流水线:指指令步骤的并行。
将指令流的处理过程划分为取指令、译码、取操作数、执行、写回等几个并行处理的过程段。
算术流水线:指运算操作步骤的并行。
如流水加法器、流水乘法器、流水除法器等。
处理机流水线:是指程序步骤的并行。
由一串级联的处理机构成流水线的各个过程段,每台处理机负责某一特定的任务。
流水线中的主要问题(P164)资源相关:指多条指令进入流水线后在同一机器时钟周期内争用一个功能部件所发生的冲突。
数据相关:在一个程序中,如果必须等前一条指令执行完毕后,才能执行后一条指令。
解决数据相关冲突的办法:为了解决数据相关冲突,流水CPU的运算器中特意设置若干运算结果缓冲寄存器,暂时保留运算结果,以便于后继指令直接使用,称为“向前”或定向传送技术。
控制相关:由转移指令引起的。
解决控制相关冲突的办法:延迟转移法、转移预测法。
例题(P165)第六章总线系统总线的概念(P184)总线是构成计算机系统的互联机构,是多个系统功能部件之间进行数据传送的公共通路。
总线的分类(P184)内部总线——CPU内部连接各寄存器及运算部件之间的总线。
系统总线——CPU和计算机系统中其他高速功能部件相互连接的总线。
按系统传输信息的不同,又可分为三类:数据总线,地址总线和控制总线。
I/O总线——中、低速I/O设备之间互相连接的总线。
总线性能指标(P185)总线宽度:指数据总线的根数。
寻址能力:取决于地址总线的根数。