北京理工大学演讲 PPT课件
- 格式:ppt
- 大小:1.81 MB
- 文档页数:34
苏铁山在北京理工大学振奋人心的演讲同学们知道,党的历史上在1945年召开了七大,后来到了西柏坡,河北省平山县的西柏坡,召开了党的七届二中全会。
从西柏坡又到了北京,1949年开国大典。
在七届二中全会的时候,当时毛主席看到全国胜利,已经完全在他的意料之中了,已经完全没有问题了,但是他怕这个党腐败,怕这个党这个军队进城之后要学李自成,要腐败、要异化。
所以,那时候主席提出了两个务必,对不对?同学们知道不知道两个务必?就是谦虚谨慎、戒骄戒躁,艰苦奋斗。
谦虚谨慎、戒骄戒躁是指的要坚持批评自我批评,要保证这个党有自我净化的能力。
艰苦奋斗是什么?是反对腐败!后来毛主席离开西柏坡的时候,那时候他和周总理、任弼时一起走,他说了一句话:我们是进京赶考去,我希望我们要考个好成绩,我们不学李自成。
怎么叫进京赶考啊?马上要取得全国政权了,是谁考他呀?是人民要考他!他清醒的很!李自成怎么跨掉的,李自成是因为腐败才垮掉的。
毛主席非常清醒。
当然,所有这一切都是红军的长征精神的延续。
同学们,今天在这里我还要谈一件事,前些时候,中央电视台的几个频道分别采访了一些开国元勋的子女,是关于重走长征路。
有左权将军的女儿左太北、罗荣桓元帅的儿子罗东进、刘伯承元帅儿子刘太行、任弼时书记的女儿任远征、周总理的侄女周秉德、陈赓大将的儿子陈知健、罗瑞卿大将的儿子罗箭等等。
在中央电视台的几个频道,在艺术人生栏目播出了。
任远征是任弼时书记的女儿,她是在红军临过草地之前出生的。
过草地时,是朱老总钓鱼给她的母亲,使得任弼时书记的夫人有奶水来喂养自己的女儿。
任弼时同志是七大时选出来的五大书记之一。
当时的五大书记是:毛主席、刘少奇、朱德、周恩来、任弼时,相当于今天的政治局常委。
因为同学们可能不知道任弼时是谁?我就多说几句。
远征大姐后来是中纪委的干部。
远征大姐在接受了中央电视台的采访后跟我说:在接受中央电视台的采访时,我还说了一段话:“忘记过去,就意味着背叛!”还讲了“共产党要坚持批评与自我批评,有错的时候,有不对的时候,要认下来,要改!要为人民的利益,为民族的利益,纠正了错误,这个党才有生命力!”这些内容,后来中央电视台没有给她播。
区间估计的基本概念前面介绍了参数的点估计,讨论了估计量的优良性准则,给出了寻求估计量最常用的矩估计法和最大似然估计法.参数的点估计是用一个确定的值去估计未知参数,看似精确,实际上把握不大,没有给出误差范围,为了使估计的结论更可信,需要引入区间估计.Neyman(1894–1981)引例在估计湖中鱼数的问题中,若根据一个实际样本,得到鱼数N的最大似然估计为1000条.实际上,N的真值可能大于1000,也可能小于1000.为此,希望确定一个区间来估计参数真值并且满足:1.能以比较高的可靠程度相信它包含参数真值.“可靠程度”是用概率来度量的.2.区间估计的精度要高.可靠度:越大越好估计你的年龄八成在21-28岁之间区间:越小越好被估参数可靠度范围、区间一、置信区间的定义(Confidence Interval )对于任意θ∈Θ,满足设总体X 的分布函数F (x ,θ)含有一个未知参数θ,θ∈Θ,对于给定常数α(0<α<1),若由抽自X 的样本X 1,X 2,…,X n 确定两个统计量112212ˆˆ{(,,,)(,,,)}1n n P X X X X X X θθθα<<≥-112ˆ(,,,)nX X X θ212ˆ(,,,)nX X X θ和则称随机区间是θ的置信水平为1−α的置信区间.12ˆˆ(,)θθ和分别称为置信下限和置信上限.1ˆθ2ˆθ(1)当X 连续时,对于给定的α,可以求出置信区间满足此时,找区间使得至少为1−α,且尽可能接近1−α.12ˆˆ(,)θθ112212ˆˆ{(,,,)(,,,)}1nnP X X X X X X θθθα<<=-12ˆˆ(,)θθ112212ˆˆ{(,,,)(,,,)}1n n P X X X X X X θθθα<<=-12ˆˆ()P θθθ<<(2)当X 离散时,对于给定的α,常常找不到区间满足12ˆˆ(,)θθ说明:(2)估计的精度要尽可能高. 如要求区间长度尽可能短,或者能体现该要求的其他准则.(1)要求θ以很大的可能被包含在区间内,即概率尽可能的大.可靠度与精度是一对矛盾,一般是在保证可靠度的条件下尽可能提高精度.12ˆˆ()P θθθ<<12ˆˆ(,)θθ21ˆˆθθ-(3)对于样本(X 1,X 2,…,X n )112212ˆˆ((,,,),(,,,))n n X X X X X X θθ以1−α的概率保证其包含未知参数的真值.随机区间112212ˆˆ{(,,,)(,,,)}1n n P X X X X X X θθθα<<=-即有:(4)对于样本观测值(x 1,x 2,…,x n )可以理解为:该常数区间包含未知参数真值的可信程度为1−α.112212ˆˆ((,,,),(,,,))n n x x x x x x θθ常数区间只有两个结果,包含θ和不包含θ.此时,不能说:112212ˆˆ{(,,,)(,,,)}1n n P x x x x x x θθθα<<=-没有随机变量,自然不能谈概率如:取1−α=0.95.