人教版高一数学必修二《直线的倾斜角与斜率》说课稿
- 格式:docx
- 大小:11.48 KB
- 文档页数:3
课题:§3.1.1直线的倾斜角与斜率夏春艳各位老师大家好!我说课的内容是必修2第三章第一节直线的倾斜角与斜率。
下面我分别从教材分析、学情分析与目标设置、教法和学法以及教学过程四个环节谈一谈我对本节课的理解和处理。
(一)教材分析在欧氏几何中,我们用点、线、面的关系研究图形的性质。
解析几何是借助坐标系用代数方法研究几何问题,通过代数运算的结果反馈几何图形的性质。
直线的倾斜角和斜率是解析几何的第一课,担负着为全章开篇的重任。
本节课有两个概念――倾斜角和斜率。
倾斜角是几何概念,把这个几何特征代数化,引出斜率,完成数到形的过渡,为后续的用方程表示直线,并借助方程研究直线的位置关系奠定基础。
也为整个解析几何奠基。
(二)学情分析与目标设置高一学生通过初中的学习,已经具备了直角坐标系的相关知识,也具备一定的数形结合的能力,因此有些问题可以大胆的放手让他们自己去探究。
但概念的形成、发展和应用过程,要过渡自然,让学生感受而不是接受。
结合高中数学课程标准和教材,考虑到学生的认知规律,将制定学习目标及重点和难点如下【知识与技能目标】理解倾斜角和斜率的概念,掌握两点的斜率公式,初步体会用代数方法解决几何问题的思想方法,提高抽象概括能力。
【过程与方法目标】通过经历从具体实例抽象出数学概念的过程,培养学生观察、分析和概括的能力,体会几何问题代数化的思想方法。
【情感态度与价值观目标】通过合作探索,互相交流来感受数学学习的乐趣。
通过斜率的小故事培养学生顺境不盲目乐观,逆境不绝望放弃的意志品质。
【重点】直线的倾斜角和斜率概念的理解,掌握过两点的直线斜率公式。
【难点】两点斜率公式的推导,斜率与倾斜角的关系。
(三)教法和学法【教法】应用多媒体设备和几何画板软件直观演示法,引导发现法,设疑讨论法等教学方法。
【学法】以促进学生发展为出发点,着眼于知识的形成和发展,多给学生操作与思考的空间。
(四)教学过程1.整体思路新课程的基本理念指出,教师应该是教学的引导者。
《直线的倾斜角和斜率》说课稿一、教材分析1、教材分析本节课是人教版数学必修第一节直线的倾斜角和斜率的第一课时,是高中解析几何内容的开始。
直线倾斜角和斜率是解析几何的重要概念之一,是刻画直线倾斜程度的几何要素与代数表示,是平面直角坐标系内以坐标法(解析法)的方式来研究直线及其几何性质(如直线位置关系、交点坐标、点到直线距离等)的基础。
通过该内容的学习,帮助学生初步了解直角坐标平面内几何要素代数化的过程,初步渗透解析几何的基本思想和基本研究方法。
直线倾斜角是描述直线倾斜程度的几何要素,课本结合具体图形,在探索确定直线位置的几何要素中给出直线倾斜角概念。
直线的倾斜角和斜率都描述了直线的倾斜程度,倾斜角用几何位置关系刻画,斜率从数量关系刻画,二者的联系桥梁是正切函数值,并且可以用直线上两个点的坐标表示。
建立斜率公式的过程,体现了坐标法的基本思想:把几何问题代数化,通过代数运算研究几何图形的性质。
本课涉及两个概念——倾斜角和斜率。
倾斜角是几何概念,它主要起过渡作用,是联系新旧知识的纽带,研究斜率、直线的平行、垂直的解析表示等问题时都要用这个概念;斜率概念,不仅其建立过程很好地体现了解析法,而且它在建立直线方程、通过直线方程研究几何问题时也起核心作用,这是因为在直角坐标系下,确定直线的最本质条件是直线上的一个点及其斜率,其他形式都可以化归到这两个条件上来。
