粉末冶金,气雾化制粉
- 格式:doc
- 大小:30.05 MB
- 文档页数:11
转贴]粉末冶金生产的基本工艺流程标签:转贴粉末冶金生产基本工艺流程时间:2008-11-26 21:23:53 点击:2803 回帖:0上一篇:[转贴]金属磨损自修复抗磨剂的性下一篇:金相显微镜的外形尺寸图(图)粉末冶金生产的基本工艺流程包括:粉末制备、粉末混合、压制成形、烧结及后续处理等。
用简图表示于图7-1中。
陶瓷制品的生产过程与粉末冶金有许多相似之处,其工艺过程包括粉末制备、成形和致密化三个阶段。
2.1 粉末制备2.1.1 粉末制备粉末是制造烧结零件的基本原料。
粉末的制备方法有很多种,归纳起来可分为机械法和物理化学法两大类。
(1)机械法机械法有机械破碎法与液态雾化法。
机械破碎法中最常用的是球磨法。
该法用直径10~20mm钢球或硬质合金对金属进行球磨,适用于制备一些脆性的金属粉末(如铁合金粉)。
对于软金属粉,采用旋涡研磨法。
雾化法也是目前用得比较多的一种机械制粉方法,特别有利于制造合金粉,如低合金钢粉、不锈钢粉等。
将熔化的金属液体通过小孔缓慢下流,用高压气体(如压缩空气)或液体(如水)喷射,通过机械力与急冷作用使金属熔液雾化。
结果获得颗粒大小不同的金属粉末。
图7-2为粉末气体雾化示意图。
雾化法工艺简单,可连续、大量生产,而被广泛采用。
(2)物理化学法常见的物理方法有气相与液相沉积法。
如锌、铅的金属气体冷凝而获得低熔点金属粉末。
又如金属羰基物Fe(CO)5、Ni(CO)4等液体经180~250℃加热的热离解法,能够获得纯度高的超细铁与镍粉末,称为羰基铁与羰基镍。
化学法主要有电解法与还原法。
电解法是生产工业铜粉的主要方法,即采用硫酸铜水溶液电解析出纯高的铜。
还原法是生产工业铁粉的主要方法,采用固体碳还原铁磷或铁矿石粉的方法。
还原后得到得到海绵铁,经过破碎后的铁粉在氢气气氛下退火,最后筛分便制得所需要的铁粉。
图7-2 粉末气体雾化示意图2.1.2 粉末性能粉末的性能对其成形和烧结过程,及制品的性能都有重大影响,因而对粉末的性能必须加以了解。
定义:粉末冶金是一门制造金属粉末,并以金属粉末(有时也添加少量非金属粉末)为原料,经过混合、成形和烧结,制造材料或制品的技术。
粉末冶金的优点:1、能够制造目前使用其他工艺无法制造或难以制造的材料和制品;2、能够直接制造出合乎或者接近成品形状和尺寸要求的制品;3、零件的轮廓、形状和尺寸的一致性均好;4、粉末结构零件的材料密度是可控、具有一定量的连通孔隙,能够浸5%-20%的润滑油,实现一定程度的自润滑。
粉末设备:固体还原制粉、雾化制粉、电解制粉;制粒设备:喷射干燥制粒机;压制成型:1.压力成型设备:油压机、凸轮式压力机、杠杆式压力机、曲轴式冲床、摩擦压力机;2.冷等挤压机等特殊粉末成型设备;烧结:1.中温、高温、真空烧结炉;2.热致密化装置;辅助设备:混料、筛分、破碎、球磨、磨粉;在粉末冶金生产中,固体碳还原法适用于生产铁粉。
其设备主要为倒焰炉和隧道窑。
目前国内外多采用隧道窑。
在设计倒焰窑和隧道窑时。
主要应考虑燃烧点的配置,高温燃烧气流的运动路径与窑内温度分布的均匀性。
无论使用何种燃料,燃烧点一般在窑的两侧呈非对称配置。
燃烧产生的高温气流一般不直接加热还原料罐,而是经挡火墙反射到窑拱顶,再反射到料罐,并穿过料罐间隙向烟道排出。
