2010年重庆市中考数学模拟试卷
- 格式:doc
- 大小:530.59 KB
- 文档页数:20
2010年中考数学模拟试题及参考答案(五)考试时间:120分钟试卷满分:150分一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号填入题后的括号内.本大题共8个小题,每小题3分,共24分)1.下列计算不正确的是( )A. B. C.D.2.据上海世博局的预计,2010年5月1日至10月31日上海世博会会展期间,上海将接待前来参会的游客约7000万人次,请将数据7000万用科学记数法表示为( )A.7×108B.7×107C.7×106D.7×1053.将如图的Rt△ABC绕直角边AC所在直线旋转一周,所得几何体的主视图是( )4.下列说法中,正确的是( )A.“明天降雨的概率是90%”表示明天降雨的可能性有九成B.“明天降雨的概率是90%”表示明天有90%的时间降雨C.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上D.“彩票中奖的概率是5%”表示买100张彩票一定有5张会中奖5.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是( )6.今年3月12日是我国第32个植树节,某校九年一班全体师生义务植树300棵.原计划每小时植树x棵,但由于参加植树的全体师生植树的积极性很高,实际工作效率提高到原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是( )A. B.C. D.7.如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于( )A. B.C. D.8.如图,Rt△ABC中,∠C=90°,AC=4,BC=8,P是AB上一动点(不含端点),直线PQ⊥AC 于点Q,设AQ=x,则图中△APQ的面积y与x之间的函数关系式的图象是( )二、填空题(本大题共8个小题,每小题3分,共24分)9.一元二次方程x2=x的解为_______________.10.如果圆锥的底面半径为3cm,母线长为6cm,那么它的表面积等于___________cm2.11.一组数据3,2,1,6,x,9的众数与中位数相等,那么这组数的平均数是____________.12.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是____.13.某市2010年初中毕业生学业考试各科的满分值如下:若把表中各科满分值按比例绘成扇形统计图,则表示数学学科的扇形的圆心角约为____度(精确到0.1).14.如图,若点A在反比例函数的(k≠0)图象上,AM⊥x轴于点M,△AMO的面积为4,则k=____.15.如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑨的最小角顶点的坐标为____.16.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CB、CA分别相交于点E、F,则线段EF长度的最小值是____.三、计算题(每题各8分,本题共16分)17.解不等式组并把解集在数轴上表示出来.18.如图,△ABC和△DEF在平面直角坐标系中的位置如图所示.(1)将△ABC向下平移1个单位得到△A1B1C1,请画出△A1B1C1;并写出点A的对应点A1的坐标;(2)能否将△A1B1C1通过旋转变换得到△DEF?若能试做出旋转中心,并直接写出旋转中心坐标及旋转角度,若不能请说明理由.四、解答题(每题各10分,本题共20分)19.为了帮助玉树地震灾区学生重返课堂,某市团委发起了“爱心储蓄”活动,鼓励学生将自己的压岁钱和零花钱存入银行,定期一年,到期后可取回本金,而把利息捐给灾区学生.某校所有同学全都积极参加了这一活动,为灾区同学献一份爱心.该校学生会根据本校这次活动绘制了如下统计图.请根据统计图中的信息,回答下列问题.(1)该校一共有多少名学生?(2)该校学生人均存款多少元?(3)已知银行一年期定期存款的年利率是2.25%,若一名灾区学生一年学习用品的基本费用是500元,那么该校一年大约能为多少名灾区学生提供此项费用?(利息=本金×利率×期数,免收利息税)20.