2、教学的目标定位在此之前,学生已经对直线有了直观的认识,如:两点确定一条直线,它具有平直性,并向两方无限延伸等。
但是这只是定性的研究,用这种方法,并不能具体刻画或描述一条直线。
在初中阶段,学生也认识了一次函数的图象是一条直线,但研究途径是先有数量关系(一次函数表达式),后建立其直观表示:直线。
在解析几何中,我们是先有图形(或曲线),然后根据图形(或曲线)的几何特征确定图形(或曲线)的代数表达式——方程。
因此,本节课的主要目的就是让学生在已有知识的基础上,将直线放入平面直角系,利用代数方法对它进行研究,从中体会解析几何的一些重要的数学思想。
<倾斜角与斜率>说课稿一、课题介绍内容选自新人教A版普通高中课程标准实验教科书数学必修(二)第三章第1小节,教学课共分三个课时,本节课是第一课时,下面我将从教材分析、教学方法、教学过程、板书设计四个部分来汇报我对这节课的教学设想。
二、教材分析1、地位及作用:该节是继学了空间几何后学习用代数方法研究解析几何问题的第一堂课,直线的倾斜角与斜率是解析几何的入门课,担负着开启全章的重任.倾斜角是几何概念,它主要起过渡作用,是联系新旧知识的纽带;斜率不但是本节课的核心内容,更是整个解析几何的重要概念之一,也为后续学习微积分奠定了基础.2、教学目标:基于上述分析,结合数学课程标准的要求,考虑到学生已有的认知结构、心理特征,制定如下的三维目标:(1)知识目标:理解倾斜角和斜率的概念,掌握两点斜率公式及应用.(2)能力目标:通过坐标法的引入,培养学生观察归纳、对比、转化等辩证思维,初步感悟用代数方法解决几何问题的思想方法,提高抽象概括能力.(3)情感目标:通过主动探索、合作交流来感受数学学习的乐趣.鼓励学生积极、主动的参与教学过程,激发求知的欲望.3、教学重难点:(4)重点:直线倾斜角和斜率的概念,两点斜率公式及其应用.(5)难点:斜率概念的理解,两点斜率公式的推导.三、教法和学法分析本节课作为直线与方程的第一节起始课,需要建立概念模型.考虑到高一学生的认知结构,我以讲解法为主.为提高学生的参与度,让学生亲身体验知识的形成过程,以探究式教学法为辅.在教学过程中师生互动,小组讨论,借助多媒体、几何画板,积极开展探究活动.根据学生已有的知识储备和心理特征,确定学法为:引导探究、小组讨论、合作交流。
三、教学过程教学过程中分为复习思考、探究新知、讲练结合、总结归纳、分层练习五个环节.1、复习思考首先通过两个问题,“直角坐标系中怎么确定一条直线”“过一个定点能确定一条直线吗”,引导学生注意过定点的直线束其倾斜程度不同. 设计意图:对旧知的复习是为新知构建知识基础,复习思考作为教学的先行组织者,体现了奥苏泊尔的同化理论学说.2、探究新知(探究活动一:倾斜角概念的得出)将过定点的直线束抽象出来,如图1所示,再次提问: “经过一点P 的直线有无数条,怎样借助x 轴描述直线倾斜程度?”请看大屏幕,我借助【PPT 】在图1中动态展示倾斜角的定义,以此引导学生通过观察,自主定义倾斜角,培养学生的观察归纳能力.知识注重应用.因而,当这部分知识讲解完后,我将通过例1中前三个题来强化学生对知识的理解.利用第四个题引出对倾斜角取值范围的探究,并借助几何画板动态展示,得出倾斜角的范围.例 1 请同学们画出前3条直线的倾斜角.(探究活动二:斜率概念的得出)为得出斜率,我首先提问:“生活中,有没有表示倾斜程度的量?”,学生不难想到初中经常遇到的坡度实例.【PPT 】上展示坡,强调坡度等于升高量比上前进量.将坡放到直角坐标系中,画出坡面所在直线.