人教版八年级数学上全等三角形课时练习及答案
- 格式:doc
- 大小:779.55 KB
- 文档页数:14
12.2第3课时角边角(ASA)与角角边(AAS)一、选择题1.如图,玻璃三角板摔成三块,此刻到玻璃店在配一块相同大小的三角板,最省事的方法()A. 带①去B.带②去C.带③去D.带①②③去2.如图,已知∠ 1=∠ 2,则不必定能使△ ABD≌△ ACD的条件是()A. AB=ACB. BD=CDC.∠ B=∠CD. ∠ BDA=∠ CDA第1题图第2题图第3题图3.如图,给出以下四组条件:①AB DE,BC EF,AC DF;② AB DE,B E,BC EF ;③B E,BC EF,C F ;④ AB DE,AC DF,B E .此中,能使△ ABC ≌△ DEF 的条件共有()A.1组B.2组C.3组D.4组4. 如图,E F 90o,B C , AE AF ,结论:① EM FN ;② CD DN ;③FAN EAM ;④ △ACN≌△ ABM.此中正确的有()A.1 个B.2 个C.3个D.4 个CEMDA N BF第4题图5. 如图,在以下条件中,不可以证明 △ABD ≌△ ACD 的是()BD DC , A B AC B. ∠ ADB ∠ ADC ,BD DC A. = = = = C.∠ B=∠ C ,∠ BAD=∠ CAD D.∠B=∠ C ,BD=DC6. 如图,已知 △ ABC 中, ABC 45o , F 是高 AD 和 BE 的交点, CD4 ,则线段 DF 的长度为( ).A .2 2B . 4C. 3 2D .4 2第5题图 第6题图7. 如图,点 B 、 C 、 E 在同一条直线上,△ ABC 与△ CDE 都是等边三角形,则以下结论不必定建立的是()A. △ ACE ≌△ BCDB. △BGC ≌△ AFC [根源:]C. △ DCG ≌△ ECFD. △ADB ≌△ CEA8. 如图,在△ ABC 中, AB=AC ,∠ ABC .∠ ACB 的均分线 BD , CE 订交于 O 点,且BD 交 AC 于点 D ,CE 交 AB 于点 E .某同学剖析图形后得 出以下结论:①△ BCD ≌△ CBE ;②△ BAD ≌△ BCD ;③△ BDA ≌△ CEA ;④△ BOE ≌△ COD ;⑤△ ACE ≌△ BCE ;上述结论必定正确的选项是()A .①②③B .②③④C .①③⑤D .①③④第7题图第8题图二、填空题9.如图,已知△ ABC的六个元素,则以下甲、乙、丙三个三角形中和△ ABC全等的图形是第9题图10. 如图,△ ABC中,BD=EC,∠ADB=∠AEC,∠B=∠C,则∠CAE= .[ 根源:] 11.如图,点 B、E、F、C在同向来线上 , 已知∠ A =∠D,∠B =∠C,要使△ ABF≌△ DCE,以“ AAS”需要增补的一个条件是(写出一个即可).[根源 : ZXXK]AA BOB D EC C D第10题图第11题图第 12题图12. 如图, AD=BC,AC=BD,则图中全等三角形有对.13.如图,已知 AB∥CF, E 为 DF的中点 . 若 AB=9 cm,CF=5 cm,则 BD的长度为cm.14.如图,∠ A =∠D,OA=OD,∠DOC=50°,则∠ DBC=度.ADC ADEF OD OBA 第13 C B第 14 题图C第 15 题图题图 B15.(2008·黑河中考)如图,BAC ABD ,请你增添一个条件:,使 OC OD (只添一个即可).16.如图, Rt△ABC中,∠ BAC=90°, AB=AC,分别过点 B,C作过点 A 的直线的垂线 BD,CE,垂足分别为点 D,E. 若 BD=2,CE=3,则 AE=,AD=.17.如图,有一块边长为 4 的正方形塑料摸板ABCD ,将一块足够大的直角三角板的直角极点落在 A 点,两条直角边分别与 CD 交于点 F ,与 CB 延伸线交于点 E .则四边形 AECF 的面积是.CA DBFE CBD A E第16 题图第17题图第 18题图18.如图,两块完整相同的含 30°角的直角三角板叠放在一同,且∠ DAB=30°.有以下四个结论:①AF 丄 BC;②△ ADG≌△ ACF;③ O为 BC的中点;④AG:DE= 错误 ! 未找到引用源。
人教版2021年八年级数学上册课时作业本全等三角形-证明题专练1.如图,已知∠B+∠CDE=180°,AC=CE.求证:AB=DE.2.如图,在△ABC中,AB=AC,AM平分∠BAC,交BC于点M,D为AC上一点,延长AB到点E,使CD=BE,连接DE,交BC于点F,过点D作DH∥AB,交BC于点H,G是CH的中点.(1)求证:DF=EF.(2)试判断GH,HF,BC之间的数量关系,并说明理由.3.如图,已知AB=AD,AC=AE,∠BAD=∠CAE=90°,试判断CD与BE的大小关系和位置关系,并进行证明.4.如图,△ABC中,∠BAC=90°,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.5.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.6.已知:在△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且BD⊥AE于D,CE⊥AE于E.(1)当直线AE处于如图①的位置时,有BD=DE+CE,请说明理由;(2)当直线AE处于如图②的位置时,则BD、DE、CE的关系如何?请说明理由;(3)归纳(1)、(2),请用简洁的语言表达BD、DE、CE之间的关系.7.如图:AD是△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD。
求证:BE⊥AC。
8.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.9.如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.10.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC.求证:∠A+∠C=180°.11.如图,在△ABC中,AD平分∠BAC.(1)求证:S△ABD:S△ACD=AB:AC;(2)若AB=4,AC=5,BC=6,求BD的长.12.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD 上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.13.如图,已知A(﹣2,0),B(0,﹣4),C(1,1),点P为线段OB上一动点(不包括点O),CD⊥CP交x轴于点D,当P点运动时:(1)求证:∠CPO=∠CDO;(2)求证:CP=CD;(3)下列两个结论:①AD﹣BP的值不变;②AD+BP的值不变,选择正确的结论求其值.参考答案1.证明:如图,过E点作EH∥AB交BD的延长线于H,故∠A=∠CEH,在△ABC与△EHC中,∴△ABC≌△EHC(ASA),∴AB=HE,∵∠B+∠CDE=180°,∠HDE+∠CDE=180° ∴∠HDE=∠B=∠H,∴DE=HE.∵AB=HE,∴AB=DE.2.3.证明:CD=BE,CD⊥BE,理由如下:因为∠BAD=∠CAE=90°,所以∠BAD+∠DAE=∠CAE+∠DAE,即∠BAE=∠DAC.因为,所以△BAE≌△DAC(SAS).所以BE=DC,∠BEA=∠DCA.如图,设AE与CD相交于点F,因为∠ACF+∠AFC=90°,∠AFC=∠DFE,所以∠BEA+∠DFE=90°.即CD⊥BE.4.证明:因为∠CEB=∠CAB=90°所以:ABCE四点共元又因为:∠ABE=∠CBE所以:AE=CE所以:∠ECA=∠EAC取线段BD的中点G,连接AG,则:AG=BG=DG所以:∠GAB=∠ABG而:∠ECA=∠GBA所以:∠ECA=∠EAC=∠GBA=∠GAB而:AC=AB所以:△AEC≌△AGB所以:EC=BG=DG所以:BD=2CE5.证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.6.解:(1)在△ABC中,∠BAC=90°,∴∠BAD=90°-∠EAC。
人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)一选择题1.下列条件不能判定两个直角三角形全等的是( )A. 斜边和一直角边对应相等B. 两个锐角对应相等C. 一锐角和斜边对应相等D. 两条直角边对应相等2.一块三角形玻璃被打碎后店员带着如图所示的一片碎玻璃去重新配一块与原来全等的三角形玻璃能够全等的依据是( )A. ASAB. AASC. SASD. SSS3.如图OD⊥AB于点D OP⊥AC于点P且OD=OP则△AOD与△AOP全等的理由是( )A. SSSB. ASAC. SSAD. HL4.如图为6个边长相等的正方形的组合图形则∠1+∠2+∠3的度数为( )A. 90°B. 135°C. 150°D. 180°5.如图AC是△ABC和△ADC的公共边下列条件中不能判定△ABC≌△ADC的是( )A. AB=AD,∠2=∠1B. AB=AD,∠3=∠4C. ∠2=∠1,∠3=∠4D. ∠2=∠16.如图已知点B、E、C、F在同一直线上且BE=CF,∠ABC=∠DEF那么添加一个条件后.仍无法判定△ABC≌△DEF的是( )A. AC=DFB. AB=DEC. AC//DFD. ∠A=∠D7.如图点C D在AB同侧∠CAB=∠DBA下列条件中不能判定△ABD≌△BAC的是( )A. ∠D=∠CB. BD=ACC. AD=BCD. ∠CAD=∠DBC8.如图D是AB上一点DF交AC于点E,DE=FE,FC//AB若AB=4,CF=3则BD的长是( )A. 0.5B. 1C. 1.5D. 29.如图△ABC中AB=AC,AD是角平分线BE=CF则下列说法中正确的有( )①AD平分∠EDF;②△EBD≌△FCD;③BD=CD;④AD⊥BC.A. 1个B. 2个C. 3个D. 4个10.两组邻边分别相等的四边形叫做“筝形”如图四边形ABCD是一个筝形其中AD=CD AB=CB 在探究筝形的性质时得到如下结论:③四边形ABCD的面积其中正确的结论有.( )A. 0个B. 1个C. 2个D. 3个二填空题11.如图在3×3的正方形网格中∠1+∠2=_______度.12.如图已知AB=AC,EB=EC,AE的延长线交BC于D则图中全等的三角形共有______对.13.如图所示的网格是正方形网格点A,B,C,D均落在格点上则∠BAC+∠ACD=____°.14.如图∠A=∠E,AC⊥BE,AB=EF,BE=10,CF=4则AC=______.15.如图在△ABC和△DEF中点B,F,C,E在同一直线上BF=CE,AB//DE请添加一个条件使△ABC≌△DEF这个添加的条件可以是______(只需写一个不添加辅助线).16.如图在△ABC中高AD和BE交于点H且DH=DC则∠ABC=°.17.如图在四边形ABCD中AB=AD,∠BAD=∠BCD=90∘连接AC若AC=6则四边形ABCD的面积为.18.如图∠C=90°,AC=20,BC=10,AX⊥AC点P和点Q同时从点A出发分别在线段AC和射线AX上运动且AB=PQ当AP=______时以点A,P,Q为顶点的三角形与△ABC全等.19.如图△ABC中AB=AC,AD⊥BC于D点DE⊥AB于点E BF⊥AC于点F,DE=3cm则BF=cm.20.如图所示∠E=∠F=90∘,∠B=∠C,AE=AF结论:①EM=FN②AF//EB③∠FAN=∠EAM④△ACN≌△ABM.其中正确的有______ .三解答题21.如图点A,D,C,F在同一条直线上AD=CF,AB=DE,AB//DE.求证:BC=EF.22.如图点C、F、E、B在一条直线上∠CFD=∠BEA,CE=BF,DF=AE写出CD与AB之间的关系并证明你的结论.23.如图B、C、E三点在同一条直线上AC//DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE24.已知:如图在△ABC中BE⊥AC垂足为点E,CD⊥AB垂足为点D且BD=CE.求证:∠ABC=∠ACB.25.如图在△ABC中AB=CB,∠ABC=90°,D为AB延长线上一点点E在BC边上且BE=BD 连接AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°求∠BDC的度数.答案和解析1.【答案】B【解析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS做题时要结合已知条件与全等的判定方法逐一验证.【解答】解:A.符合判定HL故本选项正确不符合题意;B.全等三角形的判定必须有边的参与故本选项错误符合题意;C.符合判定AAS故本选项正确不符合题意;D.符合判定SAS故本选项正确不符合题意.故选B.2.【答案】A【解析】本题考查了全等三角形的判定:全等三角形的判定方法中选用哪一种方法取决于题目中的已知条件若已知两边对应相等则找它们的夹角或第三边;若已知两角对应相等则必须再找一组对边对应相等若已知一边一角则找另一组角或找这个角的另一组对应邻边.利用全等三角形判定方法进行判断.【解答】解:这片碎玻璃的两个角和这两个角所夹的边确定从而可根据“ASA”重新配一块与原来全等的三角形玻璃.故选:A.3.【答案】D【解析】本题考查了直角三角形全等的判定的知识点解题关键点是熟练掌握直角三角形全等的判定方法HL.根据直角三角形全等的判别方法HL可证△AOD≌△AOP.【解答】解:∵OD⊥AB且OP⊥AC∴△AOD和△AOP是直角三角形又∵OD=OP且AO=AO∴△AOD≌△AOP(HL).故选D.4.【答案】B【解析】本题考查了全等图形准确识图并判断出全等的三角形是解题的关键标注字母利用“边角边”证明△ABC和△DEA全等根据全等三角形对应角相等可得∠1=∠4从而求出∠1+∠3=90°再判断出∠2=45°进而计算即可得解.【解答】解:如图在△ABC和△DEA中{AB=DE∠ABC=∠DEA=90°BC=EA,∴△ABC≌△DEA(SAS)∴∠1=∠4∵∠3+∠4=90°∴∠1+∠3=90°又∵∠2=45°∴∠1+∠2+∠3=90°+45°=135°.故选B.5.【答案】A【解析】本题考查三角形全等的判定方法判定两个三角形全等的一般方法有:SSS SAS ASA AAS等.利用全等三角形的判定定理:SSS SAS ASA AAS等逐项进行分析即可.判定两个三角形全等时必须有边的参与若有两边一角对应相等时这个角必须是两边的夹角.【解答】解:A.AB=AD∠2=∠1再加上公共边AC=AC不能判定△ABC≌△ADC故此选项符合题意;B.AB=AD∠3=∠4再加上公共边AC=AC可利用SAS判定△ABC≌△ADC故此选项不合题意;C.∠2=∠1∠3=∠4再加上公共边AC=AC可利用ASA判定△ABC≌△ADC故此选项不合题意;D.∠2=∠1∠B=∠D再加上公共边AC=AC可利用AAS判定△ABC≌△ADC故此选项不合题意;故选A.6.