汽轮发电机的定子铁芯设计
- 格式:doc
- 大小:27.00 KB
- 文档页数:4
汽机发电机铁芯温度过高原因分析及处理摘要:本文主要介绍QFS-125-2型双水内冷汽轮发电机定子铁芯第8、10、24、26点等四点温度一直偏高原因分析及改造效果。
关键词:发电机;定子;铁芯;温度;8氟橡胶引言广东某发电厂一期#1、2发电机为上海汽轮发电机有限公司生产的QFS-125-2型双水内冷汽轮发电机。
由于发电机定子铁芯两侧端部通风风力不足、定子膛内冷却风量分配不均等原因,造成定子铁芯两侧端部局部过热。
在夏季定子铁芯两侧端部个别位置温度最高达到130℃,超过规定值120℃。
通过改造发电机空冷系统及在发电机定子膛内加装8氟橡胶挡风板改变发电机两侧端部分布风量、调整发电机转子风扇叶片角度增大冷却风力来降低发电机定子铁芯两侧端部温度高的问题,将发电机定子铁芯温度保持在106℃以下。
1、发电机定子铁芯温度过高位置点#1、2发电机自投产后其定子铁芯第8、10、24、26点等四点温度一直偏高。
尤其第8点铁芯温度测点经常超标报警,最高温度达130℃,超出规定值120℃。
此缺陷严重危及到发电机组的安全运行。
2、发电机定子铁芯温度过高原因分析发电机的定子铁芯和端部结构件及转子表面是依靠发电机转子风扇使空气循环来冷却,发电机转轴上的风扇与空气冷却器组成一个封闭循环系统。
冷风由安装在转子轴两端的轴向风扇处进入,通过转子表面流经定子铁芯径向通风道再进入发电机下面的出风口进入空气冷却器。
根椐测点显示发电机定子铁芯第8、10、24、26温度高点核对位置分是定子铁芯第62、61、5、4段轭部,发电机定子铁芯分为65段,温度高部位分布在定子铁芯对应两侧端部的轭部。
如(图1)所示。
其它部位温度都在100℃以下。
针对发电机定子铁芯第62、61、5、4段轭部等四个部位温度过高分析有以下原因:该部位铁芯短路;测温元件误差大;冷却风路漏风或阻塞;发电机空气冷却器冷却能力不足;发电机定子铁芯两侧端部通风不足;发电机定子膛内冷却风量分布不均匀;定子铁芯两端部位存在漏磁现象,风力不足带不走该部位涡流产生的热量;发电机运行中风量不足难易带走铁芯产生的热量,从而引起膛内热风滞流的原因导致铁芯两侧端部对应部位温度高。
大型发电机一、发电机概述发电机是将其他形式的能源转换成电能的机械设备,它由水轮机、汽轮机、柴油机或其他动力机械驱动,将水流,气流,燃料燃烧或原子核裂变产生的能量转化为机械能传给发电机,再由发电机转换为电能。
发电机在工农业生产,国防,科技及日常生活中有广泛的用途。
发电机的形式很多,但其工作原理都基于电磁感应定律和电磁力定律。
因此,其构造的一般原则是:用适当的导磁和导电材料构成互相进行电磁感应的磁路和电路,以产生电磁功率,达到能量转换的目的。
发电机可分为直流发电机和交流发电机,交流发电机又可分为同步发电机和异步发电机(很少采用) ,还可分为单相发电机与三相发电机。
发电机通常由定子、转子、端盖及轴承等部件构成。
定子由定子铁芯、线包绕组、机座以及固定这些部分的其他结构件组成。
转子由转子铁芯(或磁极、磁扼)绕组、护环、中心环、滑环、风扇及转轴等部件组成。
二、发电机的工作原理按照电磁感应定律,导线切割磁力线感应出电动势,这是发电机的基本工作原理。
图1为同步发电机的工作原理图。
发电机转子与汽轮机转子为同轴连接,当蒸汽推动汽轮机高速旋转时,发电机转子随着转动。
发电机转子绕组内通入直流电源后,便建立了一个磁场,这个磁场有一对主磁极,它随着汽轮机发电机转子旋转。
磁通自转子的一个极(N级)出来,经过空气隙、定子铁芯、空气隙,进入转子另一个极(S极)构成回路。
