(完整版)二氧化碳吸收与解吸实验
- 格式:doc
- 大小:402.01 KB
- 文档页数:14
二氧化碳的吸收与解析,实验的误差分析。
二氧化碳的吸收与解析是化学分析学中一种基本的定量分析方法。
常用于测定空气、工业废气、汽车尾气、大气等中的二氧化碳含量。
方法是利用KOH(氢氧化钾)溶液可以吸收二氧化碳,并且有一个明确的化学反应式:
CO2 + 2KOH → K2CO3 + H2O
因此可以通过测定KOH溶液的消耗量来定量二氧化碳含量。
在实验中,误差可能产生于如下方面:
1. 试剂纯度:如果试剂的纯度不能保证,可能会影响吸收和解析过程中的化学反应,进而影响测量结果。
2. 装置漏气:实验装置如果出现气泡漏气等问题,会导致二氧化碳的流失,测量结果将不准确。
3. 操作技巧:实验操作不规范,包括倒液不准确、加热温度不够等等,也会导致实验误差。
4. 仪器准确性:实验中所使用的仪器可能存在读数误差和灵敏度等问题,这也可能导致测量结果的误差。
因此,在实验过程中,我们需要严格控制实验条件、使用高纯度试剂、保证操作技巧规范、使用准确的仪器和科学的数据处理方法,以尽可能减小误差并获得准确的二氧化碳含量测量结果。
吸收物系的变化—二氧化碳吸收解析实验二氧化碳吸收实验,听起来是不是有点高大上?但这个实验就像一场科学的魔术秀,能让你对周围的世界有更深的了解。
想象一下,咱们的空气中满是二氧化碳,这家伙可不是个善茬,它可是导致全球变暖的罪魁祸首之一。
今天,就让我们一起“亲密接触”一下这个小家伙,看看它到底是怎么被“吸收”的。
得有个好的开始嘛。
咱们准备些简单的工具,像是烧杯、试管,还有那种一看就让人想起化学课的液体,哎呀,就是指示剂。
然后,拿出一些植物的叶子,像是小草、小花,它们可是一等一的二氧化碳吸收高手。
咱们把这些小家伙放进水里,稍微等待一会儿,嘿,这时候空气中的二氧化碳就开始“请客”了,逐渐被水吸收。
你知道吗,水就像是一个大海绵,把二氧化碳吸得津津有味。
这个过程其实就是个化学反应,水和二氧化碳结合,形成了碳酸。
这碳酸可不是啥好东西,喝多了可得牙齿发愁。
但咱们的实验可不是为了让你口渴,而是要让大家明白二氧化碳的存在。
哎,真是个有趣的小家伙,光吃不喝的!然后,咱们就可以观察水的变化了,水的颜色会因为指示剂的存在而发生变化。
小伙伴们,这个时候可得注意了,看到颜色变得多么美丽,就像魔法一样!这可不是单纯的变化,而是告诉我们,二氧化碳的浓度在下降,水吸收得可真不错。
这种变化,既神奇又令人振奋,仿佛在告诉我们:大自然的力量真是无穷无尽!实验还可以变得更加有趣,咱们可以尝试不同的条件。
比如说,增加光照,这可让植物更加努力地“工作”。
嘿,植物可不是吃白饭的,它们需要光、需要水,也需要二氧化碳来进行光合作用。
想象一下,阳光照射下,植物们就像是上了发条的小人儿,开始加速吸收二氧化碳,简直是一场“吸收大赛”!实验的过程中难免会遇到小麻烦。
比如说,没注意水温,或者指示剂用得太少,这可会影响结果。
别着急,这都是实验的一部分嘛,犯错了就重新来。
就像生活,跌倒了再爬起来,重要的是坚持不懈,才能见到成果。
实验的最终结果就像是一个大揭晓,咱们通过简单的步骤,竟然能看到二氧化碳被“吸收”了。
二氧化碳吸收与解吸实验问题讨论1. 引言二氧化碳(CO2)是一种重要的温室气体,对地球的气候变化起着重要作用。
随着人类经济的发展和工业化进程的加快,CO2的排放量不断增加,导致大气中CO2的浓度上升,从而引发全球气候变化的问题。
因此,了解二氧化碳的吸收与解吸过程对于应对气候变化具有重要意义。
本实验旨在探究二氧化碳的吸收与解吸过程,分析其对环境的影响,并提出可能的解决方案。
本文将从实验的原理、实验方法、实验结果以及对结果的讨论等方面展开讨论。
