空分设备及深冷空分工艺流程
- 格式:pdf
- 大小:166.32 KB
- 文档页数:4
空分岗位工艺操作规程一、工序任务控分岗位的任务是利用深冷方法将空气液化,根据精馏原理,提取高纯度氧气、氮气,同时获得高纯度的液氧、液氮、液氩三种附产品。
大部分氧气、氮气做为合成氨原料。
小部分氧气装瓶出售。
液氩、液氧、液氮外售。
本套装置为KDONAr/10000/10000/350型空分装置。
具体生产能力为:注:G:表压 A:绝压二、分离原理空气分离的原理如下:根据空气中各组分挥发性的不同,利用深冷的方法将空气液化,经过多次部分蒸发、部分冷凝从而获得高纯度的氧气、氮气、液氧、液氮、液氩。
空气经空冷塔、水冷塔、换热器降温后,进入分馏塔,自下而上与比它温度低的液空接触,交换热量,于是气体中部分冷凝转变成液体并放出冷凝潜热,液体则吸收热量而部分蒸发。
由于氧、氮组分的沸点不同,一定压力下,氮的沸点比氧的沸点低,因此氮比氧易挥发,氧比氮易冷凝,因此液空中的氮不断挥发,在塔的上部即可获得高纯度的氮气,空气中的氧不断冷凝,在塔的下部即可获得高纯度的富氧液空。
空气N2+O2+Ar+污N2三、工艺流程1、空气的净化流程原料空气在过滤器中去除灰尘及机械杂质后,进入空气透平压缩机(TCBH)中加压至0.50MPa(G)。
压缩后的空气(53500Nm3/h)进入空气冷却塔(AT1101),与循环冷却塔(WT1101)来的冷却水逆流接触进行热量交换,冷却后的空气(17~19℃),进入分子筛纯化器(MS1201/MS1202);在分子筛纯化器内除去空气中的水份、二氧化碳、乙炔及其它碳氢化合物等有害杂质,纯化后指标为C02≤1PPm;H2O≤10PPm然后进入分馏塔系统。
2、氧氮的提取流程净化后的空气分成二股,一股空气(流量8500Nm3/h,压力0.48MPa)引入增压透平膨胀机(ET/A、ET/B)的增压端增压至0.725MPa,进入主换热器(E1~E5),再从主换热器中部抽出,经膨胀机后温度降为-170℃后进入上塔(C1)参加精馏;另一股空气(流量45000Nm3/h,压力0.48MPa)进入主换热器,被返流产品气体冷却至饱和温度(-185℃)进入下塔(C2)。
空分装置工艺流程及仪表简介空分装置工艺流程及仪表简介一、 10000NM3/h空分工艺流程及仪控系统1、工艺流程简图:2、空压机工作原理:空气经过滤器进入空透压缩机,进入叶轮的气体在叶轮的作用下,高速旋转产生离心力,在离心力的作用下气体被甩出,并获得很大的速度,在扩压器等元件中将速度能转化为压力能。
这样通过逐段的多级压缩,使气体达到规定的压力,送至空分系统。
3、空压机仪控系统:(1)温度:8个轴温测量(TIAS1.10~TIAS1.17)8个进出口温度测量(TI1.1~TI1.2)(2)压力:入口压力:PI1.1. 出口压力调节:PIC1.2.(3)流量:出口空气流量:FI1.24、空气预冷系统及测量仪表组成:(1)空冷塔的作用:进塔空气洗涤和冷却。
(2)仪表控制:①空冷塔液位:LICAS101(700,900mm)。
②空冷塔出口空气压力:PIAS101(?0.35Mpa报警?0.30Mpa停车)。
③空冷塔出口空气温度:TIAS104,1,2(?50?报警?55?停车)。