【答案】A【解析】解:∵BE=CF∴BE+EC=EC+CF即BC=EF且∠ABC=∠DEF∴当AC=DF时满足SSA无法判定△ABC≌△DEF故A不能;当AB=DE时满足SAS可以判定△ABC≌△DEF故B可以;当AC//DF时可得∠ACB=∠F满足ASA可以判定△ABC≌△DEF故C可以;当∠A=∠D时满足AAS可以判定△ABC≌△DEF故D可以;故选:A.根据全等三角形的判定方法逐项判断即可.本题主要考查全等三角形的判定方法 掌握全等三角形的判定方法是解题的关键 即SSS SAS ASA AAS 和HL .7.【答案】C【解析】本题考查了全等三角形的判定定理的应用 能熟记全等三角形的判定定理是解此题的关键 注意:全等三角形的判定定理有SAS ASA AAS SSS 符合SSA 和AAA 不能推出两三角形全等. 根据图形知道隐含条件BC =BC 根据全等三角形的判定定理逐个判断即可.【解答】解:A 添加条件∠D =∠C 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理AAS 能推出△ABD ≌△BAC 故本选项错误;B 添加条件BD =AC 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理SAS 能推出△ABD ≌△BAC 故本选项错误;C 添加条件AD =BC 还有已知条件∠CAB =∠DBA BC =BC 不符合全等三角形的判定定理 不能推出△ABD ≌△BAC 故本选项正确;D ∵∠CAB =∠DBA ∠CAD =∠DBC∴∠DAB =∠CBA 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理ASA 能推出△ABD ≌△BAC 故本选项错误;故选C .8.【答案】B【解析】解:∵CF//AB∴∠A =∠FCE ∠ADE =∠F∴在△ADE 和△CFE 中{∠A =∠FCE∠ADE =∠F DE =FE∴△ADE ≌△CFE(AAS)∴AD =CF =3∵AB =4∴DB =AB −AD =4−3=1.故选B .根据平行线的性质 得出∠A =∠FCE ∠ADE =∠F 再根据全等三角形的判定证明△ADE ≌△CFE得出AD=CF根据AB=4CF=3即可求线段DB的长.本题考查了全等三角形的性质和判定平行线的性质的应用能判定△ADE≌△FCE是解此题的关键解题时注意运用全等三角形的对应边相等对应角相等.9.【答案】C【解析】解:∵AB=AC AD平分∠BAC∴BD=DC AD⊥BC故③④正确在RT△BDE和RT△CDF中{BE=CFBD=CD∴RT△BDE≌RT△CDF故②正确∵AD⊥BC∴∠ADC=∠CDF=90°∴BC平分∠EDF.故①错误.故选:C.根据等腰三角形的三线合一可以判断③④正确根据HL可以证明RT△BDE≌RT△CDF可以判断②正确由BC平分∠EDF得出①错误故不难得到结论.本题考查全等三角形的判定和性质等腰三角形的性质角平分线的定义等知识解题的关键是等腰三角形三线合一的性质的应用属于中考常考题型.10.【答案】C【解析】此题考查全等三角形的判定和性质关键是根据SSS证明△ABD与全等和利用SAS证明与全等.【解答】解:如图在△ABD与中故①正确;∴∠ADB=∠CDB在与中∴∠AOD=∠COD=90°∴AC⊥DB故②正确;故③错误.故选C.11.【答案】90【解析】本题考查了全等三角形的判定和性质能看懂图形是解题的关键.首先判定两个三角形全等然后根据全等三角形的性质及直角三角形的性质即可判断得出结论.【解答】解:如图所示:∵∠ACB=∠DCE=90°AC=DC BC=EC∴Rt△ACB≌Rt△DCE∴∠2=∠EDC在Rt△DCE中∠1+∠EDC=90°∴∠1+∠2=90°.12.【答案】3【解析】解:①△ABE≌△ACE∵AB=AC EB=EC∴△ABE≌△ACE;②△EBD≌△ECD∵△ABE≌△ACE∴∠ABE=∠ACE∴∠EBD=∠ECD∵EB=EC∴△EBD≌△ECD;③△ABD≌△ACD∵△ABE≌△ACE△EBD≌△ECD∴∠BAD=∠CAD∵∠ABC=∠ABE+∠BED∴∠ABC=∠ACB∵AB=AC∴△ABD≌△ACD∴图中全等的三角形共有3对.在线段AD的两旁猜想所有全等三角形再利用全等三角形的判断方法进行判定三对全等三角形是△ABE≌△ACE△EBD≌△ECD△ABD≌△ACD.本题考查学生观察猜想全等三角形的能力同时也要求会运用全等三角形的几种判断方法进行判断.13.【答案】90【解析】【解答】解:在△DCE和△ABD中∵{CE=BD=1∠E=∠ADB=90°DE=AD=3∴△DCE≌△ABD(SAS)∴∠CDE =∠DAB∵∠CDE +∠ADC =∠ADC +∠DAB =90°∴∠AFD =90°∴∠BAC +∠ACD =90°故【答案】90.【分析】本题网格型问题 考查了三角形全等的性质和判定及直角三角形各角的关系 本题构建全等三角形是关键.证明△DCE ≌△ABD(SAS) 得∠CDE =∠DAB 根据同角的余角相等和三角形的内角和可得结论. 14.【答案】6【解析】本题考查了全等三角形的判定与性质有关知识 由AAS 证明△ABC ≌△EFC 得出对应边相等AC =EC BC =CF =4 求出EC 即可得出AC 的长.【解答】解:∵AC ⊥BE∴∠ACB =∠ECF =90°在△ABC 和△EFC 中{∠ACB =∠ECF ∠A =∠E AB =EF∴△ABC ≌△EFC(AAS)∴AC =EC BC =CF =4∵EC =BE −BC =10−4=6∴AC =EC =6;故答案为6. 15.【答案】AB =ED【解析】解:添加AB =ED∵BF =CE∴BF +FC =CE +FC即BC =EF∵AB//DE∴∠B =∠E在△ABC 和△DEF 中{AB =ED∠B =∠E CB =FE,∴△ABC ≌△DEF(SAS)故【答案】AB =ED .根据等式的性质可得BC =EF 根据平行线的性质可得∠B =∠E 再添加AB =ED 可利用SAS 判定△ABC ≌△DEF .本题考查三角形全等的判定方法 判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL .注意:AAA SSA 不能判定两个三角形全等 判定两个三角形全等时 必须有边的参与 若有两边一角对应相等时 角必须是两边的夹角.16.【答案】45【解析】本题考查了全等三角形的判定与性质 余角的性质 等腰直角三角形 由三角形的高得到∠ADB =∠ADC =∠BEC =90° 结合余角的性质得到∠HBD =∠CAD 易证△HBD ≌△CAD 得到AD =BD 根据等腰直角三角形得到∠ABD =45° 即可得出结论.【解答】解:∵AD ⊥BC BE ⊥AC∴∠ADB =∠ADC =∠BEC =90°∴∠HBD +∠C =∠CAD +∠C =90°∴∠HBD =∠CAD∵在△HBD 和△CAD 中{∠HBD =∠CAD,HDB =∠CDA,DH =DC,∴△HBD ≌△CAD(AAS)∴AD =BD∵∠ADB =90°∴△ABD 为等腰直角三角形∴∠ABD =45° 即∠ABC =45°故答案为45.17.【答案】18【解析】本题考查全等三角形的判定和性质和三角形的面积.过点A 作AE ⊥AC 交CD 的延长线于点E.做出辅助线是解答本题的关键.过点A 作AE ⊥AC 交CD 的延长线于点E 证明△AED ≌△ACB 将四边形ABCD 的面积转化为△ACE 的面积 利用三角形面积公式求解即可.【解答】解:过点A 作AE ⊥AC 交CD 的延长线于点E∵∠EAC =∠BAD =90°∴∠EAD =∠CAB∵∠BAD =∠BCD =90∘∴∠ADC +∠ABC =360°−(∠BAD +∠BCD)=180°又∵∠ADE +∠ADC =180∘∴∠ADE =∠ABC在△AED 与△ACB 中{∠EAD =∠CABAD =AB ∠ADE =∠ABC∴△AED ≌△ACB(ASA)∴AE =AC =6 四边形ABCD 的面积等于△ACE 的面积故S 四边形ABCD =12AC ⋅AE =12×6×6=18.故答案为18. 18.【答案】10或20【解析】解:∵AX ⊥AC∴∠PAQ =90°∴∠C=∠PAQ=90°分两种情况:①当AP=BC=10时在Rt△ABC和Rt△QPA中{AB=PQBC=AP∴Rt△ABC≌Rt△QPA(HL);②当AP=CA=20时在△ABC和△PQA中{AB=PQAP=AC∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=10或20时△ABC与△APQ全等;故【答案】10或20.分两种情况:①当AP=BC=10时;②当AP=CA=20时;由HL证明Rt△ABC≌Rt△PQA(HL);即可得出结果.本题考查了直角三角形全等的判定方法;熟练掌握直角三角形全等的判定方法本题需要分类讨论难度适中.19.【答案】6【解析】本题考查了全等三角形的判定与性质三角形的面积利用面积公式得出等式是解题的关键.先利用HL证明Rt△ADB≌Rt△ADC得出S△ABC=2S△ABD=2×12AB⋅DE=AB⋅DE=3AB又S△ABC=12AC⋅BF将AC=AB代入即可求出BF.【解答】解:在Rt△ADB与Rt△ADC中{AB=ACAD=AD ∴Rt△ADB≌Rt△ADC∴S△ABC=2S△ABD=2×12AB⋅DE=AB⋅DE=3AB∵S△ABC=12AC⋅BF∴12AC⋅BF=3AB ∵AC=AB∴12BF=3cm∴BF=6cm.故【答案】6.20.【答案】①③④【解析】此题考查了全等三角形的性质与判别考查了学生根据图形分析问题解决问题的能力.其中全等三角形的判别方法有:SSS SAS ASA AAS及HL.学生应根据图形及已知的条件选择合适的证明全等的方法.由∠E=∠F=90°∠B=∠C AE=AF利用“AAS”得到△ABE与△ACF全等根据全等三角形的对应边相等且对应角相等即可得到∠EAB与∠FAC相等AE与AF相等AB与AC相等然后在等式∠EAB=∠FAC两边都减去∠MAN得到∠EAM与∠FAN相等然后再由∠E=∠F=90°AE=AF∠EAM=∠FAN利用“ASA”得到△AEM与△AFN全等利用全等三角形的对应边相等对应角相等得到选项①和③正确;然后再∠C=∠B AC=AB∠CAN=∠BAM利用“ASA”得到△ACN与△ABM全等故选项④正确;若选项②正确得到∠F与∠BDN相等且都为90°而∠BDN不一定为90°故②错误.【解答】解:在△ABE和△ACF中∠E=∠F=90°AE=AF∠B=∠C∴△ABE≌△ACF(AAS)∴∠EAB=∠FAC AE=AF AB=AC∴∠EAB−∠MAN=∠FAC−∠NAM即∠EAM=∠FAN在△AEM和△AFN中∠E=∠F=90°AE=AF∠EAM=∠FAN∴△AEM≌△AFN(ASA)∴EM=FN∠FAN=∠EAM故选项①和③正确;在△ACN和△ABM中∠C=∠B∠CAN=∠BAM AC=AB∴△ACN≌△ABM(ASA)故选项④正确;若AF//EB∠F=∠BDN=90°而∠BDN不一定为90°故②错误则正确的选项有:①③④.21.【答案】解:∵AB//DE∴∠A =∠EDF∵AC =AD +DC DF =DC +CF 且AD =CF∴AC =DF在△ABC 和△DEF 中{AB =DE∠A =∠EDF AC =DF∴△ABC ≌△DEF(SAS)∴BC =EF .【解析】先证明AC =DF 再根据SAS 推出△ABC ≌△DEF 便可得结论.本题考查了全等三角形的判定和性质的应用 证明三角形的边相等 往往转化证明三角形的全等. 22.【答案】解:CD//AB CD =AB理由是:∵CE =BF∴CE −EF =BF −EF∴CF =BE在△CFD 和△BEA 中{CF =BE∠CFD =∠BEA DF =AE∴△CFD ≌△BEA(SAS)∴CD =AB ∠C =∠B∴CD//AB .【解析】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角对应相等的重要工具.在判定三角形全等时 关键是选择恰当的判定条件. 求出CF =BE 根据SAS 证△CFD ≌△BEA 推出CD =AB ∠C =∠B 根据平行线的判定推出CD//AB .23.【答案】证明:∵AC//DE∴∠ACB =∠E ∠ACD =∠D∵∠ACD =∠B∴∠D =∠B在△ABC 和△EDC 中{∠B =∠D∠ACB =∠E AC =CE∴△ABC ≌△CDE(AAS).【解析】此题主要考查了全等三角形的判定 平行线的性质.首先根据AC//DE 利用平行线的性质可得:∠ACB =∠E ∠ACD =∠D 再根据∠ACD =∠B 证出∠D =∠B 然后根据全等三角形的判定定理AAS 证出△ABC ≌△CDE 即可.24.【答案】证明:∵BE ⊥AC CD ⊥AB∴∠BDC =∠CEB =90°在Rt △BCD 和Rt △CBE 中{BC =CB BD =CE∴Rt △BCD ≌Rt △CBE(HL)∴∠DBC =∠ECB即∠ABC =∠ACB .【解析】本题考查了全等三角形的判定与性质;证明三角形全等是解题的关键.证明Rt △BCD ≌Rt △CBE(HL) 即可得出结论.25.【答案】(1)证明:∵∠ABC =90°∴∠DBC =90°在△ABE 和△CBD 中{AB =CB∠ABE =∠CBD BE =BD∴△ABE ≌△CBD(SAS);(2)解:∵AB =CB ∠ABC =90°∴∠BCA =45°∴∠AEB =∠CAE +∠BCA =30°+45°=75°∵△ABE ≌△CBD∴∠BDC =∠AEB =75°.【解析】(1)由条件可利用SAS证得结论;(2)由等腰直角三角形的性质可先求得∠BCA利用三角形外角的性质可求得∠AEB再利用全等三角形的性质可求得∠BDC.本题主要考查全等三角形的判定和性质掌握全等三角形的判定方法(即SSS SAS ASA AAS和HL)和全等三角形的性质(即全等三角形的对应边相等对应角相等)是解题的关键.。
