第三章 图像压缩编码 (2)
- 格式:ppt
- 大小:732.50 KB
- 文档页数:76
图像编码与压缩的关系解析引言:随着科技的不断发展,图像在日常生活中的应用越来越普遍。
然而,高清图片通常占用较大的存储空间,不利于传输和存储。
为了解决这个问题,图像编码与压缩技术应运而生。
本文将从理论、算法和应用三个方面,探讨图像编码与压缩之间的关系。
一、图像编码的原理与方法1. 图像编码的基本原理图像编码是将图像通过某种数学模型进行数值表示,从而实现对图片信息的压缩。
这一过程主要包括采样、量化和编码三个步骤。
采样将连续的图像转换为离散的信号,量化将连续的信号转换为离散的数值,而编码则是利用特定的编码方式将数值进行压缩存储。
2. 图像编码的方法常用的图像编码方法包括无损编码和有损编码。
无损编码保持图像质量不变,包括RLE(Run Length Encoding)、Huffman编码和LZW (Lempel-Ziv-Welch)编码等。
而有损编码则通过牺牲一定的细节和精度来实现更高的压缩率,代表性的有损编码方式有JPEG、以及WebP 等。
二、图像压缩的原理与方法1. 图像压缩的基本原理图像压缩是对图像数据进行有损或无损的压缩,以减小图像数据的体积。
图像压缩技术主要包括空域压缩和变换域压缩两种方法。
空域压缩利用空间冗余性进行数据压缩,该方法通常使用预测编码或差分编码等技术。
变换域压缩则通过将图像转换到频域进行压缩,常用的方式有离散余弦变换(DCT)。
2. 图像压缩的方法图像压缩方法可以分为无损压缩和有损压缩两类。
无损压缩通过减小冗余和利用编码等技术实现图像数据的压缩,以保持图像质量不变。
有损压缩则根据人眼对图像细节的敏感度,通过舍弃部分细节信息来实现更高的压缩率。
常见的图像压缩算法有LZ77、LZ78、DEFLATE 以及JPEG、HEVC等。
三、图像编码与压缩的关系1. 编码与压缩的异同编码和压缩都是对图像数据进行处理以实现压缩效果,但两者有不同的侧重点。
编码主要集中在信号表示的优化,通过数值表达来压缩图像数据及降低存储和传输成本;而压缩则更注重图像数据的压缩率,旨在减小数据量的同时保持较高的图像质量。
实验项目3、图像压缩与编码一、实验目的(1)理解图像压缩编码的基本原理;(2)掌握用程序代码实现DCT变换编码;(3)掌握用程序代码实现游程编码。
二、实验原理及知识点1、图像压缩编码图像信号经过数字化后,数据量相当大,很难直接进行保存。
为了提高信道利用率和在有限的信道容量下传输更多的图像信息,必须对图像进行压缩编码。
图像压缩技术标准一般可分为如下几种:JPEG压缩(JPEG Compression)、JPEG 2000、H.26X标准(H.26X standards)以及MPEG标准(MPEG standards)。
数字压缩技术的性能指标包括:压缩比、平均码字长度、编码效率、冗余度。
从信息论角度分,可以将图像的压缩编码方法分为无失真压缩编码和有限失真编码。
前者主要包括Huffman编码、算术编码和游程编码;后者主要包括预测编码、变换编码和矢量量化编码以及运动检测和运动补偿技术。
图像数据压缩的目的是在满足一定图像质量的条件下,用尽可能少的比特数来表示原始图像,以提高图像传输的效率和减少图像存储的容量,在信息论中称为信源编码。
图像压缩是通过删除图像数据中冗余的或者不必要的部分来减小图像数据量的技术,压缩过程就是编码过程,解压缩过程就是解码过程。
2、游程编码某些图像特别是计算机生成的图像往往包含许多颜色相同的块,在这些块中,许多连续的扫描行或者同一扫描行上有许多连续的像素都具有相同的颜色值。
在这些情况下就不需要存储每一个像素的颜色值,而是仅仅存储一个像素值以及具有相同颜色的像素数目,将这种编码方法称为游程(或行程)编码,连续的具有相同颜色值的所有像素构成一个行程。