将正面上分别写有数字1、2、3、4的四张卡片(除正面数字不同外,其余完全相同)混合后,小明从中随机地抽取一张,把卡片上的数字作为被减数;将分别标有数字1、2、3的三个小球(除标的数字不同外,其余完全相同)混合后,小华从中随机地抽取一个,把小球上的数字作为减数,然后计算出这两个数的差.(1)请你用画树状图或列表的方法,求这两数差为0的概率;(2)小明与小华做游戏,规则是:若这两数的差为负数,则小明赢;若这两数的差为正数,则小华赢,你认为该游戏公平吗?请说明理由;若不公平,请你修改游戏规则,使游戏公平.五、解答题(每题各10分,本题共20分)21.如图,小明在自家楼房的窗户A处,想知道楼前的一棵树CD的高.现测得树顶C处的俯角为45°,测得树底D处的俯角为60°,已知楼底到大树的距离BD为15米.请你帮助小明算一算这棵树的高度(精确到0.1米).(参考数据)22.某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件.(1)求A、B两种纪念品的进价分别为多少?(2)若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出后总获利不低于216元,问A、B两种纪念品共有几种进货方式,分别怎样进货.六、解答题(每题各10分,共20分)23.如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交于D.(1)请写出四个正确结论;(2)若OE=3,∠CBD=30°,求阴影部分面积.24.为了扩大内需,让惠于农民,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩台,政府补贴若干元,经调查某商场销售彩电台数y(台)与补贴款额x(元)之间大致满足如图①所示的一次函数关系.随着补贴款额x的不断增大,销售量也不断增加,但每台彩电的收益z(元)会相应降低,且z与x之间大致满足如图②所示的一次函数关系.(1)在政府未台出补贴措施前,该商场销售彩电的总收益额为多少元?(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y与政府补贴款额x之间的函数关系式和每台家电的收益z与政府补贴款额x之间的函数关系式;(3)要使该商场销售彩电的总收益w(元)最大,政府应将每台补贴款额x定为多少?并求出总收益w的最大值.七、解答题(本题共12分)25.在Rt△ABC中,∠C=90°,AC=BC,D为AB边的中点,∠EDF=90°,当∠EDF绕点D 旋转时,它的两边分别交AC、CB所在直线于E、F.(1)当∠EDF绕点D旋转到DE⊥AC于E时(如图①),试判断是否成立?不必说明理由.(2)当∠EDF绕点D在图①基础上逆时针旋转0°-45°之间时(如图②),上述结论是否成立?若成立,请给予证明;若不成立,说明理由.(3)当∠EDF绕点D在图①基础上逆时针旋转45°-90°之间时,上述结论是否成立?若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系?请直接写出你的猜想,不必证明.八、解答题(本题共14分)26.如图,点A在x轴的负半轴上,OA=4,AB=OB=.将△ABO绕坐标原点O顺时针旋转90°,得到△A1B1O,再绕原点O顺时针继续旋转90°,得到△A2B2O.抛物线y=ax2+bx+3经过B、B1两点.(1)求抛物线的解析式;(2)点B2是否在此抛物线上,请说明理由;(3)在该抛物线上找一点P,使得△PBB2是以BB2为底的等腰三角形,求出所有符合条件的点P的坐标;(4)在该抛物线上,是否存在点M,使得△MAA2的面积等于16,若存在,直接写出符合条件点的坐标;若不存在,请说明理由.参考答案及评分标准一、选择题(本大题共8个小题,每小题3分,共24分)1.C2.B3.D4.A5.B6.C7.D8.A二、填空题(本大题共8个小题,每小题3分,共24分)9.x1=0,x2=1 10.27π11.4 12.120°13.69.2 14.-815.(36,4) 16.三、解答题(每题8分,共16分)17.解:解不等式1,得x≤3.……2分解不等式2,得x>-1.……4分把解集在数轴上表示为:……6分∴原不等式组的解集是-1<x≤3.……8分18.解:(1)如图,点A1的坐标为(-1,2).……3分(其中画图1分)(2)能.……4分旋转中心点P的坐标为(0,-0.5),旋转角为180°.……8分四、解答题(每题10分,共20分)19.解:(1)210÷35%=600(人),所以,该校共有600名学生.……2分(2)八年级共有学生人数:600×25%=150(人).