第十二章全等三角形12.2.3 三角形全等的判定(三)ASA、AAS1.如图,已知△ABC三条边、三个角,则甲、乙两个三角形中和△ABC全等的是( ) A.甲B.乙C.甲和乙都是D.都不是2.如图,∠ABC=∠DCB,BD,CA分别是∠ABC,∠DCB的平分线.求证:AB=DC.3.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.4.如图,在△ABC中,∠B=∠C,D为BC的中点,过点D分别向AB,AC作垂线段,则能够说明△BDE≌△CDF的理由是( )A.SSS B.SASB.C.ASA D.AAS5.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,CE=BF,∠A =∠D.求证:AB=CD.6.如图,∠B=∠DEF,AB=DE,要说明△ABC≌△DEF.(1)若以“SAS”为依据,还需添加的条件为;(2)若以“ASA”为依据,还需添加的条件为;(3)若以“AAS”为依据,还需添加的条件为.7.如图,AE∥DF,AE=DF,则添加下列条件还不能确定△EAC≌△FDB( ) A.AB=CD B.CE∥BF C.CE=BF D.∠E=∠F第7题图第8题图第9题图第10题图8.如图,已知D是△ABC的边AB上一点,DF交AC于点E,DE=EF,FC∥AB,若BD =2,CF=5,则AB的长为( )A.2 B.5C.7 D.39.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.10.如图,要测量河两岸相对的两点A,B的距离,在AB的垂线BF上取两点C,D,使BC=CD,过点D作BF的垂线DE,与AC的延长线交于点E,则∠ABC=∠CDE=90°,BC=DC,∠1=,△ABC≌.若测得DE的长为25米,则河宽AB的长为.11.如图,已知点A,F,E,C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.求证:(1)BD=CE;(2)∠M=∠N.13.如图1,在△ABC中,∠ACB=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN 于点M,BN⊥MN于点N.(1)求证:MN=AM+BN;(2)如图2,若过点C作直线MN与线段AB相交,AM⊥MN于点M,BN⊥MN于点N(AM>BN),(1)中的结论是否仍然成立?说明理由.参考答案1.B2.证明:∵∠ABC =∠DCB ,BD ,CA 分别是∠ABC ,∠DCB 的平分线,∴∠DBC =∠ACB.在△ABC 和△DCB 中,⎩⎪⎨⎪⎧∠ABC =∠DCB ,BC =CB ,∠ACB =∠DBC ,∴△ABC ≌△DCB(ASA ).∴AB =DC.3.证明:∵BD ⊥AC 于点D ,CE ⊥AB 于点E ,∴∠ADB =∠AEC =90°.在△ABD 和△ACE 中,⎩⎪⎨⎪⎧∠ADB =∠AEC ,AD =AE ,∠A =∠A ,∴△ABD ≌△ACE(ASA ).∴AB =AC.又∵AD =AE ,∴AB -AE =AC -AD ,即BE =CD.4.D5.证明:∵AB ∥CD ,∴∠B =∠C.∵CE =BF ,∴CE +EF =BF +EF ,即CF =BE.在△ABE 和△DCF 中,⎩⎪⎨⎪⎧∠A =∠D ,∠B =∠C ,BE =CF ,∴△ABE ≌△DCF(AAS ),∴AB =CD.6. (1) BC =EF 或BE =CF ;(2) ∠A =∠D ;(3) ∠ACB =∠F .7.C8.C9.AC =BC .10.25米.11.解:(1)△ABE ≌△CDF ,△AFD ≌△CEB.(2)选△ABE ≌△CDF ,证明:∵AB ∥CD ,∴∠BAE =∠DCF.∵AF =CE ,∴AF +EF =CE +EF ,即AE =CF.在△ABE 和△CDF 中,⎩⎪⎨⎪⎧∠BAE =∠DCF ,∠ABE =∠CDF ,AE =CF ,∴△ABE ≌△CDF(AAS ).12.证明:(1)在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠1=∠2,AD =AE ,∴△ABD ≌△ACE(SAS ).∴BD =CE.(2)∵∠1=∠2,∴∠1+∠DAE =∠2+∠DAE ,即∠BAN =∠CAM.由(1),得△ABD ≌△ACE ,∴∠B =∠C. 在△ACM 和△ABN 中,⎩⎪⎨⎪⎧∠C =∠B ,AC =AB ,∠CAM =∠BAN ,∴△ACM ≌△ABN(ASA ).∴∠M =∠N.13.解:(1)证明:∵∠ACB =90°,∴∠ACM +∠BCN =90°.又∵AM ⊥MN ,BN ⊥MN ,∴∠AMC =∠CNB =90°.∴∠BCN +∠CBN =90°.∴∠ACM =∠CBN. 在△ACM 和△CBN 中,⎩⎪⎨⎪⎧∠ACM =∠CBN ,∠AMC =∠CNB ,AC =CB ,∴△ACM ≌△CBN(AAS ).∴MC =NB ,MA =NC.∵MN =MC +CN ,∴MN =AM +BN.(2)(1)中的结论不成立,结论为MN =AM -BN. 理由如下:同(1)中证明可得△ACM ≌△CBN ,∴CM=BN,AM=CN.∵MN=CN-CM,∴MN=AM-BN.。
一、选择题1.如图,在ABC 中,ABC 的面积为10,4AB =,BD 平分ABC ∠,E 、F 分别为BC 、BD 上的动点,则CF EF +的最小值是( )A .2B .3C .4D .5D解析:D【分析】 过点C 作CM AB ⊥于点M ,交BD 于点'F ,过点'F 作''F E BC ⊥于'E ,则CM 即为CF EF +的最小值,再根据三角形的面积公式求出CM 的长,即为CF EF +的最小值.【详解】解:过点C 作CM AB ⊥于点M ,交BD 于点'F ,过点'F 作''F E BC ⊥于'E ,BD 平分ABC ∠,'MF AB ⊥于点M ,''F E BC ⊥于'E ,'''MF F E ∴=,'''''CM CF MF CF E F ∴=+=+的最小值.三角形ABC 的面积为10,4AB =, ∴14102CM ⨯⋅=,21054CM ⨯∴==. 即CF EF +的最小值为5,故选:D .【点睛】本题考查的是轴对称-最短路线问题,根据题意作出辅助线是解题的关键.2.下列命题的逆命题是真命题的是( ).A 3 3B 5C .1的立方根是1D .全等三角形的周长相等C解析:C【分析】 根据把一个命题的条件和结论互换就得到它的逆命题,先得出逆命题,再进行判断即可.【详解】A 、3的平方根是3的逆命题是:3是3的平方根,是假命题;B 、5是无理数的逆命题是:无理数是5,是假命题;C 、1的立方根是1的逆命题是:1是1的立方根,是真命题;D 、全等三角形的周长相等的逆命题是:周长相等的三角形全等,是假命题;故选:C .【点睛】此题考查了命题的真假判断及互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉各知识点的性质定理.3.如图,在ABC 中,B C ∠=∠,BD CE =,BF CD =,则EDF ∠等于( )A .90A ︒-∠B .1802A ︒-∠C .1902A ︒-∠D .11802A ︒-∠ C 解析:C【分析】 根据∠B=∠C ,BD=CE ,BF=CD ,可证出△BFD ≌△CDE ,继而得出∠BFD=∠EDC ,再根据三角形内角和定理及平角等于180︒,即可得出∠B=∠EDF ,进而得到答案.【详解】解:∵∠B=∠C ,BD=CE ,BF=CD ,∴△BFD ≌△CDE ,∴∠BFD=∠EDC ,∴∠B+∠BFD+∠BDF=∠BDF+∠EDF+∠EDC ,∴∠B=∠EDF ,又∵∠B=∠C=18019022A A ︒-∠=︒-∠, ∴∠EDF=1902A ︒-∠, 故选:C .【点睛】本题考查全等三角形的判定与性质、等腰三角形的性质以及三角形内角和定理,根据全等三角形的性质找出∠BFD=∠EDC 是解题的关键.4.已知如图,AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,下面结论错误的是( )A .BD +ED =BCB .DE 平分∠ADBC .AD 平分∠EDC D .ED +AC >AD B解析:B【分析】 根据角平分线上的点到角的两边的距离相等可得DE =DC ,然后利用AAS 证明△ACD ≌△AED ,再对各选项分析判断后利用排除法.【详解】解:∵AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,∴DE =DC ,A 、BD +ED =BD +DC =BC ,故本选项正确;在△ACD 与△AED 中,90DAC DAE ACD AED AD AD ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△ACD ≌△AED (AAS ),∴∠ADC =∠ADE ,∴AD 平分∠EDC ,故C 选项正确;但∠ADE 与∠BDE 不一定相等,故B 选项错误;D 、∵△ACD ≌△AED ,∴AE =AC ,∴ED +AC =ED +AE >AD (三角形任意两边之和大于第三边),故本选项正确.故选:B .【点睛】本题考查了角平分线的性质,角平分线上的点到角的两边的距离相等,证明ACD AED △≌△是解题的关键.5.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:①△ABD ≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF 其中正确的是( )A .①②③B .①③④C .①②④D .①②③④D解析:D【分析】 易证ABD EBC ∆∆≌,可得BCE BDA ∠=∠,AD=EC 可得①②正确;再根据角平分线的性质可求得DAE DCE ∠=∠ ,即③正确,根据③可判断④正确;【详解】∵ BD 为∠ABC 的角平分线,∴ ∠ABD=∠CBD ,∴在△ABD 和△EBD 中,BD=BC ,∠ABD=∠CDB ,BE=BA ,∴△ABD EBC ∆∆≌(SAS),故①正确;∵ BD 平分∠ABC ,BD=BC ,BE=BA ,∴ ∠BCD=∠BDC=∠BAE=∠BEA ,∵△ABD ≌△EBC ,∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,故②正确;∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE ,∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA ,∴∠DCE=∠DAE ,∴△ACE 是等腰三角形,∴AE=EC ,∵△ABD ≌△EBC ,∴AD=EC ,∴AD=AE=EC ,故③正确;作EG ⊥BC ,垂足为G ,如图所示:∵ E 是BD 上的点,∴EF=EG ,在△BEG 和△BEF 中BE BE EF EG=⎧⎨=⎩ ∴ △BEG ≌△BEF ,∴BG=BF ,在△CEG 和△AFE 中EF EG AE CE =⎧⎨=⎩∴△CEG ≌△AFE ,∴ AF=CG ,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF ,故④正确;故选:D .【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键; 6.如图,在ABC 和△FED 中,AD FC =,AB FE =,下列条件中不能证明F ABC ED ≌△△的是( )A .BC ED =B .A F ∠=∠C .B E ∠=∠D .//AB EF C解析:C【分析】 由AD FC =推出AC=FD ,根据已知AB FE =添加夹角相等或第三边相等即可判定.【详解】∵AD FC =,∴AC=FD ,∵AB FE =,∴当A F ∠=∠(//AB EF 也可得到)或BC ED =时,即可判定F ABC ED ≌△△, 故B E ∠=∠不能判定F ABC ED ≌△△,故选:C .【点睛】此题考查添加一个条件证明两个三角形全等,熟记全等三角形的判定定理并熟练应用是解题的关键.7.根据下列已知条件,能画出唯一的△ABC的是()A.AB=3,BC=4,∠C=40°B.∠A=60°,∠B=45°,AB=4C.∠C=90°,AB=6 D.AB=4,BC=3,∠A=30°B解析:B【分析】根据全等三角形的判定方法对各选项进行判断.【详解】解:A、根据AB=3,BC=4,∠C=40°,不能画出唯一三角形,故本选项不合题意;B、∠A=60°,AB=4,∠B=45°,能画出唯一△ABC,故此选项符合题意;C、∠C=90°,AB=6,不能画出唯一三角形,故本选项不合题意;D、AB=4,BC=3,∠A=30°,不能画出唯一三角形,故本选项不合题意;故选:B.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法是解题的关键.8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.2.5 B.3 C.3.5 D.4B解析:B【分析】作DH⊥AC于H,如图,利用角平分线的性质得DH=DE=2,根据三角形的面积公式得1 2×2×AC+12×2×4=7,于是可求出AC的值.【详解】解:作DH⊥AC于H,如图,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DH⊥AC,∴DH=DE=2,∵S△ABC=S△ADC+S△ABD,∴12×2×AC+12×2×4=7,∴AC=3.故选:B.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.这里的距离是指点到角的两边垂线段的长.9.下列命题,真命题是()A.全等三角形的面积相等B.面积相等的两个三角形全等C.两个角对应相等的两个三角形全等D.两边和其中一边的对角对应相等的两个三角形全等A解析:A【分析】根据全等三角形的性质、全等三角形的判定定理判断即可.【详解】解:A、全等三角形的面积相等,本选项说法是真命题;B、面积相等的两个三角形不一定全等,本选项说法是假命题;C、两个角对应相等的两个三角形相似,但不一定全等,本选项说法是假命题;D、两边和其中一边的对角对应相等的两个三角形不一定全等,本选项说法是假命题;故选:A.【点睛】本题考查全等三角形的应用,熟练掌握三角形全等的定义、性质及判定是解题关键.10.在尺规作图作一个角的平分线时的两个三角形全等的依据是()A.SAS B.AAS C.SSS D.HL C解析:C【分析】根据作图过程可知用到的三角形全等的判定方法是SSS.【详解】解:尺规作图-作一个角的角平分线的作法如下:①以O为圆心,任意长为半径画弧,交AO、BO于点F、E,②再分别以F、E为圆心,大于12EF长为半径画弧,两弧交于点M,③画射线OM,射线OM即为所求.由作图过程可得用到的三角形全等的判定方法是SSS.故选:C.【点睛】本题主要考查了基本作图以及全等三角形的判定,关键是掌握作一个角的平分线的基本作图方法.二、填空题11.如图,△ABC中,∠ACB=90°,点D在边AC 上,DE⊥AB于点E,DC=DE,∠A=32°,则∠BDC的度数为________.61°【分析】首先利用直角三角形的性质求得∠ABC的度数然后利用角平分线的判定方法得到BD为∠ABC的平分线再求出∠ABD的度数根据三角形外角的性质进而求得结论【详解】解:∵∠A=32°∠ACB=9解析:61°【分析】首先利用直角三角形的性质求得∠ABC的度数,然后利用角平分线的判定方法得到BD为∠ABC的平分线,再求出∠ABD的度数,根据三角形外角的性质进而求得结论.【详解】解:∵∠A=32°,∠ACB=90°,∴∠CBA=58°,∵DE⊥AB,DC⊥BC,DC=DE,∴BD为∠ABC的平分线,∴∠CBD=∠EBD,∴∠CBD=12∠CBA=12×58°=29°,∴∠BDC=∠A+∠ABD=32°+29°=61°.故答案为:61°.【点睛】本题考查了角平分线的判定与性质,解题的关键是根据已知条件得到BD为∠ABC的平分线,难度不大.12.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=12,BC=18,CD=8,则四边形ABCD的面积是____.【分析】过点D 作DE ⊥BA 的延长线于点E 利用角平分线的性质可得出DE =DC =8再利用三角形的面积公式结合S 四边形ABCD =S △ABD +S △BCD 可求出四边形ABCD 的面积【详解】解:过点D 作DE ⊥B 解析:120【分析】过点D 作DE ⊥BA 的延长线于点E ,利用角平分线的性质可得出DE =DC =8,再利用三角形的面积公式结合S 四边形ABCD =S △ABD +S △BCD ,可求出四边形ABCD 的面积.