2. 实验原理二氧化碳的吸收与解吸是通过物质在不同条件下的相变过程实现的。
一般来说,二氧化碳的吸收过程与温度、压力、浓度等因素有关。
在适当的温度和压力下,二氧化碳会从空气中溶解到溶液中;而在不同的条件下,溶液中的二氧化碳会释放出来,实现解吸过程。
3. 实验方法本实验采用溶液的吸收与解吸方法,具体的实验步骤如下:3.1 实验材料•二氧化碳气体•水•盐酸溶液•实验装置:气体收集瓶、试管、密封橡胶塞、恒温水浴器等3.2 实验步骤1.准备实验装置:将气体收集瓶、试管等清洗干净,放入恒温水浴器中加热,使其达到一定温度,以保证实验的稳定性。
2.将一定量的水倒入气体收集瓶中,加入少量盐酸溶液。
3.用实验装置连接好气体收集瓶与试管,确保气体通道畅通。
4.打开二氧化碳气体源,将二氧化碳气体缓慢通入试管中,观察二氧化碳溶解的过程。
5.当二氧化碳的通入量足够大时,观察溶液中是否有气泡产生,观察是否产生白色固体沉淀。
6.停止二氧化碳的通入,观察溶液中二氧化碳的解吸过程,记录相应的数据。
4. 实验结果与讨论经过实验观察,我们发现在二氧化碳通入试管的过程中,溶液中的二氧化碳逐渐增多,溶液颜色也发生了变化,变得更加浑浊。
同时,还观察到有气泡产生,并且溶液中产生了白色固体沉淀,这是由于二氧化碳与盐酸反应生成了碳酸,产生的碳酸较不溶于水,所以会形成沉淀。
在停止通气后,我们观察到沉淀逐渐消失,溶液的颜色变得更加清澈,气泡也停止产生。
二氧化碳相变吸收解吸方法二氧化碳是一种常见的化学物质,在大气中的含量较高。
它是一种无色无味的气体,但在特定条件下,它可以发生相变,即从气态转变为固态或液态,并释放或吸收热量。
本文将介绍二氧化碳的相变及其相关的吸收和解吸方法。
让我们了解一下二氧化碳的相变过程。
二氧化碳在常温常压下是一种气体,但在低温和高压下,它可以转化为固态或液态。
当二氧化碳气体遇到低温时,分子之间的相互作用增强,使得气体分子聚集在一起形成固态的二氧化碳,即干冰。
相反,当干冰受到高温的作用或者降低压力时,固态的二氧化碳会直接转变为气态。
在工业生产和实验室中,我们经常需要将二氧化碳从气态转变为固态或液态,并需要将其从固态或液态转变为气态。
这就需要使用相应的吸收和解吸方法。
下面将介绍几种常见的二氧化碳相变吸收解吸方法。
一种常见的方法是利用温度的变化来实现二氧化碳的相变吸收解吸。
当二氧化碳气体受到低温作用时,它会转变为固态或液态,并被吸收到相应的材料中。
这些材料通常具有较高的吸附能力和较大的表面积,如活性炭、分子筛等。
当需要释放二氧化碳气体时,可以通过升高温度来解吸,使二氧化碳从吸附材料中释放出来。
另一种方法是利用压力的变化来实现二氧化碳的相变吸收解吸。
当二氧化碳气体受到高压作用时,它会转变为液态,并被吸收到相应的容器中。
当需要释放二氧化碳气体时,可以通过降低压力来解吸,使液态的二氧化碳转变为气态并释放出来。
除了温度和压力的变化,还可以利用化学反应来实现二氧化碳的相变吸收解吸。
例如,一些化合物在特定条件下可以与二氧化碳发生化学反应,形成化合物的固态或液态,并吸收二氧化碳。
当需要释放二氧化碳气体时,可以通过改变反应条件或者添加适当的化学物质来解吸,使化合物中的二氧化碳释放出来。
总结起来,二氧化碳的相变吸收解吸方法可以通过温度、压力和化学反应来实现。
这些方法在工业生产、实验室研究和环境保护等领域都有广泛的应用。
了解和掌握这些方法对于高效利用二氧化碳资源以及减少二氧化碳排放具有重要意义。
4二氧化碳吸收实验
二氧化碳吸收实验
(1)实验目的:
1. 掌握有机胺吸收分离烟气中CO2的工艺方法;
2. 了解CO2分析仪的使用方法;
3. 掌握工艺条件对CO2吸收的影响。
二、实验原理
