第2章 材料的电学
- 格式:ppt
- 大小:3.59 MB
- 文档页数:83
高一物理第二章知识点总结大全第二章电学知识点总结1。
导体和绝缘体导体和绝缘体:导体和绝缘体是根据电阻大小来区别的。
从材料的角度来看,金属是导体,如铜、铁、铝等,它们的电阻很大;而绝缘体的电阻很小,几乎为零。
由于同种材料的导体和绝缘体在不同的温度下,电阻也不同,因此导体和绝缘体又可以按照温度的变化情况来划分。
导体在高于绝对零度的温度下,一般具有很大的电阻。
例如常温下,人体的电阻约为104欧,一般的温度计的电阻一般在100~1000欧之间。
绝缘体的电阻一般较低,有的甚至为零。
例如一些晶体就是良好的绝缘体。
例如常温下,绝缘体能使带电粒子无法穿过的性质称为绝缘。
常见的导体和绝缘体是:金属、人体、大地、塑料、橡胶、玻璃、陶瓷、干木头、纸、空气、水等。
三、静电的获得和消失(1)静电的产生和本质:自然界的物体都是由分子、原子、离子构成的,当它们受到外力作用后,就会发生形式上的改变,这种形式上的改变就叫做电子的转移。
例如汽车受到一定的外力作用时,它的分子中的部分电子就会从原子核附近的高能级状态跳到分子内部能量较低的较低的轨道上去。
例如,人一伸手就能把一些细小的灰尘等吸在手上。
汽车行驶的过程中,路面摩擦会使一些分子“跳”到路面上来。
还有电线被风吹动时,会使电线的表面积增加,电荷就会在电线中流动。
这样一来,就形成了我们平时看到的“飘忽不定”的电荷。
对于两个不同的物体,由于分子的热运动,使其中一个物体所带的正电荷量超过了另一个物体所带的负电荷量,于是在这两个物体之间便出现了一个由电子转移引起的电位差,即静电。
实验证明,要使两个物体带同种电荷,需要满足两个条件:第一是两个物体的材料相同;第二是这两个物体的质量相同。
以上讲述了静电现象的基本规律。
(一)静电的特点1。
在两个物体接触的地方(或任何地方)总是存在电荷的。
2。
电荷的多少是随着两个物体之间距离的增大而减小的。
3。
在没有接触的情况下,物体的材料越不相同,静电的电荷量就越大。
第二章晶态与非晶态材料的特性引言:材料是构成各种物质的基本组成单位,不同种类的材料在原子结构和物理特性上存在显著的差异。
本章将介绍晶态和非晶态材料的特性,包括结构、力学特性、热学特性、电学特性以及光学特性等方面。
一、晶态材料的特性:1.结构特性:晶态材料具有有序的原子排列,呈现出规则的晶格结构。
晶格结构可以通过X射线衍射和电子衍射等实验方法进行表征,其结果常用晶胞参数和晶面指数表示。
2.力学特性:晶态材料在外力作用下存在明确的弹性行为,其力学性能可以通过弹性模量、屈服强度和断裂韧性等指标来评估。
不同晶向的材料在力学特性上表现出明显的各向异性。
3.热学特性:晶态材料的热导率和热膨胀系数常随着温度的变化而变化。
晶态材料的热导率和热膨胀系数通常沿不同的晶向显示出很大的差异。
4.电学特性:晶态材料具有离散的能带结构,其导电性质主要与能带结构和载流子特性有关。
电学特性可以通过电导率、介电常数和磁导率等参数来表征。
5.光学特性:晶态材料对光的传播和相互作用表现出明显的各向异性。
晶态材料的光学特性主要包括折射率、吸收系数和散射等。
二、非晶态材料的特性:非晶态材料的原子排列呈现出无序的状态,缺乏长程的周期性结构。
由于缺乏晶格结构,非晶态材料具有一些与晶态材料不同的特性。
1.结构特性:非晶态材料的原子排列没有明确的规则,其结构可以通过X射线衍射和中子衍射等方法进行分析。
非晶态材料的结构通常表现为短程有序和中程有序的特点。
2.力学特性:非晶态材料的力学性能表现出明显的非线性行为。
非晶态材料的硬度和断裂韧性较低,但延展性和形变能力较好。
3.热学特性:非晶态材料的热导率通常较低,但热膨胀系数较高。
非晶态材料的热导率和热膨胀系数随温度变化较小。
4.电学特性:非晶态材料通常表现出低电导率和较高的电阻率。
其导电性主要受原子之间的无规则排列和有序排列之间的相互作用影响。
5.光学特性:非晶态材料的光学特性与晶态材料有较大的区别。