在对图像数据进行编码时,沿一定方向排列的具有相同灰度值的像素可看成是连续符号,用字串代替这些连续符号,可大幅度减少数据量。
游程编码记录方式有两种:①逐行记录每个游程的终点列号:②逐行记录每个游程的长度3、DCT变换编码变换编码是在变换域进行图像压缩的一种技术。
图像压缩编码方法图像压缩编码是一种通过减少图像数据的表示量来降低存储和传输成本的技术。
图像压缩编码方法包括有损压缩和无损压缩两种。
有损压缩是指在压缩过程中会丢失一定的图像信息,但通常可以接受的程度在人眼感知上是不可察觉的。
有损压缩编码方法主要通过利用图像中的冗余信息和人眼视觉系统的特性来实现图像的压缩,主要有几种方法:1. 颜色空间转换:将RBG图像转换为YUV或者将CMYK图像转换为RGB,通过减少颜色通道的数量来降低数据量。
2. 离散余弦变换(Discrete Cosine Transform,DCT):DCT是一种将原始图像通过变换后得到一系列频率系数的方法,低频系数所表示的信息对于人眼来说更加重要,而高频系数相对不重要,因此可以对高频系数进行压缩或丢弃。
3. 量化(Quantization):通过对DCT系数进行适当的量化,将系数的数值范围映射到较小的范围内,进一步减小数据量。
量化的精度越高,则数据量越小,但图像质量也会受到影响。
4. 预测编码(Predictive Coding):利用图像中像素之间的相关性,通过对当前像素值的预测来减少需要传输的数据。
常用的预测编码方法有差值编码(Differential Encoding)和运动补偿(Motion Compensation)。
5. 生成码字(Codebook):通过统计图像中各个像素值的频次来生成一个码本,将高频次出现的像素值用较短的码字表示,以减小数据量。
有损压缩编码方法的主要优点是压缩率高,但缺点是压缩后图像质量有损失。
适用于图像中存在较多冗余信息或对图像质量要求不高的场景,如网络传输、存储等。
无损压缩编码是指在压缩过程中不丢失任何图像信息,通过利用图像内部的冗余性来减小数据量。
常用的无损压缩编码方法有:1. 霍夫曼编码(Huffman Coding):将出现频率较高的像素值用较短的编码表示,出现频率较低的像素值用较长的编码表示,以减小数据量。
图像压缩编码方法综述概述:近年来, 随着数字化信息时代的到来和多媒体计算机技术的发展, 使得人们所面对的各种数据量剧增, 数据压缩技术的研究受到人们越来越多的重视。
图像压缩编码就是在满足一定保真度和图像质量的前提下,对图像数据进行变换、编码和压缩,去除多余的数据以减少表示数字图像时需要的数据量,便于图像的存储和传输。
即以较少的数据量有损或无损地表示原来的像素矩阵的技术,也称图像编码。
图像压缩编码原理:图像数据的压缩机理来自两个方面:一是利用图像中存在大量冗余度可供压缩;二是利用人眼的视觉特性。
图像数据的冗余度又可以分为空间冗余、时间冗余、结构冗余、知识冗余和视觉冗余几个方面。
空间冗余:在一幅图像中规则的物体和规则的背景具有很强的相关性。
时间冗余:电视图像序列中相邻两幅图像之间有较大的相关性。
结构冗余和知识冗余:图像从大面积上看常存在有纹理结构,称之为结构冗余。
视觉冗余:人眼的视觉系统对于图像的感知是非均匀和非线性的,对图像的变化并不都能察觉出来。
人眼的视觉特性:亮度辨别阈值:当景物的亮度在背景亮度基础上增加很少时,人眼是辨别不出的,只有当亮度增加到某一数值时,人眼才能感觉其亮度有变化。
人眼刚刚能察觉的亮度变化值称为亮度辨别阈值。
视觉阈值:视觉阈值是指干扰或失真刚好可以被察觉的门限值,低于它就察觉不出来,高于它才看得出来,这是一个统计值。
空间分辨力:空间分辨力是指对一幅图像相邻像素的灰度和细节的分辨力,视觉对于不同图像内容的分辨力不同。
掩盖效应:“掩盖效应”是指人眼对图像中量化误差的敏感程度,与图像信号变化的剧烈程度有关。