本实验利用具有弱碱性的有机化合物——乙醇胺的水溶液吸收烟气中CO2,该方法是吸收烟道气中CO2的一种方法。
乙醇胺溶液能吸收酸性气体CO2,并且吸收后的富CO2溶液经加热可以释放出CO2实现吸收剂的再生。
乙醇胺吸收CO2的反应方程式如下:
(3)实验装置
(4)实验步骤
1. 打开空气泵,调节气体流量(最大为1.5m3/h);将CO2钢瓶打开,同时调节气体
流量(最大为300L/h),稳定5分钟。
2. 打开CO2分析仪,自检完毕后,将吸收塔出口连接到分析仪上,待烟气分析仪上CO2读数稳定后记录CO2的初始含量。
3. 打开吸收塔溶液泵,调整进液流量(最大16L/h),记录吸收温度,待吸收稳定后记录分析仪上CO2的含量。
4. 调整溶液泵的进液流量(至少调节5个流量),吸收稳定5分钟后,记录分析仪上CO2的含量。
5. 按下表记录数据,并用计算模拟烟气中CO2的脱除率。
六、报告要求
1. 简明叙述实验目的、原理、操作要点。
不必绘制设备图;
2. 对结果进行讨论,得到一定吸收温度、一定CO2初始浓度下,吸收剂流量与CO2吸收率的关系图。
七、讨论题
1. 乙醇胺是否按照理论值完全吸收CO2;
2. 说明一下吸收剂流量对CO2出口浓度有何影响;
3. 你对自己的实验结果是否满意,如何解释实验失败的原因。
你有什么需要声明的问题。
气体吸收实验报告气体吸收实验报告引言:气体吸收是一种常见的化学实验,通过将气体溶解在液体中,观察气体在溶液中的溶解度和反应过程,可以了解气体在不同条件下的溶解特性和反应规律。
本实验旨在探究气体吸收的影响因素,并通过实验数据分析和结果讨论,深入理解气体溶解的机制和应用。
实验原理:气体的溶解度与温度、压力和溶液特性等因素密切相关。
通过调节这些因素,可以观察到气体溶解度的变化,从而研究气体吸收的规律。
本实验选择了常见的二氧化碳气体,将其通过气体收集装置通入溶液中,利用溶液中溶解的二氧化碳的体积变化来计算溶解度。
实验步骤:1. 准备工作:清洗实验器材,准备所需试剂和溶液。
2. 实验组装:将气体收集装置与溶液容器连接,确保密封良好。
3. 实验操作:打开气体收集装置的活塞,通入一定量的二氧化碳气体,记录气体通入的时间和体积。
4. 数据处理:根据溶液中溶解的二氧化碳体积和通入气体的时间,计算出溶解度。
5. 实验重复:重复以上实验步骤,根据需要调节温度、压力或溶液浓度等因素,进行多组实验。
实验结果与讨论:通过实验数据的统计与分析,我们发现气体溶解度与温度、压力和溶液浓度等因素之间存在一定的关系。
在相同条件下,随着温度的升高,气体溶解度减小;随着压力的增加,气体溶解度增大;随着溶液浓度的增加,气体溶解度也增大。
这些结果与气体溶解的物理性质和化学反应动力学有关。
在实验过程中,我们还观察到了气体溶解的速率与溶液搅拌程度、溶质粒径和溶液饱和度等因素的关系。
搅拌溶液可以增加气体与溶液接触的表面积,加快气体溶解的速率;较小的溶质粒径也有利于气体分子与溶液分子的相互作用,促进气体溶解;而溶液饱和度的增加会降低气体溶解的速率,因为溶液中已经存在大量的溶质分子,无法容纳更多的气体分子。
实验应用:气体吸收实验在实际应用中有着广泛的用途。
例如,二氧化碳吸收实验可以模拟饮料中的二氧化碳溶解过程,帮助调整饮料的口感和气泡含量;氧气吸收实验可以研究水体中氧气的溶解度,对水质监测和水生生物研究具有重要意义;氨气吸收实验可以用于工业废气处理和空气净化等领域。
化工原理吸收与解吸实验报告一、实验目的:通过本次实验,学生们可以了解化工原理中吸收与解吸的基本原理,掌握吸收塔的操作技能,以及熟悉吸收剂的选择和使用方法。
二、实验原理:1. 吸收与解吸的基本原理吸收是指气体在接触液体时被液体所溶解或被化学反应转化为溶质的过程。