5、板式换热器(可逆式换热器)的作用及仪表控制原理:(1)作用:空气冷却和清除水分、二氧化碳。
(2)仪表控制(切换系统)原理:工作原理:由十台切换阀及对应二位五通电磁阀组成两大组,DCS输出控制信号,按照程序使阀门开关动作。
每三分钟切换空气进口和污氮气出口通道,达到清除管道内水份和二氧化碳的作用。
6、空分塔主要设备及作用:空分塔的作用,是为压缩岗位提供纯度≥99.2%的氧气和纯度≥99.99%的氮气。
(1)分馏塔:包括上塔、下塔、付塔、冷凝蒸发器等。
主要作用为分离氧气、氮气。
仪表有液位、压力、阻力等测量。
(2)液氧吸附器、液空吸附器:各两台。
主要作用是吸附液氧、液空中的乙炔(正常0.01ppm)及碳氢化合物。
仪表有压力和温度测量。
(3)液化器:包括氧液化器、氮液化器、污氮液化器。
主要作用是通过换热使气体变成液体。
仪表主要测量各介质进出口温度。
深冷分离工艺简介CO深冷分离采用分压冷凝工艺。
正常情况下,原料合成气中含有一定量的氮,为满足一氧化碳产品纯度的要求,必须使用特定的脱氮精馏塔。
该单元采取一定的工艺流程,把氢气和氮气从合成气中分离出来,并根据原料合成气的规格,生产出纯度高于 98.5%的一氧化碳产品,分离出来的绝大部分氢气作为高压富氢气体通过下游的PSA单元进行进一步的分离净化。
富热至常温的原料气进入深冷单元,并通过深冷单元(冷箱)进行纯化。
原料气在主换热器里冷却,分压冷凝,部分冷凝后送到气液分离器中。
气相部分即富氢气体,在主换热器里换热至常温,然后离开冷箱,该气体以较高压力输送至PSA界区。
液相部分通过阀门膨胀后送到闪蒸容器内去除少量的氢气。
顶部的闪蒸气在主换热器里加温到常温,在中等压力下输送至低温甲醇洗单元循环气压缩机。
底部的液体被送到一氧化碳/氮分离塔,该塔底部产生高纯度的一氧化碳产品以提供下游的醋酸系统和乙二醇系统需要。
一氧化碳压缩机的设计是为了使一氧化碳产品的压力达到所需压力。
此压缩机同时通过部分一氧化碳循环以提供分离所需的负荷。
深冷分离的能量平衡由界区空分装置的液氮来提供。
离开前端净化单元CO2含量低于1 ppm vol和CH3OH含量低于0.1 ppm vol的净化合成气被送回低温甲醇洗单元,在低温甲醇洗单元原料气冷却器E04203和原料气/合成气换热器E04201内进行换热,换热后的合成气在主换热器原料气冷却器E04301内冷却,然后经原料气冷凝器E04302冷凝,液态合成气进入高压合成气分离器V04301中,绝大部分的氢气和部分一氧化碳及少量的氮气即富氢气在V04301闪蒸分离,经主换热器E04301换热至常温后离开冷箱至下游工序PSA界区。
V04301中剩余的液态合成气通过液位控制阀LV43310将液态合成气输送至V04303,液态合成气压力由3.05 Mpag降压闪蒸至0.675 Mpag,所有的氢气和部分一氧化碳减压闪蒸分离,闪蒸气在主换热器里加温到常温,输送至低温甲醇洗单元循环气压缩机,含有氮气和微量氢气的液态一氧化碳在V04303中累积。
2.2.2 工艺流程简述2.2.2.1压缩、预冷原料空气通过空气过滤系统,去除灰尘和机械杂质。
过滤后的空气由多级压缩机压缩到工艺所需压力,然后进入空冷塔进行冷却。