图像压缩编码的分类:根据编码过程中是否存在信息损耗可将图像编码分为:无损压缩:又称为可逆编码(Reversible Coding),解压缩时可完全回复原始数据而不引起任何失真;有损压缩:又称不可逆压缩(Non-Reversible Coding),不能完全恢复原始数据,一定的失真换来可观的压缩比。
图像压缩编码方法
图像压缩编码方法是通过减少图像数据的冗余部分来减小图像文件的大小,以便于存储和传输。
以下是常见的图像压缩编码方法:
1. 无损压缩:无损压缩方法可以压缩图像文件的大小,但不会丢失任何图像数据。
常见的无损压缩编码方法包括:
- Huffman编码:基于字符出现频率进行编码,将频率较低的字符用较长的编码表示,频率较高的字符用较短的编码表示。
- 预测编码:根据图像像素间的相关性进行编码,利用当前像素与附近像素的差异来表示像素值。
- 霍夫曼编码:利用霍夫曼树来对图像数据进行编码,降低数据的冗余度。
- 算术编码:根据符号的出现概率,将整个编码空间划分为不同部分,每个符号对应于不同的编码区域。
2. 有损压缩:有损压缩方法可以在压缩图像大小的同时,对图像数据进行一定的丢失,但尽量使丢失的数据对人眼不可见。
常见的有损压缩编码方法包括:
- JPEG压缩:基于离散余弦变换(DCT)的方法,将图像数据转换为频域表示,
然后根据不同频率成分的重要性进行量化和编码。
- 基于小波变换的压缩:将图像数据转换为频域表示,利用小波基函数将图像分解为低频和高频子带,然后对高频子带进行量化和编码。
- 层次编码:将原始图像数据分为不同的预测层次,然后对不同层次的误差进行编码,从而实现压缩。
需要注意的是,不同的压缩编码方法适用于不同类型的图像数据和压缩要求。
有些方法适用于需要高压缩比的情况,但会引入更多的失真,而有些方法适用于需要保留图像质量的情况,但压缩比较低。
因此,在选择图像压缩编码方法时,需要根据具体要求和应用场景进行权衡和选择。
图像压缩编码多媒体技术实验—图像压缩编码一、实验目的1.了解有关数字图像压缩的基本概念,了解几种常用的图像压缩编码方式;2.进一步熟悉JPEG编码与离散余弦变换(DCT)变换的原理及含义;3.掌握编程实现离散余弦变换(DCT)变换及JPEG编码的方法;4.对重建图像的质量进行评价。
二、实验原理1、图像压缩基本概念及原理图像压缩主要目的是为了节省存储空间,增加传输速度。
图像压缩的理想标准是信息丢失最少,压缩比例最大。
不损失图像质量的压缩称为无损压缩,无损压缩不可能达到很高的压缩比;损失图像质量的压缩称为有损压缩,高的压缩比是以牺牲图像质量为代价的。
压缩的实现方法是对图像重新进行编码,希望用更少的数据表示图像。
应用在多媒体中的图像压缩编码方法,从压缩编码算法原理上可以分为以下3类:(1)无损压缩编码种类哈夫曼(Huffman)编码,算术编码,行程(RLE)编码,Lempel zev编码。
(2)有损压缩编码种类预测编码,DPCM,运动补偿;频率域方法:正交变换编码(如DCT),子带编码;空间域方法:统计分块编码;模型方法:分形编码,模型基编码;基于重要性:滤波,子采样,比特分配,向量量化;(3)混合编码JBIG,H.261,JPEG,MPEG等技术标准。
2、JPEG 压缩编码原理JPEG是一个应用广泛的静态图像数据压缩标准,其中包含两种压缩算法(DCT 和DPCM),并考虑了人眼的视觉特性,在量化和无损压缩编码方面综合权衡,达到较大的压缩比(25:1以上)。
JPEG既适用于灰度图像也适用于彩色图像。
其中最常用的是基于DCT变换的顺序式模式,又称为基本系统。
JPEG 的压缩编码大致分成三个步骤:(1)使用正向离散余弦变换(forward discrete cosine transform,FDCT)把空间域表示的图变换成频率域表示的图。
(2)使用加权函数对DCT系数进行量化,该加权函数使得压缩效果对于人的视觉系统最佳。