而解吸则是指气体从液体中逸出或分离出来的过程。
在化工生产过程中,常用于气体分离、纯化和回收等方面。
2. 吸收塔吸收塔是一种常见的设备,用于进行气液相接触和传质过程。
其主要结构包括进料口、出料口、填料层等。
填料层可以增加气液接触面积,提高传质效率。
3. 吸收剂吸收剂是指用于吸收气体的液体,在选择时需要考虑其对目标气体的亲和力、溶解度、稳定性以及成本等方面因素。
三、实验步骤:1. 将制备好的NaOH溶液倒入吸收塔中,并将塔内温度升至60℃左右。
2. 将CO2气体通过气体流量计和压力表接入吸收塔顶,调节气体流量和压力使其稳定。
3. 观察吸收塔内液位变化,记录液位高度和时间,计算出CO2的吸收速率。
4. 停止供气后,将塔内液体倒出并加入硫酸溶液进行解吸,记录解吸速率。
四、实验结果:1. 吸收速率:在60℃下,CO2的吸收速率为0.016mol/min。
2. 解吸速率:在添加硫酸溶液后,CO2的解吸速率为0.014mol/min。
五、实验分析:1. 实验结果表明,在所选条件下,NaOH溶液对CO2具有较好的亲和力和溶解度。
2. 在实际生产中,需要根据具体情况选择合适的吸收剂,并结合填料层设计等因素来提高传质效率。
六、实验结论:本次实验成功地展示了化工原理中吸收与解吸的基本原理,并通过操作塔内填料层等设备提高了传质效率。
同时还验证了NaOH溶液对CO2具有较好的亲和力和溶解度。
⼆氧化碳吸收实验⼆氧化碳吸收实验 SANY GROUP system office room 【SANYUA16H-填料吸收塔实验装置说明书天津⼤学化⼯基础实验中⼼2014.10⼀、实验⽬的:1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作⽅法;通过实验测定数据的处理分析,加深对填料塔流体⼒学性能基本理论的理解,加深对填料塔传质性能理论的理解。
2.掌握填料吸收塔传质能⼒和传质效率的测定⽅法,练习实验数据的处理分析。
⼆、实验内容:1.测定填料层压强降与操作⽓速的关系,确定在⼀定液体喷淋量下的液泛⽓速。
2.固定液相流量和⼊塔混合⽓⼆氧化碳的浓度,在液泛速度以下,取两个相差较⼤的⽓相流量,分别测量塔的传质能⼒(传质单元数和回收率)和传质效率(传质单元⾼度和体积吸收总系数)。
3.进⾏纯⽔吸收混合⽓体中的⼆氧化碳、⽤空⽓解吸⽔中⼆氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。
三、实验原理:⽓体通过填料层的压强降:压强降是塔设计中的重要参数,⽓体通过填料层压强降的⼤⼩决定了塔的动⼒消耗。
压强降与⽓、液流量均有关,不同液体喷淋量下填料层的压强降P与⽓速u的关系如图1所⽰:图1填料层的P ?~u 关系当液体喷淋量00=L 时,⼲填料的P ?~u 的关系是直线,如图中的直线0。
当有⼀定的喷淋量时,P ?~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。
这两个转折点将P ?~u 关系分为三个区段:既恒持液量区、载液区及液泛区。
传质性能:吸收系数是决定吸收过程速率⾼低的重要参数,实验测定可获取吸收系数。
对于相同的物系及⼀定的设备(填料类型与尺⼨),吸收系数随着操作条件及⽓液接触状况的不同⽽变化。
⼆氧化碳吸收实验根据双膜模型的基本假设,⽓侧和液侧的吸收质A 的传质速率⽅程可分别表达为⽓膜)(Ai A g A p p A k G -=(1)液膜)(A Ai l A C C A k G -=(2)式中:A G —A 组分的传质速率,1-?s kmoI ;A —两相接触⾯积,m 2;A P —⽓侧A 组分的平均分压,Pa ; Ai P —相界⾯上A 组分的平均分压,Pa ;A C —液侧A 组分的平均浓度,3-?m kmol Ai C —相界⾯上A 组分的浓度3-?m kmolg k —以分压表达推动⼒的⽓侧传质膜系数,112---Pa s m kmol ;l k —以物质的量浓度表达推动⼒的液侧传质膜系数,1-?s m 。