如图2由老师提出问题:“坡度是表示坡倾斜程度的量,坡面所在直线倾斜程度是否可以用类似于坡度的 图1 x 0 y poy X oy X o y X y X o图2oy X量表示”,学生得出结论.进一步提问:“这个量与刚才所学倾斜角有何关系”.在问题驱动下让学生观察、类比得出斜率的概念.这个过程让学生感受数学源于生活,并体验从直观到抽象的过程,培养学生观察、归纳、联想的能力.为了巩固这个陈述性知识,设计了两个练习题,一个口答题:“例2 当倾斜角时30α=,45α=,135α=这条直线的斜率分别等于多少?”一个关于倾斜角与斜率关系的表格题:“例3 当倾斜角分别为零角、锐角、直角、钝角的直线的斜率的取值范围分别是什么?” 表格题直观清晰,有助于加深学生对倾斜角与斜率关系的理解.(探究活动三:斜率公式的发现)斜率概念已经建立,在此基础上向学生提出问题:“坐标系中,两点确定,直线确定,直线斜率确定,两点与直线斜率有何关系呢?”,并让学生思考【PPT 】上的问题.这个问题直接指向了本节课的一个重点和难点即两点斜率公式的发现.怎样能更好的突出重点,突破难点,设计了如下环节.首先我会在讲斜率时着重强调了坡度的定义:升高量比上前进量.此时提示学生可以转化到直角三角形中求斜率.新课标中提出:学生是学习的主体,老师是学习的引导者。
大家好我今天讲的课题是:直线的倾斜家与斜率,它是必修2第三章第一节,直线的倾斜角与斜率【点击PPT2】我将从以下六个方面来分析。
【点击PPT3】首先来谈谈教材。
首先来看一下教材的地位与作用。
【点击PPT3】直线与方程是平面解析几何的第一章,从倾斜角到斜率实现了解析几何代数化的过程,初步渗透“坐标法”与数形结合思想方法,用坐标法研究平面上最简单的图形—直线,对数学2中平面解析几何初步内容起到了关键的作用【点击PPT3】。
而且突出用代数方面解决几何问题的过程,强调代数关系的几何意义。
它既能为进一步学习做好知识上的必要准备,又能为今后灵活的应用解析几何的基本思想和方法打好坚实的基础。
【点击PPT4】接下来看一看学情分析,【点击PPT4】。
因为对象是重点中学的普通班的高一同学,所以比较比较活泼,求知欲强,而且已具备了直角坐标系、必修四三角函数的知识,都具备了情感保证和认知基础。
【点击PPT5】接着先对第一节即直线的倾斜角与斜率得内容作简要的分析【点击5】本节分为两个部分组成,倾斜角与斜率,斜率公式。
教材中首先结合具体图形提出确定直线位置几何要素,可以是一个点与直线的方向,从而导出倾斜角的概念。
进而建立直线斜率的概念,从而实现了直线的方向也可以说是直线的斜率这一几何的属性进而向斜率这一代数的属性的转化,最后推导出经过两点的斜率公式,这些内容都充分体现解析几何的思想和方法【点击PPT6】于是我确定了本节的教学重点和难点,重点是斜率的概念,用代数方法刻画直线斜率的过程,过两点的直线斜率的计算公式。
难点是直线的倾斜角概念形成,斜率公式的建构。
其次谈谈本节教学目标的确定和分析【点击PPT7】:在平面直角坐标系中,结合具体图形探索确定直线位置的几何要素;理解直线的斜率和倾斜角的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。
课程标准为本节的教学目标制定了如下三点【点击PPT8】:对课表要求的细化分为两个部分:1、基本要求;2、发展要求【点击PPT9】基本要求:1、理解直线的倾斜角的定义,知道直线倾斜角的范围;2、理解直线的斜率,掌握直线的斜率,掌握过两点直线的斜率公式;3、掌握直线的斜率和倾斜角之间的关系,能由直线的斜率求出直线的倾斜角,也能由直线的倾斜角求出直线的斜率(斜率存在的条件下);【点击PPT10】发展要求:1、掌握直线斜率和倾斜角之间的关系;2、让学生初步体验解析几何研究问题的方法和特点。