压缩过程中产生的冷凝疏水在厂房内凝液罐中汇集后,由凝液泵加压送入循环回水管线。
空气自下而上穿过空冷塔,以对流形式被循环冷却水和低温冷冻水分段冷却,同时也得到了清洗。
在空冷塔底部,空气被由冷却水泵送入的循环冷却水预冷。
在顶部,空气由冷冻水泵送入的冷冻水进一步冷却。
低温冷冻水是在水冷塔中产生,其产生的原理是利用从冷箱来的干燥的污氮气汽化小部分循环冷却水,水在汽化过程中吸收热量,同时使冷却水的温度降低。
空气离开空冷塔的温度越低,对于下游空气纯化单元的负荷就越小。
空气中的少量化学杂质也被冷却水吸收。
空冷塔和水冷塔为填料塔,在空冷塔顶部设置有除沫器以去除空气中的水雾。
2.2.2.2 吸附净化、氮氧化合物和绝大多数碳氢化合物都被吸附。
空气纯化单元包括两台交替运行的分子筛吸附器,压缩空气通过吸附器时,水、CO2吸附器交替循环,即一只吸附器吸附杂质而另一只吸附器被再生。
吸附和再生过程顺序自动控制以保证装置连续运行。
采用来自冷箱的污氮对吸附器进行再生。
再生时吸附器与吸附流程隔离,再生气放空。
与吸附流程隔离的吸附器先卸压,然后先用经蒸汽加热器加热的低压污氮进行再生,然后用从蒸汽加热器旁路来的冷低温氮气对吸附器进行冷却,之后再用吸附后的空气对吸附器升压并返回吸附流程。
再生循环主要有下面几个组成部分:泄压-加热-冷却-增压单台吸附器的设计切换周期不少于4小时。
法液空流程的纯化单元设置特殊再生加热器,必要时可用特殊再生加热器进行特殊再生。
针对厂区空气中CO2含量波动大的特点,在分子筛吸附器空气出口设有CO2在线分析仪,可以随时监测吸附器的运行工况,从而保证出口的CO2组分满足工艺要求。
净化后的空气分为两股:其中一股进入低压换热器;另一股去空气增压机增压。
2.2.2.3 空气精馏净化后的空气分为两部分:一部分净化空气主气流直接进入冷箱,并在低压主换热器中与返流产品进行热交换而冷却至接近于露点。
空分流程简介空分流程简介空分流程简介1 原料空气经空气过滤器除去空气中的灰尘及机械杂质后,在无油空压机压缩至<0.7MPa,压缩产生的热量通过水冷却器换热被冷却水带走,然后进入预冷机组进行预冷,至(2~10)℃。
在此阶段部分游离水被析出,再进入切换式使用的分子筛纯化器(MS1201或MS1202),空气中的残留水蒸气、二氧化碳、乙炔等碳氢化合物被吸附。
分子筛纯化器两只吸附筒轮换使用,其中一只工作,另一只再生。
两组纯化器吸附筒由程控器控制定时自动切换。
经过纯化器净化后的纯净干燥空气温度升至~15℃,分为两路:大部分空气进入空分冷箱,在主板翅式换热器中与返流的冷气流(纯氧、纯氮、污氮、压力氮)换热,温度降至接近液化温度,再经过V1阀节流后进入下塔。
另一部分空气进入增压机增压后,约100m3/h 的气作为增压透平膨胀机组气体轴承用气,其余气则进入冷箱,在主板翅式换热器内与返流的冷气流(纯氧、纯氮、污氮等)换热冷却后再经中抽V5阀或底抽V6阀抽出进入膨胀机膨胀制冷,膨胀后的空气经过V12阀送入上塔或经过V11阀旁通进入污氮管道,再经过主换热器复热后排出冷箱放空。
在下塔中,空气被初步分离为液氮和富氧液空。
上升氮气在冷凝蒸发器中与上塔底部低压液氧换热被液化,同时液氧被汽化。
液氮分为两路,一路经过V4阀进入下塔作为下塔回流液,另一路经过冷器与纯氮、污氮换热后再经过V3阀节流进入上塔上部。