二氧化碳吸收与解吸实验一、实验目的1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。
2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。
二、实验内容1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。
2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。
3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。
三、实验原理:气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。
压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ∆与气速u 的关系如图一所示:图一 填料层的P ∆~u 关系当液体喷淋量00=L 时,干填料的P ∆~u 的关系是直线,如图中的直线0。
当有一定的喷淋量时,P ∆~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。
这两个转折点将P ∆~u 关系分为三个区段:既恒持液量区、载液区及液泛区。
传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。
对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。
1.二氧化碳吸收-解吸实验根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为 气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-⋅s kmoI ;A —两相接触面积,m 2;A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ;A C —液侧A 组分的平均浓度,3-⋅m kmol Ai C —相界面上A 组分的浓度3-⋅m kmolg k —以分压表达推动力的气侧传质膜系数,112---⋅⋅⋅Pa s m kmol ;l k —以物质的量浓度表达推动力的液侧传质膜系数,1-⋅s m 。
以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表达为: )(*-=A A G A p p A K G (3))(A A L A C C A K G -=*(4)式中:*A p —液相中A 组分的实际浓度所要求的气相平衡分压,Pa ;*A C —气相中A 组分的实际分压所要求的液相平衡浓度,3-⋅m kmol ;G K —以气相分压表示推动力的总传质系数或简称为气相传质总系数,112---⋅⋅⋅Pa s m kmol ;L K -以气相分压表示推动力的总传质系数,或简称为液相传质总系数,1-⋅s m 。
若气液相平衡关系遵循享利定律:A A Hp C =,则:lg G HK k K 111+= (5) lg L k k H K 11+= (6)P 2=P LAP A +d P A C A +dC AP 1=P A1 C A1,F L图二 双膜模型的浓度分布图 图三 填料塔的物料衡算图当气膜阻力远大于液膜阻力时,则相际传质过程式受气膜传质速率控制,此时,g G k K =;反之,当液膜阻力远大于气膜阻力时,则相际传质过程受液膜传质速率控制,此时,l L k K =。