九年级共有学生人数:600-210-150=240(人).……6分(元),即该校学生人均存款600元.……8分(3)(名),所以该校一年大约能帮助16名灾区学生.……10分20.解:(1)列表:(画树状图也可)……3分两个数的差一共12个数,分别为0,-1,-2,1,0,-1,2,1,0,3,2,1, 所以,两个数的差为0的概率.……5分(2)游戏不公平.因为,两个数的差为负数的概率P(两数的差为负数),两个数的差为正数的概率P(两数的差为正数),∵,即,∴游戏不公平.……8分规则改为(答案不唯一,只要两种情况概率相等即可):[例子1]若这两数的差为非正数,则小明赢;若这两数的差为正数,则小华赢.[例子2]若这两数的差为偶数,则小明赢;若这两数的差为奇数,则小华赢.……10分五、解答题(每题10分,共20分)21.解:过A作AE∥BD交DC延长线于E.……1分∵AE∥BD,∴∠AED=∠BDC=90°,AE=BD=15.……3分在Rt△AEC中,∵∠CAE=45°,∴CE=AE=15.……5分在Rt△AED中,∵∠DAE=60°,∴DE=AEtan60°=15.……7分∴.……9分所以,树的高度约为11.0米.……10分22.解:(1)设A、B两种纪念品的进价分别为x元、y元.由题意,得……2分解得……4分答:A、B两种纪念品的进价分别为20元、30元.……5分(2)设准备购进A种纪念品a件,则购进B种纪念品(40-a)件.根据题意,得由题意,得解得30≤a≤32.……8分∴共有三种进货方式,分别是应进A种纪念品30件,B种纪念品10件;应进A种纪念品31件,B种纪念品9件;应进A种纪念品32件,B种纪念品8件.……10分六、解答题(每题10分,共20分)23.解:(1)不同的正确结论有(答对1个的1分,答对4个得4分,多答以前四个为准):①BE=CE;②弧BD=弧CD;③∠BED=90°;④∠BOD=∠A;⑤AC∥OD;⑥AC⊥BC;⑦OE2+BE2=OB2;⑧S△ABC=BC·OE;⑨△BOD为等腰三角形,⑩△BOE∽△BAC等.(2)连结OC.∵OD⊥BC,∠CBD=30°,∴∠BDO=60°,△BDO是等边三角形.∴⊙O的半径为OD=2EO=6.……6分易证△CEO≌△BDE,∴S△CEO=S△BDE.∵∠CBD=30°,∴∠COD=60°.……7分∴.……9分所以,阴影部分面积为6π.……10分24.解:(1)在政府未出台补贴措施前,该商场销售家电的总收益为800×200=160000(元),所以,在政府未出台补贴措施前,该商场销售家电的总收益为160000元.……2分(2)依题意可设y=k1x+800,Z=k2x+200,∴有400k1+800=1200,200k2+200=160.解得.所以y=x+800,.……6分(3)总收益,.政府应将每台补贴款额x定为100元,总收益有最大值,其最大值为162000元 (10)分七、解答题(本题共12分)25.解:(1)成立.……2分(2)当∠EDF绕点D在图①基础上逆时针旋转0°~45°之间时(如图②),上述结论成立.……3分证明:过点D作DM⊥AC,DN⊥BC,则∠DME=∠DNF=∠MDN=90°.再证∠MDE=∠NDF,DM=DN,有△DME≌△DNF.……7分∴S△DME=S△DNF.∴S四边形DMCN=S四边形DECF= S△DEF+S△CEF.由(1)可知,∴.……9分(3)当∠EDF绕点D在图①基础上逆时针旋转45°~90°之间时,上述结论不成立.……10分如图③,S△DEF、S△CEF、S△ABC的关系是.……12分八、解答题(本题共14分)26.解:(1)过点B作BE⊥OA于点E.∵AB=OB,∴OE=OA=2.又∵OB=,∴.∴B(-2,1).∴B1(1,2),B2(2,-1).……2分∵抛物线y=ax2+bx+3经过B、B1两点,∴解得∴抛物线的解析式为.……4分(2)∵当x=2时,,∴点B2(2,-1)不在此抛物线上.……6分(3)点P应在线段BB2的垂直平分线上,由题意可知,OB1⊥BB2且平分BB2,∴点P在直线OB1上.可求得OB1所在直线的解析式为y=2x.……8分又∵点P是直线y=2x与抛物线的交点,由解得∴符合条件的点P有两个,,即点和.……10分(4)存在.符合条件的点M有两个,分别是.……14分。