若反复抽样100次,样本观测值为112212ˆˆ{(,,,)(,,,)}1n n P X X X X X X θθθα<<=-1121ˆˆ((,,),(,,))i i i in n x x x x θθ于是在100个常数区间中,包含参数真值的区间大约为95个,不包含真值的区间大约为5个.12,,,ii i nx x x1,2,,100i =对应的常数区间为1,2,,100i =对一个具体的区间而言,它可能包含θ,也可能不包含θ,包含θ的可信度为95%.1121ˆˆ((,,),(,,))i i i i nnx x x x θθ二、构造置信区间的方法枢轴量法1.寻求一个样本X 1,X 2,…,X n 和θ的函数W =W (X 1,X 2,…,X n ;θ),使得W 的分布不依赖于θ和其他未知参数,称具有这种性质的函数W 为枢轴量(Pivotal quantity ).3.若由不等式a <W (X 1,X 2,…,X n ;θ)<b 得到与之等价的θ的不等式2.对于给定的置信水平1−α,定出两个常数a 和b ,使得P {a <W (X 1,X 2,…,X n ;θ)<b }=1−α112212ˆˆ(,,,)(,,,)n n X X X X X X θθθ<<即有P {a <W (X 1, X 2,…, X n ;θ)<b }关键:1.枢轴量W (X 1, X 2,…, X n ;θ)的构造2.两个常数a ,b 的确定一般从θ的一个良好的点估计出发构造,比如MLE因此,是θ的一个置信水平为1−α的置信区间.112212ˆˆ{(,,,)(,,,)}1n n P X X X X X X θθθα=<<=-12ˆˆ(,)θθf (w )ababab1−α1−α1−α希望置信区间长度尽可能短.对于任意两个数a 和b ,只要使得f (w )下方的面积为1−α,就能确定一个1−α的置信区间.f(w)abab ab1−α1−α1−α当W 的密度函数单峰且对称时,如:N (0,1),t 分布等,当a =−b 时求得的置信区间的长度最短.如:b =z α/2或t α/2(n )当W 的密度函数不对称时,如χ2分布,F 分布,习惯上仍取对称的分位点来计算未知参数的置信区间.χ21−αα/2α/222()n αχ21-2()n αχ单个正态总体参数的区间估计一、单个正态总体的情形X 1, X 2,…, X n 为来自正态总体N (μ,σ2)的样本,置信水平1−α.样本均值样本方差11nii X X n ==∑2211()1nii S X X n ==--∑0-4-3-2-1012340.050.10.150.20.250.30.350.4是枢轴量W 是样本和待估参数的函数,其分布为N (0,1),完全已知由于是μ的MLE ,且是无偏估计,由抽样分布定理知X ~(0,1)X W N nμσ-=1.均值μ的置信区间(方差σ2已知情形)单峰对称-4-3-2-1012340.050.10.150.20.250.30.350.4即等价变形为选择两个常数b =−a =z α/222{}1X P z z nααμασ--<<=-22{}1P X z X z nnαασσμα-<<+=-1−αα/2α/2z α/2−z α/2简记为因此,参数μ的一个置信水平为1−α的置信区间为22(,)X z X z nnαασσ-+2()X z nασ±置信区间的长度为22n l z nασ=说明:2.置信区间的中心是样本均值;4.样本容量n 越大,置信区间越短,精度越高;1.l n 越小,置信区间提供的信息越精确;5.σ越大,则l n 越大,精度越低.因为方差越大,随机影响越大,精度越低.3.置信水平1−α越大,则z α/2越大.因此,置信区间长度越长,精度越低;22n l z nασ=22(,)X z X z nnαασσ-+2.均值μ的置信区间(方差σ2未知情形)想法:用样本标准差S 代替总体标准差σ.是枢轴量包含了未知未知参数σ,~(0,1)X W N nμσ-=此时,因此不能作为枢轴量.~(1)X T t n Snμ-=-由抽样分布理论知:使即枢轴量~(1)X T t n Snμ-=-22((1)(1))1X P t n t n Snααμα---<<-=-22{(1)(1)}1P t n T t n ααα--<<-=-选择两个常数b =−a =t α/2 (n -1)等价于因此,方差σ2未知情形下均值μ的一个置信水平为1−α的置信区间为22{(1)(1)}1S S P X t n X t n nnααμα--<<+-=-22((1),(1))X t n X t n nnαα--+-例1.现从中一大批糖果中随机取16袋,称得重量(以克记)如下:506508 499 503 504 510 497 512 514 505 493 496 506 502 509 496设每袋糖果的重量近似服从正态分布. 试求总体均值μ的置信水平为0.95的置信区间.解:这是单总体方差未知,总体均值的区间估计问题.均值μ的置信水平1−α的置信区间为22((1),(1))x t n x t n nnαα--+-根据给出的数据,算得这里10.95,16n α-==/20.025(1)(15) 2.1315t n t α-==503.75, 6.2022x s ==因此,μ的一个置信水平为0.95的置信区间为6.20226.2022(503.75 2.1315,503.75 2.1315)1616(500.4,507.1)-⨯+⨯=此区间包含μ的真值的可信度为95%.22((1),(1))x t n x t n nnαα--+-3.方差σ2的置信区间(均值μ未知)σ2的常用点估计为S 2,且是无偏估计。