如图三所示,在逆流接触的填料层内,任意载取一微分段,并以此为衡算系统,则由吸收质A 的物料衡算可得:A LLA dC F dG ρ=(7a )式中:L F ——液相摩尔流率,1-⋅s kmol ;L ρ——液相摩尔密度,3-⋅m kmol 。
根据传质速率基本方程式,可写出该微分段的传质速率微分方程:aSdh C C K dG A A L A )(-=*(7b )联立上两式可得: AA A L L L C C dCaS K F dh -⋅=*ρ (8)式中:a ——气液两相接触的比表面积, m 2·m -1;S ——填料塔的横载面积,m 2。
本实验采用水吸收纯二氧化碳,且已知二氧化碳在常温常压下溶解度较小,因此,液相摩尔流率L F 和摩尔密度L ρ的比值,亦即液相体积流率L s V )(可视为定值,且设总传质系数K L 和两相接触比表面积a ,在整个填料层内为一定值,则按下列边值条件积分式(8),可得填料层高度的计算公式:0=h 2.A A C C = h h = 1A A C C =⎰-⋅=*12A A C C AA AL sL C C dC aS K V h (9) 令 aSK V H L sLL =,且称H L 为液相传质单元高度(HTU ); ⎰-=*12A A C C AA AL CC dC N ,且称N L 为液相传质单元数(NTU )。
因此,填料层高度为传质单元高度与传质单元数之乘积,即L L N H h ⨯= (10)若气液平衡关系遵循享利定律,即平衡曲线为直线,则式(9)为可用解析法解得填料层高度的计算式,亦即可采用下列平均推动力法计算填料层的高度或液相传质单元高度:AmA A L sL C C C aS K V h ∆-⋅=21 (11) SK V hH h N L sLL L α==(12) 式中m A C .∆为液相平均推动力,即2211221121.21ln )()(A A A A A A A A A A A A AmC C C C C C C C C C In C C C -----==∆∆∆-∆=∆**** (13) 其中:1110A A C Hp Hy p *==, 2220A A C Hp Hy p *==,0P 为大气压。
二氧化碳的溶解度常数:EM H ww1⋅=ρ 13--⋅⋅Pa m koml (14) 式中:w ρ——水的密度, ;3-⋅m kgw M ——水的摩尔质量, 1-⋅kmol kg ;E ——二氧化碳在水中的享利系数(见化工原理下册第78页),Pa 。
因本实验采用的物系不仅遵循亨利定律,而且气膜阻力可以不计,在此情况下,整个传质过程阻力都集中于液膜,即属液膜控制过程,则液侧体积传质膜系数等于液相体积传质总系数,亦即AmA A sL L l C C C hS V a K a k ∆-⋅==21 (15) 四、实验装置:1.实验装置主要技术参数:填料塔:玻璃管内径 D =0.050m 塔高1.00m 内装φ10×10mm 瓷拉西环; 填料层高度Z =0.78m ; 风机:XGB-12型 550W ; 二氧化碳钢瓶 1个; 减压阀1个(用户自备)。
流量测量仪表:CO 2转子流量计型号LZB-6 流量范围0.06~0.6m 3/h ;空气转子流量计:型号LZB-10 流量范围0.25~2.5m 3/h ; 吸收水转子流量计: 型号LZB-10 流量范围16~160 L /h ; 解吸水转子流量计: 型号LZB-10 流量范围16~160 L /h浓度测量:吸收塔塔底液体浓度分析准备定量化学分析仪器(用户自备); 温度测量:PT100铂电阻,用于测定测气相、液相温度。