这样才能保证窑内各处温度差不超过±20℃。
所谓倒焰窑,燃烧所产生的火焰都从燃烧室的喷火口上行至窑顶,由于窑顶是密封的,火焰不能继续上行,被烟囱的抽力拉向下行,自窑底吸火孔进支烟道,主烟道,最后由烟囱排出。
因为热气体重度轻,总是浮在上面,所以由上向下流动的火焰称为“倒焰”。
隧道窑窑身较长,一般有预热带、加热(还原)带和冷却带。
在保证还原温度和冷却带长度的条件下,还原带的长度是决定该窑铁粉产量的关键参数。
在生产中无论是车底式倒焰炉或是隧道窑,多采用陶瓷罐作为还原料罐。
可以人工装料或自动装料在粉末冶金工业生产中,气体还原法可用于生产钨粉、钼粉、钻粉、镍粉、铜粉、铁粉、铅粉、银粉等金属粉末。
2024年粉末冶金工艺的基本工序1、原料粉末的制备。
现有的制粉方法大体可分为两类:机械法和物理化学法。
而机械法可分为:机械粉碎及雾化法;物理化学法又分为:电化腐蚀法、还原法、化合法、还原-化合法、气相沉积法、液相沉积法以及电解法。
其中应用最为广泛的是还原法、雾化法和电解法。
2、粉末成型为所需形状的坯块。
成型的目的是制得一定形状和尺寸的压坯,并使其具有一定的密度和强度。
成型的方法基本上分为加压成型和无压成型。
加压成型中应用最多的是模压成型。
3、坯块的烧结。
烧结是粉末冶金工艺中的关键性工序。
成型后的压坯通过烧结使其得到所要求的最终物理机械性能。
烧结又分为单元系烧结和多元系烧结。
对于单元系和多元系的固相烧结,烧结温度比所用的金属及合金的熔点低;对于多元系的液相烧结,烧结温度一般比其中难熔成分的熔点低,而高于易熔成分的熔点。
除普通烧结外,还有松装烧结、熔浸法、热压法等特殊的烧结工艺。
4、产品的后序处理。
烧结后的处理,可以根据产品要求的不同,采取多种方式。
如精整、浸油、机加工、热处理及电镀。
此外,近年来一些新工艺如轧制、锻造也应用于粉末冶金材料烧结后的加工,取得较理想的效果。
2024年粉末冶金工艺的基本工序(2)2024年的粉末冶金工艺基本工序包括精细化粉末的制备、粉末成型、烧结和后处理等四个环节。
下面将详细介绍这些工序的主要内容。
一、精细化粉末的制备精细化粉末的制备是粉末冶金工艺的第一步,关乎着制备出高质量的粉末。
2024年,精细化粉末的制备将会注重以下几个方面的发展:1.1 原料的选择与准备:2024年,随着科学技术的进步,矿石和废料等资源的利用效率将取得显著提高。
在制备粉末时,将更加注重对原料的选择与准备,使得原料的化学成分更加纯净,杂质含量更低。
1.2 粉末的粒度控制:粉末的粒度对材料的性能影响巨大。
粒度过大会影响材料的强度和塑性,而粒度过小则会降低流动性。
因此,粉末的粒度控制将成为2024年粉末冶金工艺中的重要研究方向。
粉末冶金制粉方法
嘿,这粉末冶金制粉方法啊,那可有点门道呢。
一个办法是机械粉碎法。
就像把东西放进一个大搅拌机里,使劲搅啊搅。
把大块的材料放进去,通过各种机器的力量,把它们打成细细的粉末。
这就有点像把大石头砸成小石子,再把小石子磨成沙子一样。
可以用球磨机啊、粉碎机啥的,让材料在里面翻滚、碰撞,慢慢就变成粉末啦。
还有雾化法。
这就像给材料喷了一场神奇的“雾”。
把熔化的金属或者合金通过一个小孔喷出来,同时用高压气体或者水把它吹散,就变成了细细的粉末。
就好像是一个魔法喷泉,喷出来的都是粉末。