材料的电学性能测试,实验报告实验报告:材料的电学性能测试一、引言材料的电学性能是决定其在不同应用中的关键因素。
本实验报告主要介绍几种基本的电学性能测试方法,包括电阻率测试、绝缘电阻测试和介电常数测试,并通过具体实验示例对这些方法进行详细阐述。
二、实验材料与方法1.电阻率测试电阻率是衡量材料导电性能的参数,可通过四探针法进行测量。
四探针法的基本原理是:当四个探针在材料上施加一定的电流时,通过测量两对探针之间的电压降,可以计算出材料的电阻率。
2.绝缘电阻测试绝缘电阻是衡量材料绝缘性能的重要参数,可采用直流电压源和电流表进行测量。
基本原理是:在材料两端施加一定的直流电压,然后测量流过材料的电流大小,通过计算可得材料的绝缘电阻值。
3.介电常数测试介电常数是衡量材料介电性能的参数,可采用LCR数字电桥进行测量。
LCR数字电桥具有测量精度高、读数稳定等优点。
基本原理是:在材料上施加一定频率的交流电压,测量通过材料的电流及相位差,通过计算可得材料的介电常数值。
三、实验结果与分析1.电阻率测试结果与分析在本次实验中,我们选取了铜、镍和铝三种材料进行电阻率测试。
实验结果表明,铜的电阻率最低,具有良好的导电性能;而铝和镍的电阻率较高,相对而言导电性能较弱。
2.绝缘电阻测试结果与分析在本次实验中,我们选取了聚乙烯、聚氯乙烯和橡胶三种材料进行绝缘电阻测试。
实验结果表明,橡胶的绝缘电阻最高,具有最好的绝缘性能;而聚乙烯和聚氯乙烯的绝缘电阻相对较低,相对而言绝缘性能较弱。
3.介电常数测试结果与分析在本次实验中,我们选取了聚酰亚胺、聚碳酸酯和聚酯三种材料进行介电常数测试。
实验结果表明,聚酰亚胺的介电常数最高,具有较好的介电性能;而聚酯的介电常数相对较低,相对而言介电性能较弱。
四、结论本次实验通过电阻率测试、绝缘电阻测试和介电常数测试三种方法对不同材料的电学性能进行了评估。
实验结果表明:在导电性能方面,铜具有最好的导电性能,而铝和镍相对较弱;在绝缘性能方面,橡胶具有最好的绝缘性能,而聚乙烯和聚氯乙烯相对较弱;在介电性能方面,聚酰亚胺具有较好的介电性能,而聚酯相对较弱。
第二章金属的电化学腐蚀2.5 腐蚀极化图2.6 金属的钝化2.7 塔菲尔关系2.8 能斯特方程一、伊文思(Evans)极化图二、腐蚀电流三、腐蚀控制因素伊文思(Evans)极化图不考虑电位随电流变化细节,将两个电极反应所对应的阴极、阳极极化曲线简化成直线画在一张图上,这种简化了的图称为伊文思极化图伊文思(Evans)极化图↘在一个均相的腐蚀电极上,如果只进行两个电极反应,则金属阳极溶解的电流强度一定等于阴极还原反应的电流强度↘在实验室里,一般用外加电流测定阴、阳极极化曲线来绘制伊文思极化图伊文思(Evans)腐蚀图↘AB阳极极化曲线BC阴极极化曲线OG欧姆电位降CH欧姆、阴极极化总线↘阳极极化率Pa=tgβ阴极极化率Pc=tgα伊文思(Evans )腐蚀图↘考虑欧姆压降,腐蚀电流为I ’,↘阳极极化的电位降:ΔE a = E ’a –E 0a =I ’tgβ= I ’Pa阴极极化的电位降:ΔE c = E ’c –E 0c =I ’tg α= I ’Pc欧姆压降:ΔE r = I ’R腐蚀电池总压降:E 0c -E 0a = I ’(Pa+Pc+ R )腐蚀电流:腐蚀控制因素1)初始电位差与腐蚀电流的关系2)极化率与腐蚀电流的关系3)氢过电位与腐蚀速度的关系阴极析氢过电位:阴极电极材料表面状态不同金属表面上氢过电位不同。
腐蚀控制因素1)虽然锌的氢过电位比较铁的电位负,但由于氢过电位高,锌在还原性酸溶液中的腐蚀速度反而比铁小;2)如果在溶液中加入少量的Pt 盐,由于氢在析出的铂上的过电位比锌、铁都低,所以铁和锌的腐蚀速度都明显增加。
钝化现象1)实际情况中,一些较活泼的金属在某些特定的环境介质中,都具有较好的耐蚀性。
2)Fe在不同浓度的硝酸中的腐蚀w < 30%:硝酸浓度上升,腐蚀速率增加w=30~40%:腐蚀速率最大w > 40%:硝酸浓度上升,腐蚀速率突然急剧降低—钝化w-80%:腐蚀速率又增加,—过钝化钝化现象1)金属或合金在某种条件下,由活化态转为钝态的过程称为钝化。