新世纪教育网精选资料 版权所有 @新世纪教育网2010 年中考模拟试题数学试卷(三)* 考试时间 120 分钟 试卷满分 150 分一、选择题 (以下各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每题 3 分,共 24 分)1. - 3 的相反数是()A. 3B.1C.- 3D.-1332.以下计算正确的选项是()A. a a a 2B. (2a)3 6a 3 C. (a 1)2 a 2 1 D. a 3 a a 23.如图,将边长为4 个单位的等边△ ABC 沿边 BC 向右平移AD2 个单位获取△ DEF ,则四边形 ABFD 的周长为() A .12B . 16C . 20D .24BECF4.以下命题中,真命题是( )A.两条对角线相等的四边形是矩形 B.两条对角线相互垂直的四边形是菱形C.两条对角线相互垂直且相等的四边形是正方形 D.两条对角线相互均分的四边形是平行四边形5.用配方法解方程 x 2+ x - 1= 0,配方后所得方程是()12 =31 2 = 3A . (x -) 4B . (x + )42 2 1 2 = 51 2 5C . (x + ) 4D . (x - )=422 6.在半径为 1 的⊙ O 中,弦AB =1,则的长是( )A . πB . πC .πD . π64327.预计 2009 + 1 的值是()A .在 42 和 43之间B .在 43 和 44 之间C .在 44 和 45 之间D .在 45 和 46 之间8.已知如图,抛物线 y =ax 2 + bx + c 与 x 轴交于点 A( -1, 0)和点 B ,化简 (a c) 2(c b) 2 的结果为① c ② b③b - a ④a -b +2c ,此中正确的有()A .一个B .两个C.三个D.四个二、填空(每小 3 分,共 24 分)9.从一副扑克牌(除掉大小王)中摸出两牌都是梅花的概率.10.如,直 y = kx(k > 0)与双曲y=3交于 A ( a, b),xB( c, d)两点, 3ad- 5bc= ___________.11.分解因式: x 3- x y 2=.12.如,四形 ABCD 是平行四形, E BC 的中点, DE、AC订交于点F,若△CEF的面6,△ADF的面.13.等腰三角形的腰2,腰上的高1,它的底角等于.14.有 1 的等三角形卡片若干,使用些三角形卡片拼出2、3、 4⋯⋯的等三角形 (如所示 ),依据形推测,每个等三角形所用的等三角形所用的卡片数S 与 n 的关系式是.15.假如一个三角形的三5、12、 13,与其相像的三角形的最的39,那么大的三角形的周,面.16.△ ABC 是⊙ O 的内接三角形,∠BAC = 60°, D 是的中点, AD =a,四形 ABDC 的面.三、(第 17 小题 6 分,第 18、19 小题各 8 分,第 20 小题 10 分,共 32 分)17. 3 2 -2 1 +450-2(2006-sin45°)0218.已知 a=2- 3 ,求代数式 1 2a a 2- a 22a 1 的值.a1a2a19.如图,在平面直角坐标系中,点A的坐标为(3,-3),点B的坐标为(-1,3),回答以下问题(1)点C的坐标是.(2)点B对于原点的对称点的坐标是.(3)△ ABC 的面积为.(4)画出△ ABC 对于x轴对称的△A'B'C'20 .已知 : 如图, AB 是⊙ O 的直径,⊙O过AC 的中点 D , DE 切⊙O于点 D,交 BC 于点 E.(1)求证: DE⊥ BC;(2)假如 CD = 4,CE= 3,求⊙O的半径.CDAE OB四、(每题10 分,共 20 分)21.初三年( 4)班要举行一场毕业联欢会,主持人同时转动以下图中的两个转盘(每个转盘分别被四均分和三均分),由一名同学在转动前来判断两个转盘上指针所指的两个数字之和是奇数仍是偶数,假如判断错误,他就要为大家表演一个节目;假如判断正确,他能够指派他人替自己表演节目.此刻轮到小明来选择,小明不想自己表演,于是他选择了偶数.小明的选择合理吗?从概率的角度进行剖析(要求用树状图或列表方法求解)22.如图,在一块以下图的三角形余料上裁剪下一个正方形,假如△ ABC为直角三角形,且∠ ACB = 90°, AC = 4, BC=3,正方形的四个极点D、 E、F、 G 分别在三角形的三条边上.求正方形的边长.五、(此题 12分)23.已知:以下图的一张矩形纸片ABCD ( AD AB ),将纸片折叠一次,使点 A 与 C 重合,再睁开,折痕EF 交 AD 边于 E,交 BC 边于 F ,分别连结 AF 和CE.(1)求证:四边形AFCE 是菱形;(2)若 AE10cm ,△ ABF 的面积为 24cm2,求△ ABF 的周长;(3)在线段AC 上能否存在一点P ,使得2AE2=AC·AP?若存在,请说明点P 的地点,并予以证明;若不存在,请说明原因.六、(此题 12 分)24.某开发企业现有职工50 名,所有职工的月薪资状况以下表:职工管理人员一般工作人员人员构造总经理部门经理科研人员销售人员高级技工中级技工勤杂工职工数/名1423223每人月薪资 / 元2100084002025220018001600950请你依据上述内容,解答以下问题:(1)该企业“高级技工”有__________人。