另外呢,还原法也不错。
把一些氧化物啊啥的,通过化学反应还原成金属粉末。
就像变魔术一样,把一种东西变成另一种东西。
可以用氢气啊、一氧化碳啊这些气体来还原,让氧化物变成纯纯的金属粉末。
我记得有一次,我们在工厂里看到粉末冶金制粉的过程。
那个机械粉碎法可热闹了,机器嗡嗡响,材料在里面噼里啪啦地碰撞。
还有那个雾化法,喷出来的粉末就像一场漂亮的
烟花。
从那以后,我就知道了,粉末冶金制粉有这么多有趣的方法。
总之呢,粉末冶金制粉方法有很多,各有各的特点。
可以根据不同的材料和需求选择合适的方法。
让我们一起探索粉末冶金的奇妙世界吧。
真空气雾化制粉参数-概述说明以及解释1. 引言1.1 概述概述部分应该对本文主要内容进行简要介绍,并指出真空气雾化制粉参数的重要性。
可以按照以下方式编写概述部分的内容:概述部分:真空气雾化制粉是一种重要的粉体制备技术,广泛应用于材料科学、化学工程等领域。
在该技术中,粉末材料通过高温高压气体与粉末雾化剂共同作用,形成气雾射流,并在真空环境中快速冷却凝固,最终获得细小颗粒的粉末产物。
然而,真空气雾化制粉过程中的参数设置对于粉末颗粒的形貌、尺寸和分布具有关键性影响。
在本文中,我们将重点探讨真空气雾化制粉过程中的关键参数,并详细阐述它们对于粉末品质的影响。
首先,我们将介绍真空气雾化制粉参数的基本概念和常用设置,包括雾化剂流率、雾化气压、喷嘴尺寸等。
接着,我们将分别讨论这些参数在制粉过程中的作用机理和影响规律。
具体来说,我们将探讨这些参数如何影响粉末的颗粒大小、形状、分布以及杂质含量等关键品质指标。
值得注意的是,不同材料和不同制粉要求可能需要设置不同的真空气雾化制粉参数。
在本文中,我们将结合实验数据和理论模型,探讨不同参数设置下的粉末品质差异,为制粉工艺的优化提供有益的参考。
最后,我们将总结真空气雾化制粉参数的重要性,并对未来研究方向进行展望。
深入理解和掌握真空气雾化制粉参数的影响规律,将有助于优化制粉工艺,提高粉末品质,推动粉体材料领域的发展。
通过对真空气雾化制粉参数的研究和探讨,我们将为粉体制备领域的研究者和工程师们提供有益的参考和指导,推动粉末制备技术的进一步发展和应用。
文章结构部分内容如下:1.2 文章结构本文分为三部分,即引言、正文和结论。
引言部分包括概述、文章结构和目的。
首先,我们将概述真空气雾化制粉的背景和重要性。
接着,介绍文章的结构,即引言、正文和结论的部分划分。
最后,说明本文的目的,即探讨真空气雾化制粉的参数要点。
正文部分包含三个要点,分别是真空气雾化制粉参数要点1、要点2和要点3。
在这部分,我们将详细讨论每个要点,并分析其在真空气雾化制粉中的作用和影响。
气雾化金属软磁粉末
气雾化金属软磁粉末是一种通过气雾化技术制备的金属粉末。
气雾化技术是指利用高速气流将液态金属流击碎形成小液滴,随后快速冷凝得到成形粉末。
这种制备方法可以使粉末粒度细小(粉末粒径<150μm)、球形度好、纯度高、氧含量低、成形速度快、环境污染小,是粉末冶金、金属注射成型、金属增材制造用金属粉末制备的主流方法。
气雾化金属软磁粉末可以用于制造高性能的软磁材料,具有优异的磁性能和稳定性,因此在电子、通讯、电力、能源等领域有着广泛的应用前景。
粉末冶金制粉技术(一)粉末冶金新技术、新工艺的应用,不但使传统的粉末冶金材料性能得到根本的改善,而且使得一批高性能和具有特殊性能的新一代材料相继产生。