下塔中的富氧液空由底部抽出经过冷器与纯氮、污氮换热过冷后再经过V2阀节流送入上塔作为回流液。
经过上塔的进一步精馏,在上塔顶部得到纯度较高的氮气,在上塔底部得到氧气。
纯氮从上塔顶部抽出后经过过冷器及主换热器复热后送出冷箱进行压缩充装或液化;污氮从上塔上部抽出经过过冷器及主换热器复热后送出冷箱,其中一部分作为纯化器再生用气,另一部分放空;氧气经过主换热器复热后送出冷箱压缩充装或液化,压力氮经过主换热器复热后送出冷箱。
空分工艺流程说明空分装置是一套带增压透平膨胀机的常温分子筛吸附纯化、规整填料塔无氢制氩的空分装置。
其工艺流程如下:4.1 过滤、压缩、预冷及纯化原料工艺空气经吸入口吸入,进入自洁式空气过滤器,滤去尘埃和机械杂质,进入离心式空气压缩机进行压缩,压缩后的气体进入空气预冷系统中的空气冷却塔,在其中被水冷却和洗涤。
空气冷却塔采用循环冷却水和经水冷塔冷却并经冰机进一步冷却过的低温冷冻水冷却,空气冷却塔顶部设有惯性分离器及丝网分离器,以防止工艺空气中游离水份带出。
出空气预冷系统的工艺空气进入用来吸附除去水份、二氧化碳、碳氢化合物的空气纯化系统,纯化系统中的吸附器由两台立式容器组成,两台吸附容器采用双层床结构,底部为活性氧化铝,上部为分子筛,当一台运行时,另一台则由来自冷箱中的污氮通过加热器加热后进行再生。
4.2 空气精馏出空气纯化系统的洁净工艺空气大部分进入冷箱内的主换热器,被返流出来的气体冷却,接近露点的空气进入下塔的底部,进行第一次分馏。
在精馏塔中,上升气体与下流液体充分接触,传热传质后,上升气体中氮的浓度逐渐增加。
在主冷凝蒸发器中,氮气冷凝,液氧气化。
在下塔中产生的液空和液氮,经过冷器过冷,节流后进入上塔,作为上塔的回流液,在上塔内,经过再次精馏,得到产品氮气、产品氧气、液氧及污氮。
4.3 冷量的制取装置所需的大部分冷量由透平膨胀机提供。
出空气纯化系统的其余部分洁净空气进入被透平膨胀机驱动的增压机,使其压力提高。
然后经增压后冷却器冷却,进入冷箱内的主换热器,冷却至一定温度后进入透平膨胀机。
这股膨胀空气在膨胀机中膨胀制冷后进入上塔,参与精馏。
4.4 氩的提纯氩的提取采用全精馏制氩的最新技术,为了制取氩,从分馏塔上塔下部的适当位置引出一股氩馏份气送入粗氩塔Ⅰ进行精馏,使氧的含量降低;粗氩塔Ⅰ的回流液体是由粗氩塔Ⅱ底部引出经液体泵输送来的液态粗氩。
从粗氩塔Ⅰ顶部引出的气体进入粗氩塔Ⅱ并在其中进行深度氩氧分离,经过粗氩塔Ⅱ的精馏,在粗氩塔Ⅱ的顶部得到含氧量≤1PPm的粗氩气,粗氩塔Ⅱ的顶部装有冷凝蒸发器,以过冷器后引出的液空经节流后送入其中作为冷源,绝大部分的粗氩气经冷凝蒸发器冷凝后作为粗氩塔的回流液。
空分设备就是以空气为原料,通过压缩循环深度冷冻的方法把空气变成液态,再经过精馏而从液态空气中逐步分离生产出氧气、氮气及氩气等惰性气体的设备。 目前我国生产的空分设备的形式、种类繁多。有生产气态氧、氮的装置,也有生产液态氧、氮的装置。但就基本流程而言,主要有四种,即高压、中压、高低压和全低压流程。我国空分设备的生产规模已经从早期只能生产20m3/h(氧)的制氧机,发展到现在具有生产20000 m3/h、30000 m3/h和50000 m3/h(氧)的特大型空分设备的能力。