图1 同步发电机工作原理图2 发电机出线的接线发电机转子具有一对磁极,转子旋转一周,定子绕组中感应电动势正好交变一次(假如发电机转子为P对磁极是,转子旋转一周,定子绕组中感应电动势交变P次)。
当汽轮机以每分钟3000转旋转时,发电机转子每秒钟要旋转50周,磁极也要变化50次,那么在发电机定子绕组内感应电动势也变化50次。
这样,发电机转子以每秒50周的恒速旋转,在定子三相绕组内感应出相位不同的三相交变电动势,即频率为50Hz的三相交变电动势。
这时若将发电机定子三相绕组引出线的末端(即中心点)连在一起,绕组的首端引出线与用电设备相连,就会有电流流过,如图2所示。
汽轮机进气量增加为什么转速不变,发电机负荷增加?首先必须明白发电机的工作原理:我们都知道一个物理现象:就是一个线圈在磁场内旋转,做切割磁力线的运动,在电磁作用下,线圈中会产生感应电流,通俗点说就是产生了电能。
发电机就是根据此原理进行设计制造的,不过比较复杂而已,但基本原理是相同的。
发电机的转子为磁极,转子内部装有励磁绕组,当通上直流电后就会励磁,产生磁场,通俗的说就变为电磁铁,一般给转子供给直流电的设备我们叫励磁机,就是接在发电机后部的那个,它的作用就是在运行中发出直流电,供给转子励磁线圈使用,以便产生磁场,这种供给直流电的方式在电气专业叫他励方式,还有一种自励方式,就是不要励磁机(所以有的会员所用的发电机后部并没有励磁机),而是使用发电机所发的交流电,经励磁变(硅整流)后改成直流电,供给转子线圈使用。
顺便说下,我们经常看到的发电机转子上的碳刷,就是供给转子直流电的设备,当发电机直流电供给过大时(也就是电气专业所说的无功较高),此时碳刷就易出现打火现象(这只是打火的原因之一,我只是顺便说说,让大家了解下)。
在发电机定子铁芯上嵌有三相对称绕组,就是我们日常所说的定子线圈,发电机工作时,汽轮机带动发电机转子(磁极)旋转,使定子线圈绕组不断切割转子磁场而感应出三相交流电动势,即发出电能了。
这个过程其实就是磁场在旋转而线圈是固定的,但其产生电能的作用和我前面所说的原理是一样的。
我们国家的交流电的频率为50HZ,根据这个公式:f=pn/60(f为频率,p为磁极对数,n为发电机转速)可知,如想得到想要的频率,只要根据机组工作转速设置合适的磁极对数即可。
汽轮发电机组的工作转速为3000r/min,有上述公式可知其对应50Hz的频率,设置一对磁极对数即可。
另根据上述所说的,大家也可算算核电站机组的工作转速为:1500r/min,水电站水轮机组的工作转速为750r/min,要发出的50HZ频率交流电来,应装多少磁极对数?发电机当其磁极数固定不变时,其频率f和转速n成正比关系,这是同步发电机的最大特点,也是同步发电机的调频原理。
大型汽轮发电机定子绕组端部模态分析导语:介绍了大型汽轮发电机定子绕组端部模态分析的必要性和影响模态参数的因素,并结合事例对实际应用做了简要介绍。
引言大型汽轮发电机运行时,定子绕组端部的振动主要由两个因素引起:绕组电流与端部漏磁场的相互作用所产生的二倍频振动力;定子铁芯的椭圆振动。
定子端部固定元件在电磁力作用下的振幅与电流的平方成正比,故在大容量汽轮发电机中,端部绕组将承受相当大的激振力。
发电机定子端部绕组渐开线部分的不规则形状决定它不可能象槽中线棒那样牢靠固定,由于制造工艺等问题,许多垫块与线棒间只是点接触,不能形成刚体结构。
如果绕组端部在两倍工频电磁力激励下形成共振,端部绑扎结构和线棒绝缘很容易遭到破坏。
实践表明,由于定子绕组端部振动,引起相间短路、漏水、股线断裂等事故发生频繁,该类事故具有突发性和难于简单修复的特点,损失往往极为严重。
因此准确测量定子绕组端部的振动特性,预测发电机在实际工作状态下的振动特性,及早采取防范措施尤为重要。
应用模态分析手段,对发电机绕组端部整体结构进行振动特性分析是近年来发展起来的一种行之有效的方法。