例如:高性能摩擦材料、固体自润滑材料、粉末高温合金、高性能粉末冶金铁基复合和组合零件、粉末高速钢、快速冷凝铝合金、氧化物弥散强化合金、颗粒增强复合材料,高性能难熔金属及合金、超细晶粒及涂层硬质合金、新型金属陶瓷、特种陶瓷、超硬材料、高性能永磁材料、电池材料、复合核燃料、中子可燃毒物、粉末微晶材料和纳米材料、快速冷凝非晶和准晶材料、隐身材料等。
这些新材料都需要以粉末冶金作为其主要的或惟一的制造手段。
本章将简要介绍粉末冶金的基本工艺原理和方法,重点介绍近年米粉末冶金新技术和新工艺的发展和应用状况。
1.雾化制粉技术粉末冶金材料和制品不断增多,其质量不断提高,要求提供的粉末的种类也愈来愈多。
例如,从材质范围来看,不仅使用金属粉末,也要使用合金粉末、金属化合物粉末等;从粉末形貌来看,要求使用各种形状的粉末,如生产过滤器时,就要求球形粉末;从粉末粒度来看,从粒度为500~1000m的粗粉末到粒度小于0.1m的超细粉末。
近几十年来,粉末制造技术得到了很大发展。
作为粉末制备新技术,第一个引人注目的就是快速凝固雾化制粉技术。
快速凝固雾化制粉技术是直接击碎液体金属或合金并快速冷凝而制得粉末的片法。
快速凝固雾化制粉技术最大的优点是可以有效地减少合金成分的偏析,获得成分均匀的合金粉末。
此外,通过控制冷凝速率可以获得具有非晶、准晶、微晶或过饱和固溶体等非平衡组织的粉末。
它的出现无论对粉末合金成分的设计还是对粉末合金的微观结构以及宏观特性都产生了深刻影响,它给高性能粉末冶金材料制备开辟了一条崭新道路,有力地推动了粉末冶金的发展。
雾化法最初生产的是像锡、铅、锌、铝等低熔点金属粉末,进一步发展能生产熔点在1600~1700℃以下的铁粉及其他粉末,如纯铜、黄铜、青铜、合金钢、不锈钢等金属和合金粉末。
粉末冶金工艺的基本工序粉末冶金是一种通过将金属或非金属粉末加工成形并进行烧结或热处理得到工程部件的冶金工艺。
它具有高效、节能、环保等优点,被广泛应用于汽车、航空航天、电子、能源等领域。
粉末冶金工艺的基本工序包括粉末制备、混合、成型、烧结和后处理等环节。
下面将详细介绍每个工序。
一、粉末制备:粉末制备是粉末冶金的基础,它对最终产品的质量和性能具有重要影响。
粉末制备的方法有机械研磨法、物理法、化学法和电化学法等。
其中,机械研磨法是最常用的方法,通过冲击、研磨、剪切等力对大块金属材料进行粉碎。
物理法主要包括气体凝聚法、物理雾化法和电子束熔化法等,通过物理能量使金属材料融化并以凝固的形式得到粉末。
化学法通过溶解、沉淀、还原等化学反应来制备粉末。
电化学法通过电解或电化学反应将金属从溶液中析出。
二、混合:混合是将不同种类或不同规格的粉末按一定比例进行混合,以获得均匀的混合料。
混合的目的是将粉末的组成、性质和粒度分布均匀一致,以提高成形和烧结过程中的一致性。
混合的方法有干法混合和湿法混合两种。
干法混合是将干燥的粉末放入混合机中进行混合。
湿法混合是将粉末和液体混合剂放入混合机中,通过湿法混合剂的作用将粉末牢固地粘结在一起。
三、成型:成型是将混合后的粉末按一定的形状、尺寸和密度进行塑性变形或压力下的固化。
常用的成型方法有压制成型、注射成型和挤压成型等。
压制成型是将粉末放入模具中,在压力的作用下形成预定的形状。