《直线的倾斜角和斜率》讲课稿我讲课的题目是高中数学第二册上,第七章第一节《直线的倾斜角和斜率》,我把讲课内容分红教材剖析、教课方法与手段、学法指导、教课程序四个部分。
一.教材剖析1. 教材的地位:直线的倾斜角和斜率是分析几何的重要观点之一,也是直线的重要的几何因素。
学生在原有的对直线的有关性质及平面向量的有关知识理解的基础上,从头以坐标化(分析化)的方式来研究直线有关性质,而本节直线的倾斜角和斜率,是直线的重要的几何性质,是研究直线的方程形式,直线的地点关系等的思想的起点 ; 此外,本节也初步向学生浸透分析几何的基本思想和基本方法。
所以,本节课的有着开启全章,确立基调,浸透方法,明确方向,承上启下的作用。
2.教课目的本节课的设计以新的课程标准所反应的新的理念,教课纲领的要乞降学生原有的认知构造为依照,采纳问题牵引实验研究式教课方式,一节概念课,让学生去主动的研究和感觉一个观点的发生,发展的过程。
教课过程中,,坚持以学生为主体,着重学生研究能力的培育,还讲堂给学生,让学生去亲自体验问题解决的过程,拓展学生的创建性思想。
依据以上的想法,确立本节课的教课目的以下:( 1)知识目标:认识直线的方程和方程的直线的观点; 在新的问题的情境中,去主动建立理解直线的倾斜角和斜率的定义; 初步感悟用代数方法解决几何问题的思想方法。
(2)能力目标:指引学生察看发现、类比,猜想和实验研究,培育学生的创新能力和着手能力(1)突出对类比、直觉、发散等研究性思想的培育,从而提升学生的创新能力。
( 2)经过学生着手用电脑绘制图形,测算,并察看,剖析、比较和操作来加强学生实验研究意识。
(3)感情目标:在同等的教课气氛中,经过学生之间、师生之间的沟通、合作和评论,实现共同研究、教课相长的教课情境。
3.教课要点、难点及要点要点:理解直线的倾斜角和斜率的观点,经历用代数方法刻画直线斜率的过程,掌握过两点的直线的斜率的计算公式。
难点:斜率公式的推导要点:问题情境的创建及学生的《几何画板》的操作。
直线的倾斜角和斜率(第一课时)教学设计7.1直线的倾斜角和斜率(第一课时)教学设计说明一、教学内容分析本节课是《全日制普通高级中学教科书(必修)教学第二册(上)》(人教版)第七章第1节课《7.1直线的倾斜角和斜率》。
根据实际情况,这是第一课时。
本节教学是高中解析几何内容的开始。
直线的倾斜角和斜率是解析几何的重要概念之一,是刻画直线倾斜程度的几何要素和代数表示,是平面直角坐标系内以解析法的方式来研究直线及其几何性质的基础。
通过本节内容的学习,帮助学生初步了解直角坐标系内几何要素代数化的过程和意义,初步渗透解析几何的基本思想和基本研究方法,进一步培养学生对函数、数形结合、分类讨论思想的应用意识。
本课有着开启全章,奠定基调,渗透方法的作用二、教学目标分析了解直线的方程和方程的直线概念,理解直线的倾斜角和斜率概念,掌握过两点的直线的斜率公式。
经厉几何问题代数化的过程,培养学生周密思考,主动学习、合作交流的意识和勇于探索的良好品质三、教学问题诊断分析1、两点确定一条直线,这是学生知道的,但就已知一点再需要增加什么量才能确定直线,以及如何来刻画这个量,对学生来说有点困难,所以在教学过程中,通过逐个给出的三个问题,让学生在讨论后形成倾斜角的概念。