【详解】解:过点D 作DE ⊥BA 的延长线于点E ,如图所示.又∵BD 平分∠ABC ,∠BCD =90°,∴DE =DC =8,∴S 四边形ABCD =S △ABD +S △BCD , =12AB•DE +12BC•CD , =12×12×8+12×18×8, =120.故答案为:120.【点睛】本题考查了角平分线的性质以及三角形的面积,利用角平分线的性质,找出DE =8是解题的关键.13.如图,ABC 中,D 是AB 上的一点,DF 交AC 于点E ,AE CE ,//CF AB ,若四边形DBCF 的面积是26cm ,则ABC 的面积为______2cm .6【分析】根据CF ∥AB 得到∠DAE=∠FCE 结合AE=CE ∠AED=∠FEC 可得△AED ≌△CEF 根据即可得出结果【详解】解:∵CF ∥AB ∴∠DAE=∠FCE 又∵AE=CE ∠AED=∠FEC ∴△A解析:6【分析】根据CF ∥AB ,得到∠DAE=∠FCE ,结合AE=CE ,∠AED=∠FEC ,可得△AED ≌△CEF ,AED CEF S S =,根据 ABC AED CEF DBCE DBCE DBCF S S S S S S =+=+=四边形四边形四边形,即可得出结果.【详解】解:∵CF ∥AB ,∴∠DAE=∠FCE ,又∵AE=CE ,∠AED=∠FEC ,∴△AED ≌△CEF ,∴AED CEF SS =, ∴26ABC AED CEF DBCE DBCE DBCF S S S S S S cm =+=+==四边形四边形四边形, 故答案为:6.【点睛】本题考查全等三角形的判定与性质,解题的关键是证得△AED ≌△CEF . 14.如图,点D 在BC 上,DE ⊥AB 于点E ,DF ⊥BC 交AC 于点F ,BD =CF ,BE =CD .若∠AFD =145°,则∠EDF =_____.55°【分析】由∠AFD =145°可求得∠CFD=35°证明Rt △BDE ≌△Rt △CFD 根据对应角相等推知∠BDE=∠CFD=35°进而可求出∠EDF 的值【详解】解:∵∠DFC+∠AFD=180°∠解析:55°【分析】由∠AFD =145°可求得∠CFD=35°,证明Rt △BDE ≌△Rt △CFD ,根据对应角相等推知∠BDE=∠CFD=35°,进而可求出∠EDF 的值.【详解】解:∵∠DFC+∠AFD=180°,∠AFD=145°,∴∠CFD=35°.又∵DE ⊥AB ,DF ⊥BC ,∴∠BED=∠CDF=90°,在Rt △BDE 与△Rt △CFD 中,BE CD BD CF =⎧⎨=⎩, ∴Rt △BDE ≌△Rt △CFD (HL ),∴∠BDE=∠CFD=35°,∴∠EDF =180°-90°-35°=55°.故答案是:55°.【点睛】本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.15.如图,在Rt ABC △中,90C ∠=︒,以顶点A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交BC 于点D .若3CD =,10AB =,则ABD △的面积是______.15【分析】如图过点D 作DE ⊥AB 于E 首先证明DE=CD=3再利用三角形的面积公式计算即可【详解】解:如图过点D 作DE ⊥AB 于E 由作图可知AD 平分∠CAB ∵CD ⊥ACDE ⊥AB ∴DE=CD=3∴S △ 解析:15【分析】如图,过点D 作DE ⊥AB 于E .首先证明DE=CD=3,再利用三角形的面积公式计算即可.【详解】解:如图,过点D 作DE ⊥AB 于E .由作图可知,AD 平分∠CAB ,∵CD ⊥AC ,DE ⊥AB ,∴DE=CD=3,∴S △ABD =12•AB•DE=12×10×3=15, 故答案为15.【点睛】本题考查了作图-基本作图,角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题.16.如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠,交BC 边于点D ,若12AB =,4CD =,则ABD △ 的面积为__________.24【分析】过D 作DE ⊥AB 垂足为E 根据角平分线定理可得DE=CD=4然后根据三角形的面积公式计算即可【详解】解:如图:过D 作DE ⊥AB 垂足为E ∵AD 平分交BC 边于点D ∴DE=CD=4∴的面积为AB解析:24【分析】过D 作DE ⊥AB 垂足为E ,根据角平分线定理可得DE=CD=4,然后根据三角形的面积公式计算即可.【详解】解:如图:过D 作DE ⊥AB 垂足为E ,∵90C ∠=︒,AD 平分BAC ∠,交BC 边于点D ,∴DE=CD=4,∴ABD △ 的面积为12AB·DE=12×12×4=24. 故答案为:24.【点睛】本题主要考查了角平分线的性质定理,正确作出辅助线、构造角平分线定理所需条件成为解答本题的关键.17.如图,在ABC 中,点D 是BC 上的一点,已知30DAC ∠=︒,75DAB ∠=︒,CE 平分ACB ∠交AB 于点E ,连接DE ,则DEC ∠=________度.15【分析】过点E 作EM ⊥AC 于MEN ⊥AD 于NEF ⊥BC 于H 如图先计算出∠EAM=75°则AE 平分∠EAD 根据角平分线的性质得EM=EN 再由CE 平分∠ACB 得到EM=EH 则EN=EH 于是根据角平分解析:15【分析】过点E 作EM ⊥AC 于M ,EN ⊥AD 于N ,EF ⊥BC 于H ,如图,先计算出∠EAM=75°,则AE 平分∠EAD ,根据角平分线的性质得EM=EN ,再由CE 平分∠ACB 得到EM=EH ,则EN=EH ,于是根据角平分线定理的逆定理可判断DE 平分∠ADB ,则∠1=12∠ADB ,根据三角形外角性质得∠1=∠DEC+∠2,即∠1=∠DEC+12∠ACB ,∠ADB=∠DAC+∠ACB ,所以∠DEC==12∠DAC=15°. 【详解】解:过点E 作EM AC ⊥于M ,EN AD ⊥于N ,EH BC ⊥于H ,如图.∵ 30DAC ∠=,75DAB ∠=,∴ 75EAM ∠=,∴ AE 平分MAD ∠,∴ EM EN =.∵ CE 平分ACB ∠,∴ EM EH =,∴ EN EH =,∴ DE 平分ADB ∠,∴112ADB ∠=∠. ∵ 12DEC ∠=∠+∠,而122ACB ∠=∠,∴ 112DEC ACB ∠=∠+∠,而ADB DAC ACB ∠=∠+∠,∴ 11301522DEC DAC ∠=∠=⨯= .故答案为:15.【点睛】本题考查了平分线的性质和三角形外角的性质,掌握性质是解题的关键.18.如图,△ABC的外角∠MBC和∠NCB的平分线BP、CP相交于点P,PE⊥BC于E且PE =3cm,若△ABC的周长为14cm,S△BPC=7.5,则△ABC的面积为______cm2.6【分析】过点P作PH⊥AMPQ⊥AN连接AP根据角平分线上的点到角两边的距离相等可得PH=PE=PQ再根据三角形的面积求出BC然后求出AC+AB再根据S△ABC=S△ACP+S△ABP-S△BPC解析:6【分析】过点P作PH⊥AM,PQ⊥AN,连接AP,根据角平分线上的点到角两边的距离相等可得PH=PE=PQ,再根据三角形的面积求出BC,然后求出AC+AB,再根据S△ABC= S△ACP+ S△ABP-S△BPC即可得解.【详解】解:如图,过点P作PH⊥AM,PQ⊥AN,连接AP∵BP和CP为∠MBC和∠NCB角平分线∴PH=PE,PE=PQ∴PH=PE=PQ=3∵S△BPC=12×BC×PE=7.5∴BC=5∵S△ABC= S△ACP+ S△ABP-S△BPC=12×AC×PQ+12×AB×PH-7.5=12×3(AC+AB)-7.5∵AC+AB+BC=14,BC=5∴AC+AB=9∴S △ABC=12×3×9-7.5=6 cm 2 【点睛】本题考查了角平分线上点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键,难点在于S △ABC 的面积的表示.19.如图所示,已知点A 、D 、B 、F 在一条直线上,∠A=∠F ,AC=FE ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是___________________ .(只需填一个即可)∠C ∠E 或ABFD(ADFB)或∠ABC ∠FDE 或DE ∥BC 【分析】要判定△ABC ≌△FDE 已知∠A=∠FAC=FE 具备了一组角和一组边对应相等故可以添加∠C ∠E 利用ASA 可证全等(也可添加其它条件解析:∠C =∠E 或AB =FD(AD =FB)或∠ABC =∠FDE 或DE ∥BC【分析】要判定△ABC ≌△FDE ,已知∠A=∠F ,AC=FE ,具备了一组角和一组边对应相等,故可以添加∠C =∠E ,利用ASA 可证全等.(也可添加其它条件).【详解】增加一个条件:∠C =∠E ,在△ABC 和△FDE 中,C E AC FE A F ∠∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△FDE(ASA);或添加AB =FD(AD =FB) 利用SAS 证明全等;或添加∠ABC =∠FDE 或DE ∥BC 利用AAS 证明全等.故答案为:∠C =∠E 或AB =FD(AD =FB)或∠ABC =∠FDE 或DE ∥BC (答案不唯一).【点睛】本题考查了全等三角形的判定;判定方法有ASA 、AAS 、SAS 、SSS 等,在选择时要结合其它已知在图形上的位置进行选取.20.如图,在△ABC 中,∠C =90°,∠A 的平分线交BC 于D ,若20ABD S ∆=cm 2,AB =10cm ,则CD 为__________cm .4【分析】由角平分线的性质可知D 到AB 的距离等于DC 可得出答案【详解】解:作DE ⊥AB 于E ∵AD 平分∠CAB 且DC⊥ACDE⊥AB∴DE=DC∵S△ABD=20cm2AB=10cm∴•AB•DE=2解析:4【分析】由角平分线的性质可知D到AB的距离等于DC,可得出答案.【详解】解:作DE⊥AB于E.∵AD平分∠CAB,且DC⊥AC,DE⊥AB,∴DE=DC,∵S△ABD=20cm2,AB=10cm,∴1•AB•DE=20,2∴DE=4cm,∴DC=DE=4cm故答案为:4.【点睛】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.三、解答题21.如图,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上.求证:CD=2BE.解析:见解析【分析】根据等角的余角相等求出∠ACD=∠ABF,再利用“角边角”证明△AFB≌△ADC可得CD=BF,利用“角边角”证明△BCE和△FCE全等,根据全等三角形对应边相等BE=EF,整理即可得证.【详解】证明:∵BE⊥CD,∠BAC=90°,∴∠ACD+∠F=180°-90°=90°,∠ABF+∠F=180°-90°=90°,∴∠ACD=∠ABF ,在△AFB 和△ADC 中,90ACD ABF AB ACCAD BAF ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△AFB ≌△ADC (ASA );∴CD=BF ,∵CD 平分∠ACB ,∴∠BCE=∠FCE ,在△BCE 和△FCE 中,90BCE FCE CE CEBEC FEC ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△BCE ≌△FCE (ASA ),∴BE=EF ,∴BF=2BE∴CD=2BE .【点睛】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的证明方法并准确识图是解题的关键.22.已知:AB BD ⊥,ED BD ⊥,AC CE =,BC DE =.(1)试猜想线段AC 与CE 的位置关系,并证明你的结论.(2)若将CD 沿CB 方向平移至图2情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.(3)若将CD 沿CB 方向平移至图3情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.解析:(1)AC CE ⊥,见解析;(2)成立,理由见解析;(3)成立,理由见解析【分析】(1)先用HL 判断出Rt Rt ABC CDE ≌△△,得出A DCE ∠=∠,进而判断出90DCE ACB ∠+∠=︒,即可得出结论;(2)同(1)的方法,即可得出结论;(3)同(1)的方法,即可得出结论.【详解】解:(1)AC CE ⊥理由如下:∵AB BD ⊥,ED BD ⊥,∴90B D ∠=∠=︒在Rt ABC △和Rt CDE △中AC CE BC DE=⎧⎨=⎩ ∴()Rt Rt HL ABC CDE △△≌, ∴A DCE ∠=∠∵90B ∠=︒,∴90A ACB ∠+∠=︒,∴()18090ACE DCE ACB ∠=︒-∠+∠=︒,∴AC CE ⊥;(2)成立,理由如下:∵AB BD ⊥,ED BD ⊥,∴90B D ∠=∠=︒,在1Rt ABC 和2Rt C DE △中121AC C E BC DE=⎧⎨=⎩, ∴()12Rt Rt HL ABC C DE ≌△△,∴2A C E D ∠=∠,∵90B ∠=︒,∴190B A AC ∠+∠=︒,∴2190DC E AC B ∠+∠=︒,在12C FC 中,()122118090C FC DC E AC B ∠=︒-∠+∠=︒,∴12AC C E ⊥;(3)成立,理由如下:∵AB BD ⊥,ED BD ⊥,∴190ABC D ∠=∠=︒在1Rt ABC 和2Rt C DE △中121AC C E BC DE =⎧⎨=⎩, ∴()12Rt Rt HL ABC C DE ≌△△,∴2A C E D ∠=∠,∵190ABC ∠=︒,∴190B A AC ∠+∠=︒,在12C FC 中,()2112180=90C FC DC E AC B ∠=︒-∠+∠︒,∴12AC C E ⊥.【点睛】此题是几何变换综合题,主要考查了全等三角形的判定和性质,直角三角形的性质,判断出12Rt Rt ABC C DE ≌△△是解本题的关键.23.如图,点,,,B F C E 在一条直线上,,//,//AB DE AB ED AC FD =.求证:(1) AC DF =(2)FB CE =解析:(1)见解析;(2)见解析【分析】(1)根据平行线的性质求出∠B=∠E ,∠ACB=∠DFE ,根据AAS 证出△BAC ≌△EDF ,可得AC=DF ;.(2)由△BAC ≌△EDF ,可证BC=EF ,进而可得FB=CE .