注射成型是将粉末和有机溶剂混合后注入注射机中,通过注射机的压力将混合料注入模具中,再通过挥发有机溶剂或烧结将成品得到。
挤压成型是将粉末放入铝箱中,在挤压机的作用下将粉末挤压出来形成一定的形状。
四、烧结:烧结是将成型的粉末在高温下进行热处理,使其粒界扩散、晶粒生长和颗粒结合,形成致密的金属或陶瓷材料。
烧结的温度、时间和气氛都是影响烧结效果的关键因素。
常用的烧结方法有真空烧结、氢气烧结和氮气烧结等。
真空烧结是在真空条件下进行热处理,可以消除气氛中的杂质和氧化物。
粉末冶金中粉末制备方法一、粉末冶金中粉末制备方法之机械法1. 研磨法嘿呀,这研磨法可有意思啦。
就是把原料放在研磨设备里,像小珠子一样的研磨介质就会不停地撞击原料。
想象一下,那些原料就像在小珠子的“攻击”下慢慢变小变碎呢。
这个过程中,原料的颗粒大小会越来越符合我们的要求。
不过呢,这种方法也有点小麻烦,就是可能会让粉末里面混入一些研磨介质的碎屑,就像不小心混进了小杂质一样,所以后面还得想办法把这些杂质去掉。
2. 雾化法雾化法就像是一场金属的小雨哦。
把液态的金属通过一个特殊的装置,像喷枪一样,然后高速的气流或者水流就会把液态金属吹散或者冲散,就变成了好多小液滴。
这些小液滴在空中或者水里快速冷却,就变成了固态的粉末啦。
这个方法能得到比较球形的粉末,形状可规则啦,就像一个个小珠子一样。
但是呢,设备要求比较高,成本也就跟着上去了一点。
二、粉末冶金中粉末制备方法之物理化学法1. 还原法还原法感觉就像是把金属从“束缚”中解救出来。
比如说用氢气或者一氧化碳这些还原剂,去和金属氧化物反应。
就像氢气这个小勇士,跑到金属氧化物面前说“嘿,我要把你还原成金属啦”,然后反应之后就得到了金属粉末。
这种方法得到的粉末纯度还挺高的呢,不过反应的条件得控制好,要是温度、压力这些没弄对,可能反应就不完全,就像做饭没煮熟一样。
2. 沉淀法沉淀法就像是在溶液里变魔术。
先把金属盐溶解在溶液里,然后加入一些沉淀剂。
这沉淀剂一进去,就像魔法棒一样,让金属离子变成沉淀。
然后再经过一些处理,比如加热或者过滤,就可以得到金属粉末啦。
这个方法能很好地控制粉末的颗粒大小,但是呢,沉淀物的过滤和洗涤有点麻烦,就像洗一件特别难洗干净的衣服一样。
三、粉末冶金中粉末制备方法之电解法1. 水溶液电解法水溶液电解法就是让电流在溶液里当搬运工。
把金属盐的水溶液作为电解液,然后在电极上通电。
金属离子就会在电极上得到电子,然后就变成金属粉末啦。
这就像是金属离子排着队在电极那里等着变身一样。
一、 绪论1、 粉末冶金的特点1〕经济性 2〕性能优越性 3〕独特性2、粉末冶金与铸造相比:减少合金成分偏聚,消除粗大、不均匀的铸造组织〔含碳量及合金元素含量高,熔铸形成大量骨骼状碳化物偏析〕,硬度更高,韧性和耐磨性好,热处理变形小,使用寿命长二、粉末冶金的粉末制备球形粉:气雾化法,压坯密度高,压坯强度低树枝状: 电解法, 压坯密度低,压坯强度高生产过滤器的青铜粉偏向于粗颗粒,原因是颗粒越大,空隙越大;硬质合金需要粉末非常细,空隙度越小。