对于模态振型为椭圆、振动频率在94~115 Hz范围内的端部结构进行必要处理,可以有效防止共振,避免定子绕组绝缘磨损和端部绑扎结构松垮。
JB/T89901999《大型汽轮发电机定子端部绕组模态试验分析和固有频率测量方法及评定》、DL/T 7352000《大型汽轮发电机定子绕组端部动态特性的测量及评定》、国家电力公司《防止电力生产重大事故的二十五项重点要求》都对发电机定子绕组端部的振动特性分析做出了具体要求。
模态分析原理简述模态分析是机械结构振动特性分析的有效手段,它通过分析结构的动特性建立结构在已知激励条件下的响应预测模型,进而预测结构在实际工作状态下的动力学特性。
通常的做法就是通过试验方法得到机械结构在冲击h(t)下的响应H(ω),构造出机械结构动特性的频响函数矩阵,然后通过曲线拟合手段识别结构的模态参数:模态频率、模态阻尼及模态振型。
电厂发电机定子线棒固定技术摘要:随着经济的发展,国家的科技水品日益提高,人们对于发电机的定子线棒的研究也日趋完善。
据科研人员说:“发电机制造的关键技术其实就是发电机的定子线棒在铁芯线槽内的防晕处理及固定”。
而目前使用次数最多,范围最好的ALSTOM发电机线棒则是采用了硅脂复合胶弹性固定技术完成的。
在发电机的上端则使用了玻璃纤维绳注胶完成的工艺。
除此之外的VGS发电机线棒则是采用了导电纸裹半导体胶的固定方式,其顶端同样是采用了金属材质。
这对于我国发电机定子线棒的固定技术有着一定的帮助。
关键词:发电机定子线棒,玻璃纤维绳胶技术,固定,金属材质关于发电机的核心——定子线棒、定子线圈在铁芯槽内的固定一直都是研究发电机的一大基本课题。
在放电机开始、运行、停止、这三个阶段中,对于线棒承受的电磁力,热效应、机械应力的综合考量一直都是定子线棒的根本和难点,如何解决发电机运行中绕组的可靠固定以及长期运行之中可能存在的相关问题都是目前设计发电机绕组棒需要考虑的地方。
1、线棒的线槽段的防晕处理对于线棒嵌入铁芯槽的技术,一直对技术人员要求是相当高的。
不仅仅要讲钉子线棒与铁芯槽有一个很好的距离,同时还要防止定子线棒的电晕现象。
最后还要让定子线棒的外表面与铁芯槽之间有一个良好的电气接触的空间。
关于上述的技术问题,结合着现在使用最多的ALSTOM以及VGS的两款发电机的处理方法。
来进行研究。
传统的方法是将定子线棒的外面缠绕着低电阻的铁质石,这样做的目的是让定子线棒与主绝缘体的定型作用。
之后才是用半导体塞满。
总而言之,是属于一种物理上的实际性的连接。
但这里面也会存在一个问题就是定子线棒与铁芯槽的槽壁会存在接触不良等影响。
还有另外的一种方法是利用槽底、层间的空间下半导体适形毡工艺。
这样的工艺是可以有效的解决大型立体式发电机的问题,三由于本身的安装十分复杂,而且,一旦出现操作不善等原因便会功亏一篑。
ALSTOM公司的发电机的定子线棒固定技术是以定子线棒弹性固定工艺为主。
第一章 300MW汽轮发电机第一节概述同步发电机是生产电能的基本设备,是电网的心脏,它的运行可靠性直接影响电网运行及向用户安全、经济地供电。
运行中的发电机,绕组和铁芯都要发热,所产生的热量和电机的输出功率有着密切的关系。
电机的输出功率越大,其发热量也越多,当超过额定值时,便会使电机的温度过高而超过绝缘允许值。
反之,人为地提高和增大冷却的效果,使冷却剂在相同时间内带走更多的热量,则发电机输出的功率就越大。
由此可见,电机的冷却能力在一定程度上影响了发电机出力的大小。
当今世界上大容量发电机组采用的冷却方式通常有三种:全氢冷方式、定子线圈水冷其余为氢冷(水氢氢)方式、双水内冷(水水空)方式。
我国目前生产的300MW发电机多采用后两种;表3-1-1给出了目前我国三大电机厂所生产的300MW汽轮发电机的主要额定参数。