2、斜率概念的学习是本节的难点,学生认为倾斜角就可以刻画直线的方向,而且每一条直线的而倾斜角是唯一的,而斜率却不这样,另外,为什么要用倾斜角的正切定义斜率对学生也有一定的困难,教学中从计算具体的直线的倾斜角入手,通过师生对话探究,从学习斜率的必要性、合理性、完备性三个角度进行突破。
3、过两点的斜率概念的建立是本节又一难点,受思维定势影响,在坐标系中,学生应用几何法探究斜率公式是必然,应重视这一方法,除此之外,要积极引导学生应用向量法,把几何要素用点的坐标来刻画描述,使几何问题代数化。
四、教法特点及预期效果分析1、教学上应用新课标理念,以启发式为主。
亚里士多德讲:“思维从问题,惊讶从开始”。
直线的倾斜角与斜率说课稿优质课(总2页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除《直线的倾斜角与斜率》教学设计赵元超尊敬的各位评委各位老师,大家好,今天我说课的题目是《直线的倾斜角与斜率》,我主要从以下六个方面进行分析,希望大家喜欢。
一:教材分析:本节课是新人教版高一数学必修(2)的第三章第一节的内容,根据实际教学的安排,这是第一课时的内容。
1.内容分析:本节课主要有两个概念(直线的倾斜角、直线的斜率)及一个公式(斜率计算公式)。
直线的倾斜角是从形的角度描述直线的倾斜程度,而斜率从数的角度描述直线的倾斜程度。
这也是数形结合思想的体现。
我们都知道两点一线的事实,那么,如何用坐标法来描述这一过程呢?因此,斜率公式的推出就是很自然的一件事情了。
这也体现了我们的数学具有自然美这一特性。
2.作用分析通过本节课的学习,初步渗透解析几何的基本思想和基本研究方法,培养学生对数形结合、分类讨论思想的应用知识,为后继判断两条直线的位置关系以及建立直线的方程等内容起着铺垫的作用。
二:学情分析1.学生在初中阶段已经学习过了平面直角坐标系,学习过了一次函数、二次函数、反比例函数等。
2.同学们已经知道了两点可以确定一条直线的基本事实。
3.同学们刚刚学完立体几何,对空间点线面的关系已经有了比较深入的了解。
三:目标分析1.知识与技能探索确定直线位置的几何要素,感受倾斜角这个几何量的形成过程,体会由生活中的坡度的概念抽象成数学中的斜率的过程经历直线斜率公式的推导过程,并会用斜率公式解决简单的问题。
2.方法与过程本节课设计3个大问题23个小问题,层层深入,环环相扣,步步紧逼、使学生学会用探究式的方法来研究数学问题。
3.情感态度与价值观通过斜率概念的构建和斜率公式的探究渗透数形结合、分类讨论的思想方法,体会数学的自然之美,和谐之美,有用之美;通过学生之间师生之间的交流合作,实现共同探究的目标,培养学生的合作意识。
1 直线的倾斜角和斜率课 型:习题课教学目标:1.进一步加深理解直线的倾斜角和斜率的定义2.已知直线的倾斜角,会求直线的斜率3.已知直线的斜率,会求直线的倾斜角4.培养学生分析探究和解决问题的能力.教学重点:直线的倾斜角和斜率的应用教学难点:斜率概念理解与斜率公式的灵活运用教学过程1.复习:1)说出倾斜角和斜率的概念,它们都反映了直线的什么牲特征?2) 斜率的计算公式是什么?2.巩固练习:1)已知直线的倾斜角,口答直线的斜率:(1) α=0°;(2)α=60°;(3) α=90°;(4)150°2).直线l 经过原点和点(-1,-1),则它的倾斜角是3).过点P (-2,m )和Q (m ,4)的直线的斜率等于1,则m 的值为( )A.1B.4C.1或3D.1或44).已知A (2,3)、B (-1,4),则直线AB 的斜率是 .5).