【详解】证明:(1)∵AB//ED ,AC//FD ,∴∠B=∠E ,∠ACB=∠DFE ,在△BAC 和△EDF 中ACB DFE B EAB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△EDF (AAS ),∴AC=DF ;(2)∵△BAC ≌△EDF ,∴BC=EF ,∴BC-FC=EF-FC ,∴FB=CE .【点睛】本题考查了全等三角形的性质和判定,平行线的性质,注意:①全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,②全等三角形的对应边相等,对应角相等.24.如图①,∠BAD=90°,AB=AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥CA 的延长线点E ,由∠1+∠2=∠D+∠2=90°,得∠1=∠D ,又∠ACB=∠AED=90°,AB=AD ,得△ABC ≌△DAE 进而得到AC=DE ,BC=AE , 我们把这个数学模型称为“K 字”模型或“一线三等角”模型.请应用上述“一线三等角”模型,解决下列问题:(1)如图②,∠BAD=∠CAE=90°,AB=AD ,AC=AE ,连接BC 、DE ,且BC ⊥AH 于点H ,DE 与直线AH 交于点G ,求证:点G 是DE 的中点.(2)如图③,在平面直角坐标系中,点A 为平面内任意一点,点B 的坐标为(4,1),若△AOB 是以OB 为斜边的等腰直角三角形,请直接写出点A 的坐标.解析:(1)见解析;(2)A(32,52)或(52,-32). 【分析】 (1)过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N .根据“K 字模型”即可证明AH=DM 和AH=EN ,即EN=DM ,再根据全等三角形的判定和性质即可证明DG=EG ,即点G 是DE 的中点.(2)分情况讨论①当A 点在OB 的上方时,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .根据“K 字模型”即可证明AC BD OC AD DE ===,,再利用B 点坐标即可求出A 点坐标.②当A 点在OB 的下方时,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .同理即能求出A 点坐标.【详解】(1)如图,过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N ,则∠DMA=90°,∠ENG=90°.∵∠BHA=90 ,∴∠2+∠B=90°.∵∠BAD=90°,∴∠1+∠2=90°.∴∠B=∠1 .在△ABH 和△DAM 中1BHA AMD B AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≅△DAM (AAS ),∴AH=DM .同理 △ACH ≅△EAN (AAS ),∴ AH=EN .∴EN=DM .在△DMG 和△ENG 中MGD NGE DMG ENG DM EN ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DMG ≅△ENG (AAS ).∴DG=EG .∴点G 是DE 的中点.(2)根据题意可知有两种情况,A 点分别在OB 的上方和下方.①当A 点在OB 的上方时,如图,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .利用“K 字模型”可知ACO BDA ≅,∴AC BD OC AD DE ===,,设AC x =,则BD x =,∵1DE BD BE x =+=+,∴1OC AD DE x ===+,又∵4CD AD AC =+=,即14x x ++=, 解得32x =, ∴32AC =,35122DE =+=. 即点A 坐标为(32,52).②当A 点在OB 的下方时,如图,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .根据①同理可得:52AP =,32MQ =. 即点A 坐标为(52,32-).【点睛】本题考查了三角形全等的判定和性质.熟练利用三角形的判定方法是解答本题的关键.25.已知4,BC BA BC =⊥,射线CM BC ⊥,动点P 在BC 上,PD PA ⊥交CM 于D .(1)如图1,当3,1BP AB ==时,求DC 的长;(2)如图2,连接AD ,当DP 平分ADC ∠时,求BP 的长.解析:(1)3;(2)2【分析】(1)根据同角的余角相等证得∠1=∠3,再利用AAS 证明()ABP PCD AAS ∆≅∆,然后根据全等三角形的性质解答即可;(2)过P 作PH AD ⊥于H ,利用角平分线的性质进行解答即可.【详解】解:(1)如图,∵AP PD ⊥,∴1290∠+∠=︒,∵PC CD ⊥,∴2390∠+∠=︒∴13∠=∠,∵3,4BP BC ==,∴1PC BC BP =-=,又∵1AB =,∴AB PC =,又∵AB BP ⊥,∴90B C ∠=∠=︒,∴()ABP PCD AAS ∆≅∆,∴3CD BP ==;(2)作PH AD ⊥于H ,如图2,∵DP 平分ADC ∠,∴∠1=∠2,∵90C ∠=︒,PH AD ⊥∴∠HDP=∠CDP ,∴PH PC =,又∵1390∠+∠=︒,2490∠+∠=︒,∴34∠=∠,又∵90B ∠=︒,PH AD ⊥∴∠HAP=∠BAP ,∴PH BP =, ∴122BP PC BC ===. 【点睛】本题考查全等三角形的判定与性质、角平分线的性质、同角的余角相等、直角三角形的两锐角互余,熟练掌握全等三角形的判定与性质,添加辅助线灵活运用角平分线的性质是解答的关键.26.如图,在平面直角坐标系中,已知点()1,A a a b -+,(),0B a ,且()2320a b a b +-+-=,C 为x 轴上点B 右侧的动点,以AC 为腰作等腰三角形ACD ,使AD AC =,CAD OAB ∠=∠,直线DB 交y 轴于点P .(1)求证:AO AB =;(2)求证:AOC ABD ∆∆≌;(3)当点C 运动时,点P 在y 轴上的位置是否发生改变,为什么?解析:(1)证明见解析;(2)证明见解析;(3)不变,理由见解析.【分析】(1)先根据非负数的性质求出a 、b 的值,作AE ⊥OB 于点E ,由SAS 定理得出△AEO ≌△AEB ,根据全等三角形的性质即可得出结论;(2)先根据∠CAD=∠OAB ,得出∠OAC=∠BAD ,再由SAS 定理即可得出结论; (3)设∠AOB=∠ABO=α,由全等三角形的性质可得出∠ABD=∠AOB=α,故∠OBP=180°-∠ABO-∠ABD=180°-2α为定值,再由OB=2,∠POB=90°可知OP 的长度不变,故可得出结论.【详解】(1)证明:∵()2320a b a b +-+-=,∴30,20,a b a b +-=⎧⎨-=⎩解得2,1.a b =⎧⎨=⎩∴()1,3A ,()2,0B .作AE OB ⊥于点E ,∵()1,3A ,()2,0B ,∴1OE =,211BE =-=,在AEO ∆与AEB ∆中,∵,90,,AE AE AEO AEB OE BE =⎧⎪∠=∠=︒⎨⎪=⎩∴AEO AEB ∆∆≌,∴OA AB =.(2)证明:∵CAD OAB ∠=∠,∴CAD BAC OAB BAC ∠+=∠+∠∠,即OAC BAD ∠=∠.在AOC ∆与ABD ∆中,∵,,,OA AB OAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴AOC ABD ∆∆≌.(3)解:点P 在y 轴上的位置不发生改变.理由:设AOB α∠=.∵OA AB =,∴AOB ABO α∠=∠=.由(2)知,AOC ABD ∆∆≌,∴ABD AOB α∠=∠=.∵2OB =,1801802OBP ABO ABD α∠=︒-∠-∠=︒-为定值,90POB ∠=︒,易知POB ∆形状、大小确定,∴OP 长度不变,∴点P 在y 轴上的位置不发生改变.【点睛】本题考查了全等三角形的判定与性质,熟知全等三角形的判定定理是解题的关键. 27.命题:有两个内角相等的三角形必有两条高线相等,写出它的逆命题,并判断逆命题的真假,若是真命题,给出证明;若是假命题,请举反例.解析:逆命题是有两条高线相等的三角形必有两个内角相等,是真命题;证明见解析.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可得到原命题的逆命题,再得出命题的正确性.【详解】解:有两个内角相等的三角形必有两条高线相等的逆命题是有两条高线相等的三角形必有两个内角相等,是真命题;在Rt BCE 与Rt CBD △中,BD CE BC CB =⎧⎨=⎩∴()Rt BCE Rt CBD HL ≌,∴DCB EBC ∠=∠.【点睛】此题主要考查了命题与定理的证明,根据逆命题的概念来回答:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题,进而利用全等三角形的证明方法求出即可.28.(1)问题背景:如图1:在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,E 、F 分别是BC ,CD 上的点且∠EAF =60°,探究图中线段BE 、EF 、FD 之间的数量关系.小王同学探究此问题的方法是,延长FD 到点G .使DG =BE .连结AG ,先证明 ABE ≌ADG ,再证明AEF ≌AGF ,可得出结论,他的结论应是______________;(2)探索延伸:如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF 12=∠BAD ,上述结论是否仍然成立,并说明理由; (3)实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以45海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两地分别到达E 、F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.解析:(1)EF =BE +DF ;(2)结论EF =BE +DF 仍然成立;(3)此时两舰艇之间的距离是210海里【分析】(1)延长FD 到点G ,使DG=BE .连结AG ,即可证明ABE≌ADG ,可得AE=AG ,再证明AEF ≌AGF ,可得EF=FG ,即可解题; (2)延长FD 到点G ,使DG=BE .连结AG ,即可证明ABE≌ADG ,可得AE=AG ,再证明AEF ≌AGF ,可得EF=FG ,即可解题; (3)连接EF ,延长AE 、BF 相交于点C ,然后与(2)同理可证.【详解】解:(1)EF =BE +DF ,证明如下: 在ABE 和ADG 中, DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩, ∴ABE ≌ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF 12=∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF ,∴∠EAF =∠GAF , 在AEF 和GAF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∴AEF ≌AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF ;故答案为 EF =BE +DF .(2)结论EF =BE +DF 仍然成立;理由:延长FD 到点G .使DG =BE .连结AG ,如图2,在ABE 和ADG 中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩, ∴ABE ≌ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF 12=∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF , ∴∠EAF =∠GAF ,在AEF 和GAF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴AEF ≌AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF ;(3)如图3,连接EF ,延长AE 、BF 相交于点C ,∵∠AOB =30°+90°+(90°﹣70°)=140°,∠EOF =70°,∴∠EOF 12=∠AOB , 又∵OA =OB ,∠OAC +∠OBC =(90°﹣30°)+(70°+50°)=180°, ∴符合探索延伸中的条件,∴结论EF =AE +BF 成立,即EF=2×(45+60)=210(海里).答:此时两舰艇之间的距离是210海里.【点睛】本题考查了全等三角形的判定以及全等三角形对应边相等的性质,本题中求证△AEF≌△AGF是解题的关键.。