该表表明,QFSN-300-2型汽轮发电机都是水氢氢冷却方式,即定子绕组为水内冷,转子绕组为氢内冷,定子铁芯为氢表冷的冷却方式。
QFS-300-2型汽轮发电机采用的是双水内冷(水水空)方式,即定子绕组、转子绕组均为水内冷,定子铁芯为空冷的冷却方式。
双水内冷发电机,为我国首创。
水内冷技术的应用,为提高发电机容量开辟了一条新的道路。
由于水的冷却能力比空气大50倍,因此发电机的定子和转子采用了水内冷后,可以大幅度地提高发电机的出力。
但相对于全氢冷和水氢氢冷却的发电机来说,定、转子绝缘引水管漏水而导致的故障较多;对全氢冷和水氢氢发电机来说,由于其转子采用氢内冷,不会发生因水内冷转子的绝缘引水管漏水而导致的故障,所以运行的可靠性较之水冷转子为高。
因为目前新建和扩建的火电厂单机容量均采用300MW及以上的发电机组、尤其以300MW机组居多,所以,本篇以东方电机股份有限公司所设计制造的QFSN-300-2-20型三相同步交流发电机为主,介绍300MW汽轮发电机组的结构、原理及运行维护知识,对其它机型做简要介绍。
汽轮发电机的定子铁芯设计
摘要:在科学技术飞速发展的今天,人们对电力的需求逐步的增大,发电机也在逐步的改善和变化之中,在这种背景之下,汽轮发电机也逐步的涌现而出。
本文通过作者多年工作经验对汽轮发电机定子铁芯设计做一简短的分析探讨。
关键词:发电机;定子铁芯
1、定子铁芯的作用
定子是发电机静止不动的部分,是发电机中主要的元件和部位,是发电机在使用的过程中产生旋转力的磁场所在地。
发电机转子的旋转主磁通在定子绕组中感应电势,产生发电机的负载电流。
在定子发生作用的过程中是通过电流产生电枢磁势来形成转子磁势的总和。
在定子铁芯、气隙和转子构成的磁回路中形成和合成磁通,建立起发电机电压。
定子铁芯的作用是使发电机总磁通获得低磁阻的磁路,同时起着固定定子绕组的作用。
由于该磁通随着转子绕组在定子内旋转,它在铁芯中产生磁滞损耗和涡流损耗。
磁滞损耗取决于冲片的性能和通过冲片的磁通密度,它在电机施加励磁时,始终存在。
定子铁芯不仅是磁路的一部分,而且也是良好的导电体,因此由上述总磁势形成的主磁通也在定子铁芯中产生涡流,为了减少涡流损耗,要把铁芯分成许多薄片,而且各片之间彼此绝缘,以防止各叠片之间流过电流。
每一硅钢薄片厚度的选择与涡流的透入深度有关。
2、定子铁芯冲片材料
发电机定子铁芯的冲片材料目前采用冷轧或热轧的电工钢片,冷轧的电工钢片又分为有取向和无取向两种。
世界上冷轧硅钢片发展最快是日本,而且其性能是最好的,就无取向电工硅钢片而言,目前已生产出H6高牌号产品。
除日本外,德国的硅钢片性能较好,我国硅钢片
的电磁性能可以与其他发达国家相媲美。
取向的冷轧硅钢片内损耗和导磁率与轧制方向有关,当磁通顺轧制方向通过时,导磁率高、损耗小,垂直通过时则反之。
定子铁芯的整圆由多块扇形硅钢片组合而成。
通常定子铁芯轭部重量比齿部重得多,为了减少总的铁耗,取向硅钢片尽量使冲片轭部与轧制方向一致,齿与轧制方向垂直,夹角不宜小于70度。
损耗随着磁通与轧制的方向之间的夹角的增大而增加,为了有效地降低轭部损耗或损坏相同的情况下,显著提高磁通密度、节约硅钢片和缩小发电机直径,较重视机械振动问题,为减少定子是各铁芯振动。
随着工业迅速的发展,汽轮发电机的剪冲车间冲剪扇形冲片一般是自动化的,生产线由硅钢片卷料或片料剪成扇形料、自动冲片、冲片传送接出装置,去毛机及冲片堆迭装置等组成。
扇形片冲制后,每张冲片均需经过严格去毛刺,使冲制过程中产生的毛刺控制在最小的范内,国外一般是连续去毛刺两次,即在冲片自动化生产线上将两台去毛刺机排成直线。
3、冲片的涂漆绝缘
定子硅钢片在制造时即涂一层无机绝缘漆,在扇形冲片去毛刺后,必须双面涂复高电安。