1、机械研磨法1〕加工原料要求:适于加工脆性粉末:陶瓷粉末、碳钢、硬质合金塑性材料的研磨方法:✓ 经特殊处理使其具有脆性(氢脆/氧脆)→脱氢/氧✓ 气流研磨(旋涡研磨、冷气流粉碎等)2〕粉末形状不规那么状(多角状、片状)研磨过程的四种作用力:压缩,剪切,冲击〔破碎脆性粉末主要依赖冲击〕,磨耗3〕气流研磨法:优势:颗粒自动分级,粒度较均匀;纯度高〔无研磨球及研磨介质污染〕;充入惰性气体或复原气体可防氧化;更分散,团聚更少,没有大颗粒存在✓ 分类:旋涡研磨、冷流冲击、流态化床气流磨✓ 特点:颗粒极细,粒径可到达0.1μm 以下,粒度分布窄、粒子外表光滑、形状规那么、纯度高、活性大、分散性好4★潜在计算题: 半径越小,所需冲击应力越大5★潜在计算题::,D:.Partide Sizeδ⎧⎪⎪⎨⎪⎪⎩冲击应力E:材料弹模.Elastic Modalus r:缺陷尺寸.Defect.裂纹尖端曲率半径裂纹扩展粉末尺寸n A < n 工作 < n 临界工作经历表示:✓ n =0.75n 临界:球体发生抛落,冲击力大→只能制取较粗、性脆的粉末✓ n =0.6n 临界:球以滚动为主,Colliding + Slipping action →可制取细粉✓ n<<0.6n 临界时,球以滑动为主6〕物料粉碎遵循的规律★潜在计算题:Sm 粉末极限研磨后的比外表积S0粉末研磨前的比外表积S 粉末研磨后的外表积t 研磨时间, k 常数◆潜在简答题:3.为什么会有极限研磨的颗粒大小存在“逆粉碎现象〞物料在超细粉碎过程中,随着粉碎时间的延长,颗粒粒度的减小,比外表积的增加,颗粒的外表能增大,颗粒之间的相互作用增强,团聚现象增加,到达一定时间后,颗粒的粉碎与团聚到达平衡。
雾化制粉
雾化法属于机械制粉发,是直接击碎液体金属或合金而制得粉末的方法,应用较为广泛。
对于气雾化制粉工艺,传给金属流的能量越大,制备的粉末越细小,气雾化制粉的过程实际上是小液滴形状渐变的过程,小液滴的形状顺序依与喷嘴的距离不同而不同,依次为圆柱形-圆锥形-薄片形-系带形-球形。
控制过热量和其他工艺参数可以是颗粒形成以上的任何形状。
工艺参数的影响由能量传递理论可以得到很好的解释。
气体喷出时与金属流的距离越短,能量传递效果越好,越容易形成细小的粉末。
气体喷出速度和熔体的过热度对最终形成的颗粒尺寸起主导作用。
下图显示了在制备铝粉时,雾化气体压力和融化温度对最终微粒尺寸分布的影响。
当气体压力增大,能量增多,熔体过热度增大时,颗粒的尺寸分布趋于小尺寸分布。
粉末冶金材料性能及制备工艺与粉末的结构和性能有着密切的关系。
粉末密度主要有松装密度和振实密度,由于3D 打印机铺粉时是自然铺粉属于松装密度。
松装密度是粉末自然堆积的密度,它取决于颗粒间的粘附力、相对滑动的阻力以及粉末体空隙被小颗粒填充的程度。
粉末体中空隙所占的体积称为孔隙体积。
孔隙体积与粉末体的表观体积之比称为孔隙度θ,粉末体的孔隙度包括颗粒之间的空隙的体积和颗粒内更小颗粒的体积之和。
由大小相同的规则球形颗粒组成的粉末的孔隙度,可用几何学方法计算:最松散的堆积,476.0=θ,最紧密的堆积,259.0=θ。
这可以延伸到金属密堆积里。
细粉末易“搭桥”和相互粘附,妨碍颗粒的相互移动,松装密度减小,若是考虑理想情况下,可不考虑这些因素的影响。
粒度组成的影响是:粒度范围窄的粗细粉末,松装密度都较低,当粗细粉末按一
定比例混合均匀后,可获得最大的松装密度,如下表所示,此时粗颗粒间的大孔隙可被一部分细颗粒所填充。
粉末的粒度组成是指不同粒径的颗粒在粉末总量中所占的百分数,可以用某种统计分布曲线或统计分布函数描述。