《12.1 全等三角形》课时练一、选择题1.如图,△ABD≌△CDB,下面四个结论中,不正确的是()A.∠ABD=∠CBD B.△ABD和△CDB的周长相等C.AD=BC D.△ABD和△CDB的面积相等2.如图所示,△ABC≌△DEC,∠ACB=60°,∠BCD=100°,点A恰好落在线段ED上,则∠B的度数为()A.50°B.60°C.55°D.65°3.已知:△ABC≌△DCB,若BC=10cm,AB=5cm,AC=7cm,则CD为()A.10cm B.7cm C.5cm D.5cm或7cm 4.如图,Rt△ABC≌Rt△CED,点B、C、E在同一直线上,则结论:①AC=CD,②AC ⊥CD,③BE=AB+DE,④AB∥ED,其中成立的有()A.仅①B.仅①③C.仅①③④D.①②③④5.已知图中的两个三角形全等,则∠α的度数为()A.105°B.75°C.60°D.45°6.下列说法不正确的是()A.全等三角形对应角平分线相等,对应边上的高、中线也分别相等B.全等三角形的周长和面积都相等C.全等三角形的对应角相等,对应边相等D.全等三角形是指周长和面积都相等的三角形7.如图,△ABC≌△DEF,BE=2,AE=1,则BD的长是()A.5B.4C.3D.28.已知:如图,△ABC≌△ADE,AB与AD是对应边,AC与AE是对应边,若∠B=31°,∠C=95°,∠EAB=20°,则∠BAD等于()A.77°B.74°C.47°D.44°9.已知△ABC与△DEF全等,BC=EF=4cm,△ABC的面积是12cm2,则EF边上的高是()A.3cm B.4cm C.6cm D.无法确定10.如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠EDA=20°,∠F=60°,则∠DAC的度数是()A.50°B.60°C.100°D.120°二.填空题11.如图,△ABC≌△DEF,∠A=35°,∠B=50°,则∠DFE=.12.已知:如图,△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.则∠F的度数;DH的长.13.已知△ABC≌△DEF,AB=DE=8cm,△DEF的面积为20cm2,则△ABC的边AB上的高为cm.14.如图,已知△ABC≌△DEF,AD=1cm,则BE的长为cm.15.如图,已知△ABC≌△DBE,如果∠CBD=96°,∠CBE=28°,那么∠ABC=.三.解答题16.如图,A,D,E三点在同一直线上,且△BAD≌△ACE.(1)求证:BD=DE+CE;(2)请你猜想△ABD满足什么条件时,BD∥CE.17.如图,已知△ABF≌△CDE.(1)若∠B=30°,∠DCF=40°,求∠EFC的度数;(2)求证:AE=CF.18.如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.19.已知:如图,△ABC≌△DEF,AM、DN分别是△ABC、△DEF的对应边上的高.求证:AM=DN.参考答案一、选择题1.A 2.A 3.C 4.D 5.B 6.D 7.A 8.B 9.C 10.A 二、填空题11.95°12.35° 6 13.5 14.1 15.68°三、解答题16.(1)证明:∵△BAD≌△ACE,∴AD=CE,BD=AE,∵A,D,E三点在同一直线上,∴AE=AD+DE,∴BD=CE+DE;(2)解:假如BD∥CE,则∠BDE=∠E,∵△BAD≌△ACE,∴∠ADB=∠E,∴∠ADB=∠BDE,又∵∠ADB+∠BDE=180°,∴∠ADB=∠BDE=90°,∴当∠ADB=∠E=90°时,BD∥CE.17.(1)解:∵△ABF≌△CDE,∴∠D=∠B=30°,∴∠EFC=∠D+∠DCF=70°;(2)证明:∵△ABF≌△CDE,∴∠AFB=∠CED,AF=CE,在△AFE和△CEF中,,∴△AFE≌△CEF(SAS),∴AE=CF.18.解:(1)∵BE⊥AD,∴∠EBD=90°,∵△ACF≌△DBE,∴∠FCA=∠EBD=90°,∴∠A=90°﹣∠F=27°;(2)∵△ACF≌△DBE,∴CA=BD,∴CA﹣CB=BD﹣BC,即AB=CD,∵AD=11cm,BC=5cm,∴AB+CD=11﹣5=6cm,∴AB=3cm.19.方法一:证明:∵△ABC≌△DEF,∴AB=DE,∠B=∠E,∵AM,DN分别是△ABC,△DEF的对应边上的高,即AM⊥BC,DN⊥EF,∴∠AMB=∠DNE=90°,在△ABM和△DEN中,∴△ABM≌△DEN(AAS),∴AM=DN.方法二:∵△ABC≌△DEF。
8年级数学人教版上册同步练习全等三角形三角形全等的判定(含答案解析)12.1全等三角形12.2三角形全等的判定专题一三角形全等的判定1.如图,BD是平行四边形ABCD的对角线,∠ABD的平分线BE交AD于点E,∠CDB 的平分线DF交BC于点F.求证:△ABE≌△CDF.2.如图,在△ABC中,D是BC边上的点(不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE. 请你添加一个条件,使△BDE≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是:__________;(2)证明:3.如图,△ABC中,点D在BC上,点E在AB上,BD=BE,要使△ADB≌△CEB,还需添加一个条件.(1)给出下列四个条件:①AD=CE;②AE=CD;③∠BAC=∠BCA;④∠ADB=∠CEB;请你从中选出一个能使△ADB≌△CEB的条件,并给出证明;(2)在(1)中所给出的条件中,能使△ADB≌△CEB的还有哪些?直接在题后横线上写出满足题意的条件序号.__________________.专题二全等三角形的判定与性质4.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A6B.4 C.23D.55.【2013·襄阳】如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.求证:AM=AN.NMEDB CA6.【2012·泸州】如图,△ABC是等边三角形,D是AB边上一点,以CD为边作等边三角形CDE,使点E﹨A在直线DC的同侧,连接AE.求证:AE∥BC.专题三全等三角形在实际生活中的应用7.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60°B.90°C.120°D.150°8.有一座小山,现要在小山A﹨B的两端开一条隧道,施工队要知道A﹨B两端的距离,于是先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A﹨B两端的距离,你能说说其中的道理吗?9.已知如图,要测量水池的宽AB,可过点A作直线AC⊥AB,再由点C观测,在BA延长线上找一点B′,使∠ACB′=∠ACB,这时只要量出AB′的长,就知道AB的长,对吗?为什么?状元笔记【知识要点】1.全等三角形能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质全等三角形的对应边相等,全等三角形的对应角相等.3.三角形全等的判定方法(1)三边分别相等的两个三角形全等(简写成“边边边”或“SSS”).(2)两边和它们的夹角分别相等的两个三角形全等(简写成“边角边”或“SAS”).(3)两角和它们的夹边分别相等的两个三角形全等(简写成“角边角”或“ASA”).(4)两个角和其中一个角的对边分别相等的两个三角形全等(简写成“角角边”或“AAS”).4.直角三角形全等的判定方法斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边﹨直角边”或“HL”).【温馨提示】1.两个三角形全等的条件中必须有一条边分别相等,只有角分别相等不能证明两个三角形全等.2.有两边和其中一边的对角分别相等的两个三角形不一定全等.3.“HL”定理指的是斜边和一条直角边分别相等,而不是斜边和直角分别相等.【方法技巧】1.应用全等三角形性质解决问题的前提是准确地确定全等三角形的对应边和对应角,其规律主要有以下几点:(1)以对应顶点为顶点的角是对应角;(2)对应顶点所对应的边是对应边;(3)公共边(角)是对应边(角);(4)对顶角是对应角;(5)最大边(角)是对应边(角),最小边(角)是对应边(角).全等三角形的对应边和对应角可以依据字母的对应位置来确定,如若△ABC≌△DEF,说明A与D,B与E,C与F是对应点,则∠ABC与∠DEF是对应角,边AC与边DF 是对应边.2.判定两个三角形全等的解题思路:SAS SSS AAS SAS ASA AAS ASA AAS ⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎩找夹角——已知两边找另一边——边为角的对边——找任一角——找夹角的另一边——已知一边一角边为角的邻边找夹边的另一角——找边的对角——找夹边——已知两角找任一边——参考答案:1.证明:平行四边形ABCD 中,AB=CD ,∠A=∠C ,AB ∥CD , ∴∠ABD=∠CDB .∵∠ABE=21∠ABD ,∠CDF=21∠CDB ,∴∠ABE=∠CDF .在△ABE 与△CDF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠CDF ABE CDAB C A ∴△ABE ≌△CDF . 2.解:(1)DC BD =(或点D 是线段BC 的中点),ED FD =,BE CF =中任选一个即可﹒ (2)以DC BD =为例进行证明: ∵CF ∥BE ,∴∠FCD ﹦∠EBD .又∵DC BD =,∠FDC =∠EDB , ∴△BDE ≌△CDF . 3.解:(1)添加条件②,③,④中任一个即可,以添加②为例说明. 证明:∵AE=CD ,BE=BD , ∴AB=CB .又∠ABD=∠CBE ,BE=BD , ∴△ADB ≌△CEB . (2)③④.4.B 解析:∵∠ABC =45°,AD ⊥BC ,∴AD =BD ,∠ADC =∠BDH , ∠AHE =∠BHD =∠C .∴△ADC ≌△BDH .∴BH =AC =4.故选B . 5.证明:如图所示,M∵△AEB由△ADC旋转而得,∴△AEB≌△ADC.∴∠3=∠1,∠6=∠C.∵AB=AC,AD⊥BC,∴∠2=∠1,∠7=∠C.∴∠3=∠2,∠6=∠7.∵∠4=∠5,∴∠ABM=∠ABN.又∵AB=AB,∴△AMB≌△ANB.∴AM=AN.6.证明:∵△ABC和△EDC是等边三角形,∴∠BCA=∠DCE=60°.∴∠BCA-∠ACD=∠DCE-∠ACD,即∠BCD=∠ACE.在△DBC和△EAC中,BC=AC,∠BCD=∠ACE,DC=EC,∴△DBC≌△EAC(SAS).∴∠DBC=∠EAC.又∵∠DBC=∠ACB=60°,∴∠ACB=∠EAC.∴AE∥BC.7.B 解析:∵滑梯﹨墙﹨地面正好构成直角三角形,又∵BC=EF,AC=DF,∴Rt△ABC≌Rt△DEF.∴∠ABC=∠DEF,∵∠DEF+∠DFE=90°,∴∠ABC+∠DFE=90°.故选B.8.解:在△ABC和△CED中,AC=CD,∠ACB=∠ECD,EC=BC,∴△ABC≌△CED.∴AB=ED.即量出DE的长,就是A﹨B两端的距离.9.解:对.理由:∵AC ⊥AB,∴∠CAB=∠CAB′=90°. 在△ABC 和△AB′C 中,ACB ACB AC AC CAB CAB =⎧⎪=⎨⎪=⎩∠∠′,,∠∠′, ∴△ABC ≌△AB′C (ASA ). ∴AB′=AB .。
一、选择题1.如图,AB ∥CD ,BE 和CE 分别平分∠ABC 和∠BCD ,AD 过点E ,且AD ⊥AB ,点P 为线段BC 上一动点,连接PE .若AD =14,则PE 的最小值为( )A .7B .10C .6D .52.如图O 是ABC 内的一点,且O 到三边AB 、BC 、CA 的距离==OF OD OE .若70A ∠=︒,则BOC ∠( ).A .125°B .135°C .105°D .100° 3.如图,AB ⊥CD ,且AB =CD .E 、F 是AD 上两点,CE ⊥AD ,BF ⊥AD .若CE =a ,BF =b ,EF =c ,则AD 的长为( )A .a +cB .b +cC .a +b -cD .a -b +c 4.如图,ABC 的面积为26cm ,AP 垂直B 的平分线BP 于P ,则PBC 的面积为( )A .21cmB .22cmC .23cmD .24cm5.如图,AP 平分∠BAF ,PD ⊥AB 于点D ,PE ⊥AF 于点E ,则△APD 与△APE 全等的理由是( )A .SSSB .SASC .SSAD .AAS6.如图,在Rt △ABC 中,∠ACB =90°,BC =5cm ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC ,连接CF ,使CF =AB ,若EF =12cm ,则下列结论不正确的是( )A .∠F =∠BCFB .AE =7cmC .EF 平分ABD .AB ⊥CF 7.下列说法正确的是( )①近似数232.610⨯精确到十分位;②在2,()2--,38-,2--中,最小的是38-;③如图所示,在数轴上点P 所表示的数为15-+;④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;⑤如图,在ABC 内一点P 到这三条边的距离相等,则点P 是三个角平分线的交点.A .1B .2C .3D .48.在以下图形中,根据尺规作图痕迹,能判定射线AD 平分∠BAC 的是( )A .图2B .图1与图2C .图1与图3D .图2与图3 9.下列命题的逆命题是假命题的是( )A .直角三角形两锐角互余B .全等三角形对应角相等C .两直线平行,同位角相等D .角平分线上的点到角两边的距离相等10.下列命题中,假命题是( )A .在同一平面内,垂直于同一条直线的两直线平行B .到线段两端点距离相等的点在这条线段的垂直平分线上C .一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等D .一边长相等的两个等腰直角三角形全等11.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:①△ABD ≌△EBC②∠BCE+∠BCD =180°③AD=AE=EC ④ BA+BC=2BF 其中正确的是( )A .①②③B .①③④C .①②④D .①②③④ 12.对于ABC 与DEF ,已知∠A=∠D ,∠B=∠E ,则下列条件:①AB=DE ;②AC=DF ;③BC=DF ;④AB=EF 中,能判定它们全等的有( )A .①②B .①③C .②③D .③④ 13.如图,点C ,D 在线段AB 上,AC DB =,AE //BF ,添加以下哪一个条件仍不能判定△AED ≌△BFC ( )A .ED CF =B .AE BF =C .E F ∠=∠D .ED //CF14.如图,在Rt ABC 和Rt ADE △中,90,,ACB AED AB AD AC AE ∠=∠===,则下列说法不正确的是( )A .BC DE =B .BAE DAC ∠=∠ C .OC OE =D .EAC ABC ∠=∠ 15.如图,要判定△ABD ≌△ACD ,已知AB =AC ,若再增加下列条件中的一个,仍不能说明全等,则这个条件是( )A .CD ⊥AD ,BD ⊥ADB .CD =BDC .∠1=∠2D .∠CAD =∠B AD二、填空题16.如图,点C 在AOB ∠的平分线上,CD OA ⊥于点D ,且2CD =,如果E 是射线OB 上一点,那么CE 长度的最小值是___________.17.如图,四边形ABCD 中,AC BC =,90ACB ADC ∠=∠=︒,10CD =,则BCD ∆的面积为______.18.如图,ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,垂足为E ,且AB =10cm ,则DEB 的周长是_____cm .19.如图,两根旗杆间相距22米,某人从点B沿BA走向点A,一段时间后他到达点M,=.已知旗杆此时他分别仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM DMBD的高为12米,该人的运动速度为2米/秒,则这个人运动到点M所用时间是________秒.20.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若BC=8cm,BD=5cm,AB=10cm,则S△ABD=______.21.如图,点D在BC上,DE⊥AB于点E,DF⊥BC交AC于点F,BD=CF,BE=CD.若∠AFD=145°,则∠EDF=_____.≅,延长BC,分别交AD,ED于点F,G,若22.如图,ABC ADE∠=________︒.∠=︒,10120B∠=︒,30EABCAD∠=︒,则CFD23.如图,线段AB ,CD 相交于点O ,AO=BO ,添加一个条件, 能使AOC BOD ≅,所添加的条件的是___________________________.24.如图,ABC 中,∠C =90°,AD 平分∠BAC , AB =5,CD =2,则ABD △的面积是______25.ABC 中,4AB =,6AC =, 则第三边BC 边上的中线m 的取值范围是______. 26.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.三、解答题27.如图,点E ,F 在线段BD 上,已知AF BD ⊥,CE BD ⊥,//AD CB ,DE BF =,求证:AF CE =.28.如图,AB ⊥CB ,DC ⊥CB , E 、F 在 BC 上,AF=DE ,BE=CF ,求证:AB =DC .29.如图,点,,,B F C E 在一条直线上,,//,//AB DE AB ED AC FD =.求证:(1) AC DF =(2)FB CE =30.作图:已知ABC 和线段r ,请在ABC 内部作点P ,使得点P 到AC 和BC 的距离相等,并且点A 到点P 的距离等于定长r .(不写作法,保留痕迹)。