空分设备从工艺流程来说可以分为5个基本系统: 1 杂质的净化系统:主要是通过空气过滤器和分子筛吸收器等装置,净化空气中混有的机械杂质、水分、二氧化碳、乙炔等。 2 空气冷却和液化系统:主要由空气压缩机、热交换器、膨胀机和空气节流阀等组成,起到使空气深度冷冻的作用。 3空气精馏系统:主要部件为精馏塔(上塔、下塔)、冷凝蒸发器、过冷器、液空和液氮节流阀。起到将空气中各种组分分离的作用 4 加温吹除系统:用加温吹除的方法使净化系统再生。 5仪表控制系统:通过各种仪表对整个工艺进行控制。
深冷空分制氮 深冷空分制氮以空气为原料,经过压缩、净化、用热交换使空气液化成为液空。液空主要是液氧和液氮的混合物,利用液氧和液氮的沸点不同,通过精馏,使它们分离来获得氮气。 1. 深冷制氮的典型工艺流程 整个流程由空气压缩及净化、空气分离、液氮汽化组成。 1.1 空气压缩及净化 空气经空气过滤器清除灰尘和机械杂质后进入空气压缩机,压缩至所需压力,然后送入空气冷却器,降低空气温度。再进入空气干燥净化器,除去空气中的水份、二氧化碳、乙炔及其它碳氢化合物。 1.2 空气分离 净化后的空气进入空分塔中的主换热器,被返流气体(产品氮气、废气)冷却至饱和温度,送入精馏塔底部,在塔顶部得到氮气,液空经节流后送入冷凝蒸发器蒸发,同时冷凝由精馏塔送来的部分氮气,冷凝后的液氮一部分作为精馏塔的回流液,另一部分作为液氮产品出空分塔。 由冷凝蒸发器出来的废气经主换热器复热到约130K进膨胀机膨胀制冷为空分塔提供冷量,膨胀后的气体一部分作为分子筛的再生和吹冷用,然后经消音器排入大气。 1.3 液氮汽化 由空分塔出来的液氮进液氮贮槽贮存,当空分设备检修时,贮槽内的液氮进入汽化器被加热后,送入产品氮气管道。 深冷制氮可制取纯度≧99.999%的氮气。
2. 主要设备简介 2.1 空气过滤器 为减少空气压缩机内部机械运动表面的磨损, 保证空气质量, 空气在进入空气压缩机之前,必须先经过空气过滤器以清除其中所含的灰尘和其他杂质。目前空气压缩机进气多采用粗效过滤器或中效过滤器。 2.2 空气压缩机 按工作原理,空气压缩机可分为容积式和速度式两大类。目前空气压缩机多采用往复活塞式空气压缩机、离心式空气压缩机和螺杆式空气压缩机。 2.3 空气冷却器 是用来降低进入空气干燥净化器和空分塔前压缩空气的温度,避免进塔温度大幅度波动,并可析出压缩空气中的大部分水分。通常采用氮水冷却器(由水冷却塔和空气冷却塔组成:水冷塔是用空分塔内出来的废气冷却循环水,空冷塔是用水冷塔出来的循环水冷却空气)、氟里昂空冷器。 2.4 空气干燥净化器 压缩空气经空气冷却器后仍含有一定的水分、二氧化碳、乙炔和其他碳氢化合物。被冷冻的水分和二氧化碳沉积在空分塔内会堵塞通道、管道和阀门,乙炔积聚在液氧内有爆炸的危险,灰尘会磨损运转机械。为了保证空分装置的长期安全运行,必须设置专门的净化设备,清除这些杂质。空气净化的最常用方法是吸附法和冻结法。目前国内在中小型制氮装置中广泛采用分子筛吸附法。 2.5 空分塔 空分塔内主要包括有主换热器、液化器、精馏塔、冷凝蒸发器等。主换热器、冷凝蒸发器和液化器为板翘式换热器是一种全铝金属结构新型组合式间壁式换热器,平均温差很小,换热效率高达98-99%。