2.二氧化碳吸收与解吸实验装置流程示意图(见图四)图四二氧化碳吸收与解吸实验装置流程示意图1- CO2流量计;2- CO2瓶减压阀;3- CO2钢瓶;4-吸收用空气流量计;5- 吸收用气泵;6、8-喷头; 7、19- 水箱放水阀;9- 解吸塔;10- 解吸塔塔底取样阀;11- 解吸液储槽;12、15- U型管液柱压强计;13- 吸收液流量计;14-解吸液液泵;16- 吸收液储槽;17- 吸收塔;18- 吸收塔塔底取样阀;20- 解吸液流量计;21- 吸收液液泵;22-空气流量计;23- 空气旁通阀;24- 风机3.实验仪表面板图(见图五)图五实验装置面板图五、实验方法及步骤:1. 测量吸收塔干填料层(△P/Z)~u关系曲线(只做解吸塔):打开空气旁路调节阀5至全开,启动风机。
打开空气流量计,逐渐关小阀门5的开度,调节进塔的空气流量。
稳定后读取填料层压降△P即U形管液柱压差计11的数值,然后改变空气流量,空气流量从小到大共测定8-10组数据。
在对实验数据进行分析处理后,在对数坐标纸上以空塔气速 u为横坐标,单位高度的压降△P/Z为纵坐标,标绘干填料层(△P/Z)~u关系曲线。
2. 测量吸收塔在喷淋量下填料层(△P/Z)~u关系曲线:将水流量固定在104L/h(水流量大小可因设备调整),采用上面相同步骤调节空气流量,稳定后分别读取并记录填料层压降△P、转子流量计读数和流量计处所显示的空气温度,操作中随时注意观察塔内现象,一旦出现液泛,立即记下对应空气转子流量计读数。
根据实验数据在对数坐标纸上标出液体喷淋量为100L/h时的(△P/z)~u•关系曲线,并在图上确定液泛气速,与观察到的液泛气速相比较是否吻合。
3. 二氧化碳吸收传质系数测定:吸收塔与解吸塔(水流量控制在40L/h)(1)打开阀门5,关闭阀门9、13。
(2)启动吸收液泵2将水经水流量计14计量后打入吸收塔中,然后打开二氧化碳钢瓶顶上的针阀20,向吸收塔内通入二氧化碳气体(二氧化碳气体流量计15的阀门要全开),流量大小由流量计读出,控制在0.2m 3/h 左右。
(3)吸收进行15分钟后,启动解吸泵2,将吸收液经解吸流量计7计量后打入解吸塔中,同时启动风机,利用阀门5 调节空气流量(约0.5 m 3/h )对解吸塔中的吸收液进行解吸。
(4)操作达到稳定状态之后,测量塔底的水温,同时取样,测定两塔塔顶、塔底溶液中二氧化碳的含量。
(实验时注意吸收塔水流量计和解吸塔水流量计数值要一致,并注意解吸水箱中的液位,两个流量计要及时调节,以保证实验时操作条件不变)(5)二氧化碳含量测定用移液管吸取Ba (OH )2溶液10mL ,放入三角瓶中,并从塔底附设的取样口处接收塔底溶液10 mL ,用胶塞塞好振荡。
溶液中加入2~3滴酚酞指示剂摇匀,用0.1M 的盐酸滴定到粉红色消失即为终点。
按下式计算得出溶液中二氧化碳浓度:溶液-V V C V C C HClHCl OH Ba OH Ba CO 222)()(22=1-⋅L mol六、实验注意事项:1.开启CO 2总阀门前,要先关闭减压阀,阀门开度不宜过大。
2.实验中要注意保持吸收塔水流量计和解吸塔水流量计数值一致,并随时关注水箱中的液位。
3.分析CO 2浓度操作时动作要迅速,以免CO 2从液体中溢出导致结果不准确。
七、实验数据记录1.实验装置填料塔流体力学性能测定(干填料)解吸塔2.实验装置填料塔流体力学性能测定(湿填料)3.实验装置填料吸收塔传质实验数据4.氢氧化钡及盐酸浓度标定盐酸浓度标定氢氧化钡浓度标定八、实验数据处理1.实验数据计算及结果:实验数据计算过程 (以一组数据为例)。