人教版八年级数学上册12.2 全等三角形的判定课时训练一、选择题1. 如图,已知AB=DE,∠B=∠E,为了直接用“ASA”说明△ABC≌△DEF,则需要添加的条件是()A.BC=EF B.∠A=∠DC.∠C=∠F D.AC=DF2. 如图所示,∠C=∠D=90°,若要用“HL”判定Rt△ABC与Rt△ABD全等,则可添加的条件是()A.AC=AD B.AB=ABC.∠ABC=∠ABD D.∠BAC=∠BAD3. 下列三角形中全等的是()A.①②B.②③C.③④D.①④4. 如图,已知AB=AD,若利用SSS证明△ABC≌△ADC,则需要添加的条件是()A.AC=ACB.∠B=∠DC.BC=DCD.AB=CD5. 如图,要用“SAS”证明△ABC≌△ADE,若已知AB=AD,AC=AE,则还需添加条件()A.∠B=∠D B.∠C=∠EC.∠1=∠2 D.∠3=∠46. 如图,点B,E,C,F在同一直线上,AB∥DE,∠A=∠D,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.BE=CF B.∠ACB=∠FC.AC=DF D.AB=DE7. 如图,BE⊥AC,CF⊥AB,垂足分别是E,F.若BE=CF,则图中全等三角形有()A.1对B.2对C.3对D.4对8. 如图所示,P是∠BAC内一点,且点P到AB,AC的距离PE,PF相等,则△PEA≌△PF A的依据是()A.HL B.ASA C.SSS D.SAS9. 已知△ABC的六个元素,下列甲、乙、丙三个三角形中标出了某些元素,则与△ABC全等的三角形是()A.只有乙B.只有丙C.甲和乙D.乙和丙10. 如图,点B,E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A.BC=FD,AC=EDB.∠A=∠DEF,AC=EDC.AC=ED,AB=EFD.∠A=∠DEF,BC=FD二、填空题11. 如图,AB=DE,∠1=∠2,添加一个适当的条件,使△ABC≌△DEC,则需添加的条件是__________(不添加任何辅助线,填一个即可).12. 如图,在△ABC中,AD⊥BC于点D,要使△ABD≌△ACD,若根据“HL”判定,还需要添加条件:____________.13. 如图,在Rt△ABC中,∠C=90°,∠B=20°,以点A为圆心,小于AC的长为半径画弧与AB,AC分别交于点M,N,再分别以点M,N为圆心,大于MN 的长为半径画弧,两弧相交于点P,连接AP并延长交BC于点D,则∠ADB=°.14. 如图所示,AE=AD,∠B=∠C,BE=4,AD=5,则AC=.15. 如图,四边形ABCD的对角线AC,BD相交于点O,△ABO≌△ADO.有下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是.三、解答题16. 如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放正,沿AC画一条射线AE,则AE就是角平分线,请你说明其中的道理.17. 如图,BM平分∠ABC,D是BM上一点,过点D作DE⊥AB于点E,DF⊥BC 于点F,P是BM上的另一点,连接PE,PF.(1)若∠EDF=124°,求∠ABC的度数;(2)求证:PE=PF.18. 如图所示,在一条笔直的海岸线上有A,B两个观测点,点B在点A的正东方,海岛C在观测点A的正北方,海岛D在观测点B的正北方,从观测点A看海岛C,D的视角∠CAD与从观测点B看海岛C,D的视角∠CBD相等,那么海岛C,D到观测点A,B所在海岸线的距离相等吗?为什么?19. 如图,AD∥BC,AB⊥BC于点B,连接AC,过点D作DE⊥AC于点E,过点B作BF⊥AC于点F.(1)若∠ABF=63°,求∠ADE的度数;DE=BF+EF.20. 杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下.如图,AB∥OH∥CD,相邻两平行线间的距离相等.AC、BD相交于O,OD⊥CD,垂足为D.已知AB=20米,请根据上述信息求标语CD的长度.人教版 八年级数学上册 12.2 全等三角形的判定 课时训练-答案一、选择题 1. 【答案】B2. 【答案】A3. 【答案】A[解析] ①②符合证明三角形全等的判定方法“SAS”.③④中相等的角所对的边不相等,所以不可能全等.故选A.4. 【答案】C5. 【答案】C[解析] 还需添加条件∠1=∠2.理由:∵∠1=∠2,∴∠1+∠EAC =∠2+∠EAC ,即∠BAC =∠DAE. 在△ABC 和△ADE 中,⎩⎨⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE(SAS).6. 【答案】B7. 【答案】C[解析] ①∵BE ⊥AC ,CF ⊥AB ,∴∠CFB =∠BEC =90°.在Rt △BCF 和Rt △CBE 中,⎩⎨⎧CF =BE ,BC =CB ,∴Rt △BCF ≌Rt △CBE(HL).②∵BE ⊥AC ,CF ⊥AB ,∴∠AFC =∠AEB =90°.在△ABE 和△ACF 中,⎩⎨⎧∠AEB =∠AFC ,∠A =∠A ,BE =CF ,∴△ABE ≌△ACF(AAS). ③设BE 与CF 相交于点O. ∵BE ⊥AC ,CF ⊥AB , ∴∠OFB =∠OEC =90°.∵△ABE ≌△ACF ,∴AB =AC ,AE =AF. ∴BF =CE.在△BOF 和△COE 中,⎩⎨⎧∠OFB =∠OEC ,∠BOF =∠COE ,BF =CE ,∴△BOF ≌△COE(AAS).8. 【答案】A9. 【答案】D10. 【答案】C[解析] A .添加BC=FD ,AC=ED ,可利用“SAS”判定△ABC ≌△EFD ;B .添加∠A=∠DEF ,AC=ED ,可利用“ASA”判定△ABC ≌△EFD ; C .添加AC=ED ,AB=EF ,不能判定△ABC ≌△EFD ;D .添加∠A=∠DEF ,BC=FD ,可利用“AAS”判定△ABC ≌△EFD.二、填空题11. 【答案】答案不唯一,如∠B =∠E12. 【答案】AB =AC13. 【答案】125[解析] 由题意可得AD 平分∠CAB.∵∠C=90°,∠B=20°,∴∠CAB=70°.∴∠CAD=∠BAD=35°.∴∠ADB=180°-20°-35°=125°. 14. 【答案】915. 【答案】①②③[解析] 由△ABO ≌△ADO ,得AB=AD ,∠AOB=∠AOD=90°,∠BAC=∠DAC.又因为AC=AC ,所以△ABC ≌△ADC ,则CB=CD.所以①②③正确.三、解答题16. 【答案】解:在△ABC 与△ADC 中,⎩⎨⎧AB =AD ,BC =DC ,AC =AC ,∴△ABC ≌△ADC(SSS).∴∠BAC =∠DAC ,即AE 平分∠BAD.17. 【答案】解:(1)∵DE ⊥AB ,DF ⊥BC , ∴∠DEB =∠DFB =90°. ∵∠EDF =124°,∴∠ABC =360°-90°-90°-124°=56°.(2)证明:∵BM 平分∠ABC ,DE ⊥AB ,DF ⊥BC , ∴∠ABM =∠CBM ,DE =DF.∵∠BDE =90°-∠ABM ,∠BDF =90°-∠CBM , ∴∠BDE =∠BDF. ∴∠EDP =∠FDP.在△EDP 和△FDP 中,⎩⎨⎧DE =DF ,∠EDP =∠FDP ,DP =DP ,∴△EDP ≌△FDP(SAS).∴PE =PF.18. 【答案】解:相等.理由:设AD ,BC 相交于点O.∵∠CAD=∠CBD ,∠COA=∠DOB , ∴由三角形内角和定理,得∠C=∠D. 由已知得∠CAB=∠DBA=90°. 在△CAB 和△DBA 中,∴△CAB ≌△DBA. ∴CA=DB.∴海岛C ,D 到观测点A ,B 所在海岸线的距离相等.19. 【答案】解:(1)∵AD ∥BC ,AB ⊥BC , ∴∠ABC =∠BAD =90°. ∵DE ⊥AC ,BF ⊥AC , ∴∠BFA =∠AED =90°.∴∠ABF +∠BAF =∠BAF +∠DAE =90°. ∴∠DAE =∠ABF =63°.∴∠ADE =27°.(2)证明:由(1)得∠DAE =∠ABF ,∠AED =∠BFA =90°.在△DAE 和△ABF 中,⎩⎨⎧∠DAE =∠ABF ,∠AED =∠BFA ,AD =BA ,∴△DAE ≌△ABF(AAS). ∴AE =BF ,DE =AF.∴DE =AF =AE +EF =BF +EF.20. 【答案】解:∵AB ∥CD ,OD ⊥CD , ∴OB ⊥AB ,∵相邻两平行线间的距离相等, ∴OB =OD.(3分)在△ABO 与△CDO 中,⎩⎨⎧∠ABO =∠CDOOB =OD∠AOB =∠COD, ∴△ABO ≌△CDO(ASA ),(6分) ∴CD =AB =20(米).(7分)。
《12.2 三角形全等的判定课时2》基础练易错诊断(打“√”或“×”)1.两边和任一角分别相等的两个三角形全等.()2.有两边及其一边的对角分别相等的两个三角形全等.()3.在△ABC和△DEF中,若AB=DE,∠B=∠E,BC=EF,则△ABC≌△DEF.()对点达标知识点一用“SAS”证明三角形全等1.(2021·昆明质检)如图,AB平分∠DAC,要用SAS条件确定△ABC≌△ABD,还需要有条件()A.DB=CBB.AB=ABC.AD=ACD.∠D=∠C2.根据如图所给信息,可得x的长是()A.16B.18C.20D.16或183.(2021·宿州质检)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加一个条件是()A.∠A=∠CB.∠D=∠BC.AD∥BCD.DF∥BE4.(2020·柳州中考)如图,已知OC平分∠MON,点A,B分别在射线OM,ON上,且OA=OB.求证:△AOC≌△BOC.5.(2020·兰州中考)如图,在△ABC中,AB=AC,点D,E分别是AC和AB的中点求证:BD=CE.知识点二“SAS”的实际应用6.(2021·武汉期中)如图,将两根钢条AA',BB的中点O连在一起,使AA',BB'可以绕着点O自由旋转,就做成了一个测量工件,则A'B′的长等于内槽宽AB,那么判定△OAB≌△OA'B′的理由是.7.如图,一块三角形玻璃碎成了Ⅰ,Ⅱ两块,现需购买同样大小的一块三角形玻璃,为方便起见,只需带上第块玻璃碎片.8.(2021·济南期中)如图,AD,BC表示两根长度相同的木条,若O是AD,BC的中点,经测量AB=9cm,则容器的内径CD为cm.参考答案易错诊断1.×2.×3.√对点达标1.C2.C3.B4.答案:见解析解析:∵OC平分∠MON,∴∠AOC=∠BOC,在△AOC和△BOC中,OA OBAOC BOC OC OC=⎧⎪∠=∠⎨⎪=⎩,,,∴△AOC≌△BOC(SAS).5. 答案:见解析解析:∵AB=AC,D,E分别为AC,AB的中点,∴AD=AE,在△ABD和△ACE中,AB ACA A AD AE=⎧⎪∠=∠⎨⎪=⎩,,,∴△ABD≌△ACE(SAS),∴BD=CE.6.SAS7.I8.9。
ABECD(第5题)AB C D E (第4题) ACF E DA O DB C(第1题)A B F E D C (第6题) (第7题)人教版八年级数学上全等三角形课时练习第1课时 全等三角形一、选择题1.如图,已知△ABC ≌△DCB ,且AB=DC ,则∠DBC 等于( ) A .∠A B .∠DCB C .∠ABC D .∠ACB2.已知△ABC ≌△DEF ,AB=2,AC=4,△DEF 的周长为偶数,则EF 的长为( )A .3B .4C .5D .6二、填空题3.已知△ABC ≌△DEF ,∠A=50°,∠B=65°,DE=18㎝,则∠F=___°,AB=____㎝. 4.如图,△ABC 绕点A 旋转180°得到△AED ,则DE 与BC 的位置关系是___________,数量关系是___________. 三、解答题5.把△ABC 绕点A 逆时针旋转,边AB 旋转到AD ,得到△ADE ,用符号“≌”表示图中与△ABC 全等的三角形,并写出它们的对应边和对应角.6.如图,把△ABC 沿BC 方向平移,得到△DEF .求证:AC ∥DF 。