已知M (a,b )、N (a,c )(b ≠c ),则直线MN 的倾斜角是 .6).已知O (0,0)、P (a,b )(a ≠0),直线OP 的斜率是 .7).已知),(),,(222111y x P y x P ,当21x x ≠时,直线21P P 的斜率k = ;当21x x ≠且21y y =时,直线21P P 的斜率为3.例题分析:例1.若三点)3,2(A ,)2,3(-B ,),21(m C 共线,求m 的值 解:22122132332=⇒+-=+--⇒=m m k k AC AB 说明:本题旨在让学生了解斜率也可研究直线的位置关系,为下节课的学习打基础 例2.如果直线l 经过A (-1,2m)、B (2,2m )二点,求直线l 的斜率K 的取值范围。
例3.若直线l 的斜率为函数2()43()f a a a a R =++∈的最小值,判定直线的倾斜角是锐角还是钝角?例4.已知两点A (-3,4)、B (3,2),过点P (2,-1)的直线l 与线段AB 有公共点.求直线l 的斜率k 的取值范围.( k ≤-1或k ≥3)4.提高练习1.若直线l 过(-2,3)和(6,-5)两点,则直线l 的斜率为 ,倾斜角为2.已知直线l 1的倾斜角为α1,则l 1关于x 轴对称的直线l 2的倾斜角α2为________. 3已知两点A (x ,-2),B (3,0),并且直线AB 的斜率为21,则x = 4斜率为2的直线经过(3,5)、(a ,7)、(-1,b )三点,则a 、b 的值是( )A.a =4,b =0B.a =-4,b =-3C.a =4,b =-3D.a =-4,b =35已知两点M (2,-3)、N (-3,-2),直线l 过点P (1,1)且与线段MN 相交,则直线l 的斜率k 的取值范围是( )A.k ≥43或k ≤-4B.-4≤k ≤43C. 43≤k ≤4D.-43≤k ≤4 归纳小结:解题时,要重视数学思想方法的应用.。
《直线的倾斜角和斜率》说课稿我说课的题目是高中数学第二册上,第七章第一节《直线的倾斜角和斜率》,我把说课内容分成教材分析、教学方法与手段、学法指导、教学程序四个部分。
一.教材分析1.教材的地位:直线的倾斜角和斜率是解析几何的重要概念之一,也是直线的重要的几何要素。
学生在原有的对直线的有关性质及平面向量的相关知识理解的基础上,重新以坐标化(解析化)的方式来研究直线相关性质,而本节直线的倾斜角和斜率,是直线的重要的几何性质,是研究直线的方程形式,直线的位置关系等的思维的起点;另外,本节也初步向学生渗透解析几何的基本思想和基本方法。
因此,本节课的有着开启全章,奠定基调,渗透方法,明确方向,承前启后的作用。
2.教学目标本节课的设计以新的课程标准所反映的新的理念,教学大纲的要求和学生原有的认知结构为依据,采用问题牵引实验探索式教学方式,一节概念课,让学生去主动的探索和感受一个概念的发生,发展的过程。
教学过程中,,坚持以学生为主体,注重学生探究能力的培养,还课堂给学生,让学生去亲身体验问题解决的过程,拓展学生的创造性思维。
根据以上的想法,确定本节课的教学目标如下:(1)知识目标:了解直线的方程和方程的直线的概念;在新的问题的情境中,去主动构建理解直线的倾斜角和斜率的定义;初步感悟用代数方法解决几何问题的思想方法。
(2)能力目标:引导学生观察发现、类比,猜想和实验探索,培养学生的创新能力和动手能力(1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。