图像编码的原理与流程详解第一节:引言图像编码是一种将图像数据转换为压缩格式的技术,旨在减少图像数据的存储空间和传输带宽。
图像编码通常使用各种算法和技术,以提高图像传输的效率和质量。
本文将详细介绍图像编码的原理与流程。
第二节:图像编码的原理图像编码的原理主要是利用图像的统计特性和人眼对图像的感知特征。
首先,图像编码会分析图像中的冗余信息,如空间冗余、像素冗余和统计冗余等。
其次,利用变换编码和预测编码等方法,将图像数据转换为更紧凑和高效的表示形式。
最后,根据图像的重要性和传输损耗等因素,采用不同的编码策略进行编码。
第三节:图像编码的流程图像编码的流程通常包括三个主要阶段:预处理、编码和解码。
预处理预处理阶段包括图像获取、采样、量化和归一化等步骤。
首先,图像通过摄像设备或扫描仪等设备获取,然后对图像进行采样,将连续的图像转换为离散的图像。
接下来,通过量化操作将采样到的图像数据映射为一组有限的离散值,以减少数据量。
最后,对图像进行归一化操作,将图像数据映射到一定的数值范围内,以便后续编码处理。
编码编码阶段是将预处理后的图像数据转换为编码数据的过程。
常用的编码方法包括无损编码和有损编码两种。
无损编码无损编码主要用于要求图像传输和存储过程中不出现任何失真的场景。
常见的无损编码方法有霍夫曼编码、算术编码和LZW编码等。
这些编码方法通过构建特定的编码表,将原始的图像数据映射为更高效的二进制码流。
有损编码有损编码主要用于图像传输和存储场景中可以接受一定程度失真的情况。
常见的有损编码方法有JPEG、MPEG和等。
这些编码方法通过利用图像的统计特性和人眼对图像的感知特征,采用预测编码、变换编码和量化编码等技术,将图像数据转换为压缩的码流。
解码解码阶段是将编码后的数据反过来转换为原始图像数据的过程。
解码过程与编码过程相反,主要包括解码、逆量化和逆变换等步骤。
解码器根据编码时生成的编码表,将编码后的数据解码为离散的图像数据。
第九章图像的编码技术3.1 研究背景一、信息传输方式发生了很大的改变通信方式的改变文字+语音◊图像+文字+语音通信对象的改变人与人◊人与机器,机器与机器二、图像传输与存储需要的信息量空间图像的传输与存储中,问题最多的,也是最常用的包括了数字视频信号和传真信号。
下面我们对其分别进行讨论。
1. 彩色视频信息对于电视画面的分辨率640*480的彩色图像,每秒30帧,则一秒钟的数据量为:640*480*24*30=221.12M所以播放时,需要221Mbps的通信回路。
实时传输:在宽带网上(10M)实时传输的话,需要压缩到原来数据量的0.045。
即0.36bit/pixel。
存储:1张CD可存640M如果不进行压缩,1张CD则仅可以存放2.89秒的数据。
存2小时的信息则需要压缩到原来数据量的0.0004,即:0.003bit/pixel。
2.传真如果只传送2值图像,以200dpi的分辨率传输,一张A4稿纸的数据量为:1654*2337*1=bit按目前14.4K的电话线传输速率,需要传送的时间是:270秒(4.5分)按每分钟4元计算:18元由于通信方式和通信对象的改变带来的最大问题是:传输带宽、速度、存储器容量的限制。
给我们带来的一个难题,也给了我们一个机会:如何用软件的手段来解决硬件上的物理极限。
图像通信系统模型3.2 数据冗余的概念3.4 图像中数据冗余压缩原理由于一幅图像存在数据冗余和主观视觉冗余,我们的压缩方式就可以从这两方面着手开展。
因为有数据冗余,当我们将图像信息的描述方式改变之后,可以压缩掉这些冗余。
因为有主观视觉冗余,当我们忽略一些视觉不太明显的微小差异,可以进行所谓的“有损”压缩。
3.5 图像的压缩编码第一代压缩编码八十年代以前,主要是根据传统的信源编码方法。
第二代压缩编码八十年代以后,突破信源编码理论,结合分形、模型基、神经网络、小波变换等数学工具,充分利用视觉系统生理心理特性和图像信源的各种特性。