7.如图,△ACF ≌△ADE ,AD =9,AE =4,求DF 的长.AD B C (第2题) A FE CD B(第3题) A B C (第4题)第2课时 三角形全等的条件(1)一、选择题1. 如果△ABC 的三边长分别为3,5,7,△DEF 的三边长分别为3,3x -2,2x -1,若这两个三角形全等,则x 等于( )A .73B .3C .4D .5 二、填空题2.如图,已知AC=DB ,要使△ABC ≌△DCB ,还需知道的一个条件是________.3.已知AC=FD ,BC=ED ,点B ,D ,C ,E 在一条直线上,要利用“SSS”,还需添加条件___________,得△ACB ≌△_______.4.如图△ABC 中,AB=AC ,现想利用证三角形全等证明∠B=∠C ,若证三角形全等所用的公理是SSS 公理,则图中所添加的辅助线应是_____________________. 二、解答题5. 如图,A ,E ,C ,F 在同一条直线上,AB=FD ,BC =DE ,AE=FC .求证:△ABC ≌△FDE .6.如图,AB=AC ,BD=CD ,那么∠B 与∠C 是否相等?为什么?7.如图,AB=AC ,AD = AE ,CD=BE .求证:∠DAB=∠EAC .D CEF B A (第5题) (第6题) AB CD DCE BA (第7题)A C DB E F(第2题) A B E D C(第1题) A BCED(第6题)第3课时 三角形全等的条件(2)一、填空题1.如图,AB =AC ,如果根据“SAS”使△ABE ≌△ACD ,那么需添加条件________________.2.如图,AB ∥CD ,BC ∥AD ,AB=CD ,BE=DF ,图中全等三角形有_____________对.3.下列命题:①腰和顶角对应相等的两个等腰三角形全等;②两条直角边对应相等的两个直角三角形全等;③有两边和一角对应相等的两个三角形全等;④等腰三角形顶角平分线把这个等腰三角形分成两个全等的三角形.其中正确的命题有_____________. 二、解答题4. 已知:如图,C 是AB 的中点,AD ∥CE ,AD=CE .求证:△ADC ≌△CEB .5. 如图, A ,C ,D ,B 在同一条直线上,AE=BF ,AD=BC ,AE ∥BF . 求证:FD ∥EC .6.已知:如图,AC ⊥BD ,BC=CE ,AC=DC .求证:∠B+∠D=90°;(第4题) A B C DE D C FBAE (第5题)A B C DOA E CB D E DC B A A B F ED C (第4题)第4课时 三角形全等的条件(3)一、选择题1.下列说法正确的是( )A .有三个角对应相等的两个三角形全等B .有一个角和两条边对应相等的两个三角形全等C .有两个角和它们夹边对应相等的两个三角形全等D .面积相等的两个三角形全等二、填空题 2.如图,∠B =∠DEF ,BC =EF, 要证△ABC ≌△DEF ,(1)若以“SAS”为依据,还缺条件 ; (2)若以“ASA”为依据,还缺条件 . 3.如图,在△ABC 中,BD =EC ,∠ADB =∠AEC , ∠B =∠C ,则∠CAE = .三、解答题4.已知:如图,AB ∥CD ,OA=OC .求证:OB=OD5.已知:如图,AC ⊥CE ,AC=CE ,∠ABC=∠CDE=90°,求证:BD=AB+ED6.已知:如图,AB=AD ,BO=DO ,求证:AE=ACOE A DB C (第6题)(第3题)(第5题)(第2题)3421EDC BAA DB Co AB E DC F (第3题) (第5题)(第6题)(第4题)第5课时 三角形全等的条件(4)一、选择题1.已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是( )A .甲和乙B .乙和丙C .只有乙D .只有丙 二、填空题2.如图,已知∠A=∠D ,∠ABC=∠DCB ,AB=6,则DC= .3.如图,已知∠A=∠C ,BE ∥DF ,若要用“AAS ”证△ABE ≌△CDF ,则还需添加的一个条件是 .(只要填一个即可)三、解答题 4.已知:如图,AB=CD ,AC=BD ,写出图中所有全等三角形,并注明理由.5.如图,如果AC =EF ,那么根据所给的数据信息,图中的两个三角形全等吗?请说明理由.6.如图,已知∠1=∠2,∠3=∠4,EC =AD , 求证:AB =BED C B A (第2题)A B D F C E (第3题) (第4题) 第6课时 三角形全等的条件(5)一、选择题1.使两个直角三角形全等的条件是( )A .一个锐角对应相等B .两个锐角对应相等C .一条边对应相等D 。
一直角边和斜边对应相等 二、填空题2.如图,BE 和CF 是△ABC 的高,它们相交于点O ,且BE=CD ,则图中有 对全等三角形,其中能根据“HL ”来判定三角形全等的有 对.3.如图,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则∠ABC +∠DFE =___________度.三、解答题4.已知:如图,AC=DF ,BF=CE ,AB ⊥BF ,DE ⊥BE ,垂足分别为B ,E . 求证:AB=DE5.如图,△ABC 中,D 是BC 边的中点, AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F .求证:(1)DE= DF ;(2)∠B =∠C .6.如图,AD 为△ABC 的高,E 为AC 上一点,BE 交AD 于点F ,且有BF=AC ,FD=CD .求证:BE ⊥AC .F ED C B A A B CE D (第2题)O(第5题) A B C D E F A BCDE F(第6题)AC B ED DE C B A ABCDEF 12(第2题) (第4题)(第6题)(第5题) 第7课时 三角形全等的条件(6)一、选择题1.下列条件中,不一定能使两个三角形全等的是 ( ) A .三边对应相等 B .两角和其中一角的对边对应相等 C .两边和其中一边的对角对应相等 D .两边和它们的夹角对应相等2.如图,E 点在AB 上,AC =AD ,BC =BD ,则全等三角形的对数有 ( )A .1B .2C .3D .4 3.有下列命题:①两边及第三边上的高对应相等的两个三角形全等;②两边及其中一边上的中线对应相等的两个三角形全等; ③两边及第三边上的高对应相等的两个锐角三角形全等; ④有锐角为30°的两直角三角形,有一边对应相等,则这两个三角形全等. 其中正确的是( )A .①②③B .①②④C .①③④D .②③④ 二、解答题4.已知AC=BD ,AF=BE ,AE ⊥AD ,FD ⊥AD . 求证:CE=DF5.已知:△ABC 中,AD 是BC 边上的中线,延长AD 到E ,使DE=AD .猜想AB 与CE 的大小及位置关系,并证明你的结论.6.如图,在△ABC 中,AB =AC ,D 、E 、F 分别在AB 、BC 、AC 上,且BD =CE ,∠DEF =∠B ,图中是否存在和△BDE 全等的三角形?并证明. CA EB F DB A O EP DB DC A (第3题) (第2题)第8课时 角平分线的性质(1)一、选择题1.用尺规作已知角的平分线的理论依据是( )A .SASB .AASC .SSSD .ASA2.如图,OP 平分∠AOB , PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E , 下列结论错误的是( )A .PD =PEB .OD =OEC .∠DPO =∠EPOD .PD =OD二、填空题 3.如图,在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,若BC =5㎝,BD =3㎝,则点D 到AB 的距离为______㎝. 三、解答题4.已知:如图,AM 是∠BAC 的平分线,O 是AM 上一点,过点O 分别作AB ,AC 的垂线,垂足为F ,D ,且分别交AC 、AB 于点G ,E .求证:OE=OG .5.如图,AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,且BD=CD .求证:BE=CF .6.如图,△ABC 中,∠C=90°,AD 是△ABC 的角平分线,DE ⊥AB 于E ,AD =BD .(1)求证:AC =BE ;(2)求∠B 的度数。
MAC B E O FD G (第4题)D A CE BFEAC D B(第6题)EF C BA D (第3题)DEAFBC(第2题)第9课时 角平分线的性质 (2)一、选择题1.三角形中到三边距离相等的点是( )A .三条边的垂直平分线的交点B .三条高的交点C .三条中线的交点D .三条角平分线的交点2.如图,△ABC 中,AB=AC ,AD 是△ABC 的角平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,有下面四个结论:①DA 平分∠EDF ;②AE=AF ;③AD 上的点到B ,C 两点的距离相等;④到AE ,AF 的距离相等的点到DE ,DF 的距离也相等.其中正确的结论有( )A .1个B .2个C .3个D .4个二、填空题3.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是28 cm 2,AB=20cm ,AC=8cm ,则DE 的长为_________ cm . 三、解答题4.已知:如图,BD=CD ,CF ⊥AB 于点F ,BE ⊥AC 于点E .求证:AD 平分∠BAC .5.如图,AD ∥BC ,∠DAB 的平分线与∠CBA 的平分线交于点P ,过点P 的直线垂直于AD ,垂足为点D ,交BC 于点C . 试问:(1)点P 是线段CD 的中点吗?为什么?(2)线段AD 与线段BC 的和等于图中哪一条线段的长度?为什么?ABCD P (第5题)E F A DB C 第4题小结与思考(1)一、选择题1.不能说明两个三角形全等的条件是()A.三边对应相等B.两边及其夹角对应相等C.二角和一边对应相等D.两边和一角对应相等2.已知△ABC≌△DEF,∠A=50°,∠B=75°,则∠F的大小为()A.50°B.55°C.65°D.75°3.如图,AB=AD,BC=DC,则图中全等三角形共有()A.2对B.3对C.4对D.5对4.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=20,且BD︰DC=3︰2,则D到AB边的距离是()A.12 B.10 C.8 D.6二、填空题5.若△ABC≌△DEF,△ABC的周长为100,AB=30,DF=25,则BC长为.6.若△ABC≌△A’B’C’,AB=3,∠A’=30°,则A’B’=,∠A=°.7.如图,∠B=∠D=90°,要使△ABC≌△ADC,还要添加条件(只要写出一种情况).8.如图,D在AB上,AC,DF交于E,AB∥FC,DE=EF,AB=15,CF=8,则BD=.三、解答题9.如图,点D,E在△ABC的BC边上,AB=AC,∠B=∠C,要说明△ABE≌△ACD,只要再补充一个条件,问:应补充什么条件?(注意:仅限图中已有字母与线段,至少写出4个)10.如图,在△ABC中,AB⊥AC,且AB=AC,点E在AC上,点D在BA的延长线上,AD=AE.求证:(1)△ADC≌△AEB;(2)BE=CD.A CD(第3题)BECADB(第5题)(第9题)(第10题)AB CDE(第6题)F(第11题) E D FC B A (第4题)11.如图,CD ⊥AB ,垂足为D ,BE ⊥AC ,垂足为E ,BE ,CD交于点O ,且AO 平分∠BAC .你能说明OB =OC 吗?12.一个风筝如图,两翼AB =AC ,横骨BE ⊥AC 于E ,CF ⊥AB 于F .问其中骨AD 能平分∠BAC 吗?为什么?小结与思考(2)一、选择题1. 如图,△ABC ≌△BAD ,点A 与点B ,点C 与点D 是对应顶点,若AB =9,BD =8,AD =5,则BC的长为( )A .9B .8C .6D .52. 两三角形若具有下列条件:①三边对应相等;②两边及其夹角对应相等;③三角对应相等;④两角和一边对应相等;⑤两边和一角对应相等,其中一定能判定两三角形全等的有( )A .1个B .2个C .3个D .4个3.如图,在△ABC 和△DCB 中,若∠ACB =∠DBC ,则不能证明两个三角形全等的条件是( )A .∠ABC =∠DCB B .∠A =∠DC .AB=DCD .AC=DB4.如图,在△ABC 中,AD 平分∠BAC ,过B 作BE ⊥AD 于E ,过E 作EF ∥AC 交AB 于F ,则( )A .AF=2BFB .AF=BFC .AF>BFD .AF<BF二、填空题5.已知△ABC ≌△DEF ,BC=6㎝,△ABC 的面积是18㎝2,则EF 边上的高是_____㎝.(第12题)B C D A (第3题) B C D (第2题)A EB D FC (第10题)6.如图,∠B =∠DEF ,AB =DE ,由以下要求补充一个条件,使△ABC ≌△DEF .(1) (SAS );(2) (ASA );(3) (AAS ).7.如图,△ABC 中,AB=AC ,E ,D ,F 是BC 边的四等分点,AE=AF ,则图中全等三角形共有 对.8.如图,点P 是∠AOB 内一点,PC ⊥OA 于C ,PD ⊥OB 于D ,且PD =PC ,点E 在OA 上,∠AOB=50°,∠OPE=30°.则∠PEC 的度数是 .三、解答题9.如图所示,AB =AD ,BC =CD ,AC ,BD 交于E ,由这些条件你能推出哪些结论(不再添加辅助线,不再标注其他字母,不写推理过程,只要求你写出四个你认为正确的结论).10.A ,B 两个居民楼在公路同侧,它们离公路的距离分别为AE =150米,BF =100米,它们的水平距离EF =250米.现欲在公路旁建一个超市P ,使超市到两居民楼的距离相等,则超市应建何处?为什么?11.支撑高压电线的铁塔如图,其中AM =AN ,∠DAB =∠EAC ,AB =AC ,问AD 与AE 能相等吗?为什么?(第6题) A B D F C E (第9题)(第7题) (第11题)B A O PD CE (第8题)答案与提示第1课时全等三角形1.D 2.B 3.65;18 4.平行;相等5.△ADE≌△ABC,对应边:AD=AB,DE=BC,AE=AC;对应角:∠D =∠B,∠DAE=∠BAC,∠E =∠C 6.略7.5第2课时三角形全等的条件(1)1.B 2.AB=DC 3.AB=FE,FDE 4.取BC边的中点D,连结AD5.证AC=EF 6.连接AD 7.证△ADC≌△ABE第3课时三角形全等的条件(2)1.AE=AD 2.3 3.①②④4.略5.证△ACE≌△BDF6.(1)先证△ABC≌△DEC,可得∠D =∠A,因为∠B+∠A=90°,所以∠B+∠D=90°;第4课时三角形全等的条件(3)1.C 2.(1)AB=DE (2)∠ACB=∠F 3.∠BAD 4.略5.证△ABC≌△CDE 6.连接AO 第5课时三角形全等的条件(4)1.B 2.6 3.AB=CD或BE=DF 4.△ABC≌△DCB(SSS),△ABD≌△DCA(SSS),△ABO≌△DCO (AAS)或(ASA)5.全等,用“AAS”或“ASA”可以证明6.证△ABD≌△EBC第6课时三角形全等的条件(5)1.D 2.5,4 3.90 4.利用“HL”证Rt△ABC≌ Rt△DEF 5.(1)证明略;(2)证△BDE≌△CDF6.证△BDF≌△ADC,得∠BFD=∠C,由∠BFD+∠FBD=90°,得∠C+∠FBD=90°第7课时三角形全等的条件(6)1.C 2.C 3.D 4.略5.相等,平行,利用“SAS”证明△ABD≌△ECD 6.存在△CEF≌△BDE利用“ASA”证明第8课时角平分线的性质(1)1.C 2.D 3.2 4.利用角平分线的性质可得OD=OF,然后证明△ODG≌△OFE5.证△BDE≌△CDF6.(1)略;(2)30°第8课时角平分线的性质(2)1.D 2.D 3.2 4.证△BDF≌△CDE,得DF=DE5.(1)点P是线段CD的中点;(2)AD+BC=AB小结与思考(1)1.D 2.B 3.B 4.C 5.45 6.3,30°7.AB=AD或BC=CD等8.7 9.(1)BE=CD;(2)∠BAE=∠CAD;(3)∠AEB=∠ADC;(4)BD=CE;(5)∠BAD=∠CAE;(6)∠ADB =∠AEC10.(1)由SAS知△ADC≌△AEB;(2)BE=CD,BE⊥CD11.由AAS可知△ADO≌△AEO,从而有OD=OE,又∠BDO=∠CEO =90°和∠DOB=∠EOC,故△ODB≌△OEC(ASA),从而OB=OC 12.AD能平分∠BAC;由∠1=∠2,得∠B=∠C,又AB=AC,故△ABE≌△ACF,从而AE=AF,又AD=AD,故△ADF≌△ADE,得∠F AD=∠EAD小结与思考(2)1.D 2.C 3.C 4.B 5.6 6.①BC=EF;②∠A=∠D;③∠ACB=∠F7.4 8.55°9.(1)△ADC≌△ABC;(2)AC平分∠DCB;(3)AC平分∠DAB;(4)DE=EB;(5)DB⊥AC;10.PE =100米11.AD=AE(提示:先说明△AMC≌△ANB,后说明△ADC≌△AEB)。