(2)通过学生动手用电脑绘制图形,测算,并观察,分析、比较和操作来强化学生实验探索意识。
(3)情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,实现共同探究、教学相长的教学情境。
3.教学重点、难点及关键重点:理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线的斜率的计算公式。
难点:斜率公式的推导关键:问题情境的创设及学生的《几何画板》的操作。
高中数学人教版A版必修二倾斜角与斜率说课稿
《倾斜角与斜率》说课稿
我今天说课的课题是新课标高中数学人教版A版必修第二册第三章“3.1.1倾斜角与斜率”。
我说课的程序主要由说教材、说教法、说学法、说教学程序这四个部分组成。
一、说教材:
1.教材分析:直线的倾斜角和斜率是解析几何的重要概念之一,也是直线的重要的几何要素。
学生在原有的对直线的有关性质及平面向量的相关知识理解的基础上,重新以坐标化(解析化)的方式来研究直线相关性质,而本节直线的倾斜角与斜率,是直线的重要的几何性质,是研究直线的方程形式,直线的位置关系等的思维的起点;另外,本节也初步向学生渗透解析几何的基本思想和基本方法。
因此,本节课的有着开启全章,奠定基调,渗透方法,明确方向,承前启后的作用。
2.教学目标
根据本课教材的特点,新大纲对本节课的教学要求,结合学生身心发展的合理需要,我从三个方面确定了以下教学目标:
(1)知识与技能目标:
了解直线的方程和方程的直线的概念;在新的问题的情境中,去主动构建理解直线的倾斜角和斜率的定义;初步感悟用代数方法解决几何问题的思想方法。
(2)过程与方法目标:
引导学生观察发现、类比,猜想和实验探索,培养学生的创新能力和动手能力。
直线的倾斜角和斜率(说课稿)说教材】(一)教材的地位和作用本课是人教版数学必修2第一节直线的倾斜角与斜率的第一课时,是高中解析几何内容的开始。
直线倾斜角和斜率是解析几何的重要概念之一,是刻画直线倾斜程度的几何要素与代数表示,是平面直角坐标系内以坐标法(解析法)的方式来研究直线及其几何性质(如直线位置关系、交点坐标、点到直线距离等)的基础。
通过该内容的学习,帮助学生初步了解直角坐标平面内几何要素代数化的过程,初步渗透解析几何的基本思想和基本研究方法。
本课有着开启全章,奠定基调,渗透方法的作用。
(二)内容简析直线倾斜角是描述直线倾斜程度的几何要素,课本结合具体图形,在探索确定直线位置的几何要素中给出直线倾斜角概念:当直线与x轴相交时,取x轴作基准,x轴正向与直线向上方向之间所成的角叫做直线的倾斜角,当直线与x轴平行或重合时,规定它的倾斜角为零,这样,直线倾斜角α的范围是0°≤α<180°。
直线的斜率是表示直线倾斜程度的代数表示,课本借助日常生活中表示倾斜面的“坡度”引出直线斜率的概念:一条直线的倾斜角的正切值叫做这条直线的斜率。
定义本身给出了直线的斜率与倾斜角的关系,沟通了刻画直线倾斜程度的几何要素与代数表示的关系。
直线可由两点来确定,坐标平面内的点由其坐标确定,因此直线的斜率就可以用直线上两点的坐标来表示,这就是经过两点直线的斜率公式,它沟通了直线斜率与点的代数表示的关系。
直线的斜率是后继内容展开的主线,无论是建立直线的方程,还是研究两条直线的位置关系,以及讨论直线与二次曲线的位置关系,直线的斜率都发挥着重要作用。
因此,正确理解斜率概念,熟练掌握斜率公式是学好这一章的关键。
“坐标法”思想与数形结合思想是本课内容蕴含的核心思想。