精馏塔为空气分离的设备,塔设备的类型按内件划分,设置筛孔板的称筛板塔,设置泡罩板的称泡罩塔,堆放填料的称填料塔。筛孔板结构简单、便于制造、塔板效率高,因此在空分精馏塔中被广泛使用。填料塔主要用于直径小于0.8m,高度不大于7m的精馏塔。泡罩塔由于结构复杂、制造困难现已很少使用。 2.6 透平膨胀机 是制氮装置用来产生冷量的旋转式叶片机械,是一种用于低温条件下的气体透平。透平膨胀机按气体在叶轮中的流向分为轴流式、向心径流式和向心径轴流式;按气体在叶轮中是否继续膨胀又分为反击式和冲击式,继续膨胀为反击式,不继续膨胀为冲击式。空分设备中广泛采用单级向心径轴流反击式透平膨胀机。 深冷空分制氮设备复杂、占地面积大,基建费用高,设备一次性投资多,运行成本高,产气慢,安装要求高周期长。深冷空分制氮装置宜于大规模工业制氮,在中、小规模制氮就显得不经济。在3500Nm3/h以下的设备,相同规格的PSA装置的投资规模要比深冷空分装置低20%~50%。
空气分离制氧的主要工艺及其比较 氧气在工业生产和日常生活中有广泛的用途,空气中含有21%(体积浓度)的氧气,是最廉价的制氧原料,因此氧气一般都通过空气分离制取。 空气分离制氧主要工艺 1.深冷分离工艺: 传统制氧技术,氧气纯度高、产品种类多,适用于大规模制氧。 2.变压吸附工艺(PSA): 新兴技术,投资小、能耗低,适用于氧气纯度不太高、中小规模应用场合。 3.膜分离工艺: 尚不成熟,基本未得到工业应用。
深冷空分制氧工艺‖膜分离工艺‖变压吸附制氧工艺的比较 项目 深冷空分法 膜分离空分法 变压吸附空分法 分离原理 将空气液化,根据氧和氮沸点不同达到分离。 根据不同气体分子在膜中的溶解扩散性能的差异来完成分离。 加压吸附,降压解吸,利用氧氮吸附能力不同达到分离。 装置特点 工艺流程复杂,设备较多,投资大。工艺流程简单,设备少,自控阀门少,投资较大。 工艺流程简单,设备少,自控门较多,
投资省。 工艺特点 -160~-190℃低温下操作 常温操作 常温操作
操作特点
启动时间长,一般在15~40小时,必须连续运转,不能间断运行,短暂停机,恢复工况时间长。 启动时间短,一般在一般≤20min,可连续运行,也可间断运行。 启动时间短,一般≤30min,可连续运
行,也可间断运行。
维护特点 设备结构复杂,加工精度高,维修保养技术难度大,维护保养费用高。设备结构简单,维护保养技术难度低,维护保养费用较高。 设备结构简单,维护保养技术难度低,维护保养费用低。
土建及安装特点
占地面积大,厂房和基础要求高,工程造价高。 安装周期长,技术难度大,安装费用高。 占地面积小,厂房无特殊要求,造价低。安装周期短,安装费用低。 占地面积小,厂房无特殊要求,造价低。安装周期短,安装费用低。
产气成本 0.5~1.0KW.H/Nm3
以RICH膜分离制氮设备单位产气量能耗
为例:单位产98%纯度氮气的电耗为0.29KW.H/Nm3。 以RICH常温变压吸附制氮设备单位产气量能耗为例:单位产98%纯度氮气的电耗为0.25KW.H/Nm3。
安全性 在超低温、高压环境运行可造成碳氢化合物局部聚集,存在爆炸的可能性。
常温较高压力下操作,不会造成碳氢化合物的局部聚集。 常温常压下操作,不会造成碳氢化合物