粒度的统计分布我们选择个数基准分布,又称
的百分数表示。
频度分布,以每一粒径间隔内的颗粒份数占全部颗粒总数n
如果用各粒级的间隔μ∆除以该粒级的频度()%i f ,则得到相对频度μ∆i f 单位是
m μ%。
以相对频度对平均粒径作图可得到相对频度分布曲线。
如果粒级取得足
够多则就成为了微分曲线,每个点对应的纵坐标为该粒径下百分含量的瞬时变化率。
曲线与粒径坐标之间围城的面积就是微分曲线对整个粒度范围的积分,应等于1,也就是全部颗粒的总百分含量为100%。
也可由上表中的累积百分数和平均粒径做成累积分布曲线。
如下图所示。
累积百分数代表包括某一级在内的小于该级的颗粒数占全部粉末数N的百分含量。
累积分布曲线在数学意义上是相对于微分分布曲线的积分曲线。
因为在累积曲线上各点的斜率,即累积曲线函数对粒径变量的微分正好是微分曲线上对应点的纵坐标,而且,微分分布曲线上的多数经正对应于积分分布曲线拐点的粒径,表示在该粒径附近,粒径变化一个单位时,颗粒数百分含量的变化率最大。
粒度分布函数(待定)
粒度差异较大的粉末混合可以得到较大的填充密度,达到理想状态下的混合是困难的。
MxGeary 证明了自由填充的粉末松装密度理论上的最大值是95%,如果颗粒尺寸比是7:1,则充分混合后的粉末具有较高的松装密度,单一粒度的球形粉末混合后的比例见下表。
较宽的粉末颗粒分布可以提高粉末的松装密度,0.82-0.96大致是松装密度的上限,这些值与具有大尺寸比的二元体系和三元体系的体积密度是一致的。
粉末颗粒的粒度分布用Andreasen 方程式表达时,松装密度最大。
Andreasen 方程式为:
q AD W = ,式中W 是粒径小于D 的颗粒质量分数,,q 是A 经验常数,用来
适应粉末粒度分布的调整。
q 位于0.5-0.67之间时松装密度值最大。
高比例含量的小颗粒有助于填充作为连续基体的大颗粒间的空隙。
每一种混合粉末都有一个最佳的混合比例,使粉末的松装密度达到最大。
但粉末的松装密度达到最大时,最大的粉末颗粒形成骨架,较小的颗粒填充残留的空隙。
如下图所示大小粉末填充的图形关系,当粉末松装密度达到最大时,大颗粒形成紧密的充填,小颗粒充填在空隙里,大小粉末颗粒混合后的体积密度可以用一个函数表示。
最高值时,大颗粒占得比例要比小颗粒大,通过调整大小颗粒的比例可以提高粉末的松装密度。
在有限的范围内颗粒的尺寸越大最大松装密度值就越大。
由图中可知,最大的松装密度发生在大颗粒间相互接触,所有的空隙被小颗粒填充。
大颗粒的最佳质量分数*X 取决于大颗粒间孔隙的体积()L L f f -1是大颗粒的松装密度。
*
*f
f X L =
最佳的*
f 用松装密度表示如下:()L s L f f f f -+=1*,式中s f 是小颗粒的松装密度。
两种不同颗粒的球形粉末混合,
理想的密度是0.637,相应的最大填充量的大颗粒的质量分数是73.4%,小颗粒为26.6%,预期的松装密度是0.86.
下图是颗粒粒径比对混合粉末松装密度的影响,随着颗粒尺寸比的增加,松装密度逐渐增加,在7:1时曲线有明显的变化,此时对应了一个颗粒填充了一个三角形的空隙。
这是二元体系,把二元体系混合物扩展到多元体系,使用7:1的颗粒尺寸比时,能得到较佳的填充密度,对三元体系来说相应的比值为49:7:1.。