(三)说教学目标理解直线的倾斜角和斜率概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线的斜率公式。
1.在平面直角坐标系中,观察具体图形并结合动画演示,在探索描述直线的倾斜程度的几何要素中,抽象出直线倾斜角的概念,明确倾斜角的取值范围。
人教版高一数学必修二《直线的倾斜角与斜率》说课稿
说教材
《直线的倾斜角与斜率》是高中数学必修二中的一章,主
要讲解了直线的倾斜角和斜率的概念及其应用。
通过学习本章,学生可以进一步认识直线的特性和性质,并掌握计算直线的倾斜角和斜率的方法。
同时,本章也为后续学习坐标系与参数方程打下基础。
教学目标
1.了解直线的倾斜角和斜率的概念;
2.学会计算直线的倾斜角和斜率;
3.掌握直线的倾斜角和斜率的应用;
4.培养学生观察、分析和解决问题的能力;
教学重点
1.直线的倾斜角和斜率的概念;
2.计算直线的倾斜角和斜率;
教学难点
1.直线的倾斜角和斜率的应用;
2.解决实际问题的能力;
说课内容
第一节:直线的斜率
本节主要介绍直线的斜率的概念及计算方法。
首先,引入
斜率的定义:斜率为直线上两点之间纵坐标的差与横坐标的差的比值。
接着,通过具体的示例,演示斜率的计算过程,并介绍斜率为正、负和零的直线的性质。
最后,带领学生进行练习,巩固对斜率计算的掌握。
第二节:利用斜率判断直线的倾斜角
本节主要介绍斜率与直线的倾斜角之间的关系。
首先,根
据斜率为正、负和零的直线的性质,引入直线的倾斜角的定义和计算方法。
然后,通过具体的示例,演示如何利用斜率判断直线的倾斜角,并帮助学生理解斜率和倾斜角的几何意义。
最后,进行练习,让学生熟练掌握利用斜率判断直线的倾斜角的方法。
第三节:应用直线的倾斜角和斜率
本节主要介绍直线的倾斜角和斜率在实际问题中的应用。
首先,通过具体的问题,引导学生发现直线的倾斜角和斜率在解决实际问题中的重要作用。
然后,介绍直线斜率和函数斜率的关系,并引入切线概念,讨论切线的倾斜角和斜率与函数的导数的关系。
最后,通过实例演示,帮助学生掌握直线的倾斜角和斜率在应用问题中的运用方法。
教学方法
本课采用讲授与练习相结合的教学方法。
在讲授过程中,
通过示例演示和讲解概念原理,帮助学生理解直线的倾斜角和斜率的概念及计算方法。
在练习环节中,设计一系列的练习题,让学生进行巩固和拓展,提高应用能力。
教学过程安排
第一节:直线的斜率
1.引入斜率的概念,给出定义;
2.通过示例演示斜率的计算方法;
3.分组让学生进行练习,辅助解答疑惑;
4.布置课后作业,加深对斜率的理解。
第二节:利用斜率判断直线的倾斜角
1.引入直线的倾斜角的概念,给出定义;
2.通过示例演示如何利用斜率判断直线的倾斜角;
3.分组让学生进行练习,辅助解答疑惑;
4.布置课后作业,加深对直线的倾斜角的理解。
第三节:应用直线的倾斜角和斜率
1.引导学生发现直线的倾斜角和斜率在实际问题中的
应用;
2.介绍直线斜率和函数斜率的关系;
3.引入切线概念,讨论切线的倾斜角和斜率与函数的
导数的关系;
4.布置课后作业,加深对直线的倾斜角和斜率在应用
问题中的理解。
教学反思
本课通过梳理教学内容,采用讲授与练习相结合的教学方法,达到了预期的教学目标。
在教学过程中,学生通过示例演示和练习,掌握了直线的倾斜角和斜率的概念,并能够应用于实际问题中。
同时,适当引入切线概念,让学生对数学知识有了更深的理解。
教学过程中,师生互动积极,营造了良好的学习氛围。
在今后的教学中,还可以加强实际问题的应用,培养学生的解决问题的能力。