的局部聚集。 可调性 气体产品产量、纯度不可调,灵活性差 气体产品产量、纯度可调,灵活性较好。气体产品产量、纯度可调,灵活性好。
经济适用性 气体产品种类多,气体纯度高,适用于大规模制气、用气场合。
投资小、能耗低,适用于氮气纯度79%~99.99的中小规模应用场合。膜分离制氮能耗在氮气纯度99%以下和变压吸附制氮能耗相差不大,氮气纯度99.5%以上经济性比变压吸附差。膜分离制氧工艺尚不成熟,一般产氧纯度21%~45%,基本未得到工业应用。
投资小、能耗低,适用于氧气纯度21%~95%、氮气纯度79%~99.9995的中小规模应用场合。RICH牌节能型变压吸附系列制氮装置经济性优异,特别是氮气纯度99.9%以上的设备更体现了变压吸附空分法的无与伦比的优势。
注:其他供气方式是基于上述空分制气产业基础上的产业延伸,供气过程产生了中间环节的费用,增加了用气成本,可操作性差,其中运输式和钢瓶式供气存在较大安全隐患。
变压吸附空分制氧工艺原理 ★ 变压吸附空气分离制氧原理 空气中的主要组份是氮和氧,通过选择对氮和氧具有不同吸附选择性的吸附剂,设计适当的工艺过程,使氮和氧分离制得氧气。 氮和氧都具有四极矩,但氮的四极矩(0.31Å)比氧的(0.10 Å)大得多,因此氮气在沸石分子筛上的吸附能力比氧气强(氮与分子筛表面离子的作用力强,如图1所示)。因此,当空气在加压状态下通过装有沸石分子筛吸附剂的吸附床时,氮气被分子筛吸附,氧气因吸附较少,在气相中得到富集并流出吸附床,使氧气和氮气分离获得氧气。当分子筛吸附氮气至接近饱和后,停止通空气并降低吸附床的压力,分子筛吸附的氮气可以解吸出来,分子筛得到再生并重复利用。两个以上的吸附床轮流切换工作,便可连续生产出氧气。 图1、变压吸附气体分离基本原理示意图 氩气和氧气的沸点接近,两者很难分离,一起在气相得到富集。因此变压吸附制氧装置通常只能获得浓度为90%~95%的氧气(氧的极限浓度为95.6%,其余为氩气),与深冷空分装置的浓度99.5%以上的氧气相比,又称富氧。 ★ 变压吸附空分制氧装置工艺简述 从上述原理可知,变压吸附空分制氧装置的吸附床必须至少包含两个操作步骤:吸附和解吸。因此,当只有一个吸附床时,产品氧气的获得是间断的。为了连续获得产品气,通常在制氧装置中一般都设置两个以上的吸附床,并且从节能降耗和操作平稳的角度出发,另外设置一些必要的辅助步骤。 每个吸附床一般都要经历吸附、顺向放压、抽空或减压再生、冲洗置换和均压升压等步骤,周期性地重复操作。在同一时间,各个吸附床则分别处于不同的操作步骤,在计算机的控制下定时切换,使几个吸附床协同操作,在时间步伐上则相互错开,使变压吸附装置能够平稳运行,连续获得产品气。 根据解吸方法的不同,变压吸附制氧又分为两种工艺(参见表1): 1、PSA工艺:加压吸附(0.2~0.6MPa)、常压解吸。投资小、设备简单,但能耗高,适用于小规模制氧的场合。 2、VPSA工艺:常压或略高于常压(0~50KPa)下吸附,抽真空解吸。设备相对复杂,但效率高、能耗低,适用于制氧规模较大的场合。表1、PSA和VPSA制氧装置主要参数比较
工艺流程 适宜规模 m3/h 吸附压力 KPa 解吸压力 KPa 氧气纯度 % 制氧电耗 KWh/m3 氧气收率
% PSA ≤200 200~600 大气压 80~93 0.7~2 30~45