阻的绝缘层,使叠片层间保持良好的绝缘性能,以避免发生短路的危险。
这绝缘层要求薄、耐温、损耗降到最小而且达到上述的作用。
4、定子铁芯的装配
定子铁芯是由多个扇形的硅钢片和硅钢网叠装而成的组合体。
装配完成的定子铁芯要求槽形平直、槽壁平整、有足够的紧力,以保证铁芯的刚度和避免电磁力引起片间振动,还要注意片间绝缘不应受损,通风道均匀整齐,不变形等。
定子铁芯主要构件除硅钢片外,有定位筋、通风道片、绝缘垫片。
虽然部件不多,但是装配成定子铁芯并嵌装定子绕组后,如有故障必须撤除定子绕组,那是非常麻烦的,所以定子铁芯装配的质量是非常重要的。
4.1定位肋
固定定子叠片的定位肋一般为方形带鸠尾的剖面,沿轴向放置,均匀分布,固定在机座横隔的内圆上,每张扇形冲片必须不少于两个定位肋,定位肋有组合式和整体式两种,但现在大型汽轮发电机中定位肋大都采用整体式。
定子铁芯的冲片是经良好绝缘处理的,但叠装于定位肋上该点绝缘有可能破坏,经过定位肋使叠片在外短路,所以在定子铁芯内圆的任何处不允许片间短路。
4.2定子铁芯冲片及绝缘垫片
铁芯叠装时,每张冲片都有一个压装标记,应辨别放置冲片的正确方向,避免可能由剩余毛刺而产生的短路。
由于涂漆时,总是轭部先进入涂漆机,轭部的漆膜比齿部厚,所以在齿部需加垫垫片或冲齿片。
据国外考察报告,GE公司是垫三聚氰胺聚酯玻璃布板,其形状和尺寸与齿形相同,厚度是内圆的一端0.1毫米至槽底一端O,粘接在冲片上,按设计注明的部位放人。
该公司产品汽端放4层垫片,励端共放6层垫片,其中为每四档铁芯放一层。
我国电机制造厂在制造过程中,为保证片间压力,防止局部松弛,很注意冲片去毛刺后造成边缘偏薄的状态(尤其在齿部,更容易发生),并用绝缘冲片或局部点焊的冲片加以补偿,有的工厂采用根据冲片堆积厚度,测量中部与边缘的高度差,点焊冲片予以填充的方法。
在分段加压时很注意测量压力下的铁芯各部高度差(表现为倾斜或波浪形)并加以补偿。
还用斜口工具,插入铁芯,检查压装完工后的铁芯紧度。
定子铁芯每层由数张扇形片组成一个圆形,然后一层层交错叠装,通常有1/2或1/3及以上汽交错法,交错处必须在槽中心,见图24。
为减少铁芯内磁阻,引进国外制造技术后,300MW及以上容量的定子铁芯采用一片一叠的工艺方法,经试验证明,可使基本铁耗减少10%~15%。
5、定子铁芯端部结构件的发热问题
大型汽轮发电机受最大几何尺寸的限制,所以采用高参数,气隙磁密高,线负荷高,又两极电机定子线圈节距大,每个相带线圈数量多,导致绕组端部长,这样定子线圈端部。
此外隐
极式转子在转子线圈端部也有一个随转子旋转的漏磁场。
以上两个旋转漏磁场在端部形成一个合成的旋转漏磁场,其中定子端部漏磁场为主要成分,转子端部绕组距定子铁芯较远,转子漏磁通只占合成磁通的30一40%。
端部漏磁场分布比较复杂,影响因素也多,如定子线负载、短路比、端部结构、材料、距离、视在功率以及功率因数等都会影响到漏磁场的分布。
如短路比小的发电机,端部漏磁就大;滞后功率因数运行时,定子和转子的合成磁通相减,端部漏磁较少;越前功率因数运行时,定子和转子的台戚磁通相加,端部漏磁就增多,因此发电机进相运行时端部易发热。
端部漏磁通总是要沿磁阻最小的路径通过,因此,定子和转子漏磁通的耦合主要集中在定子的压圈内圆、压指和端部最边段铁芯齿处,导致这些部位附加损耗增大,温度升高。
附加损耗主要是漏磁通在金属材料内引起的涡流损耗。
涡流透入的深度与频率和材料的电阻有关,也和金属部件在漏磁场中的位置和距离有关,附加损耗约占总损耗的20%。
在同一台汽轮发电机中不容的冷却方式和冷却媒介对发电机的效率造成极大的变化。
显然空气冷却时.端部温度高;氢气压力增大时,温度降低。
附加损耗:在端部引起的发热问题,对设计和运行单位来说,都是需要重视的问题。
感谢您的阅读!。