重庆市2010年初中毕业暨高中招生考试数学试卷题号五 总分 总分人得分参考公式:抛物线y =ax 2+bx +c (a ≠0)的顶点坐标为(—b2a ,4ac —b 24a),对称轴公式为x=—b2a.一、选择题:(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案中,其中只有一个是正确的,请将正确答案的代号填表在题后的括号中.1. (2010重庆,1,4分)3的倒数是( )A . 13B . — 13C .3D .—32. (2010重庆,2,4分)计算2x 3·x 2的结果是( )A . 2xB . 2x 5C .2x 6D .x 53.(2010重庆,3,4分)不等式组⎩⎨⎧>≤-.,6231x x 的解集为( )A .x >3B .x ≤4C .3<x <4D .3<x ≤44.(2010重庆,4,4分)如图,点B 是△ADC 的边AD 的延长线上一点,DE ∥BC ,若∠C=50°,∠BDE =60°,则∠CDB 的度数等于( )A . 70°B . 100°C . 110°D . 120°5. (2010重庆,5,4分)下列调查中,适宜采用全面调查(普查)方式的是( )A .对全国中学生心理健康现状的调查B .对冷饮市场上冰淇淋质量情况的调查C .对我市市民实施低碳生活情况的调查D .以我国首架大型民用直升机各零部件的检查6. (2010重庆,6,4分)如图,△ABC 是⊙O 的内接三角形,若∠ABC =70°,则∠AOC的度数等于( )A . 140°B . 130°C . 120°D . 110°7.(2010重庆,7,4分)由四个大小相同的正方体组成的几何体如图所示,那么它的俯视图是( )8.(2010重庆,8,4分)有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,……,则第10次旋转后得到的图形与图①~④中相同的是()A.图①B.图②C.图③D.图④9.(2010重庆,9,4分)小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家.下面能反映当天小华的爷爷离家的距离y与时间x 的函数关系的大致图象是()10.(2010重庆,10,4分)已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB= 5 .下列结论:①△APD≌△AEB;②点B到直线AE的距离为 2 ;③EB⊥ED;④S△APD+S△APB=1+ 6 ;⑤S正方=4+ 6 .其中正确结论的序号是()形ABCDA.①③④B.①②⑤C.③④⑤D.①③⑤二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将答案填在题后的横线上.11.(2010重庆,11,4分)上海世界博览会自2010年5月1日开幕以来,截止到5月18日,累计参观人数约为324万人,将万用科学记数法表示为_____________万.12.(2010重庆,12,4分)“情系玉树大爱无疆”.在为青海玉树的捐款活动中,某小组7位同学的捐款数额(元)分别是:5,20,5,50,10,5,10.则这组数据的中位数是_____________.13.(2010重庆,13,4分)已知△ABC与△DEF相似且对应中线的比为2:3,则△ABC与△DEF的周长比为_____________.14.(2010重庆,14,4分)已知⊙O的半径为3cm,圆心O到直线l的距离是4cm,则直线l与⊙O的位置关系是_____________.15.(2010重庆,15,4分)在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同. 现从盒子里随机取出一个小球,将该小球上的数字作为点P 的横坐标,将该数的平方作为点P 的纵坐标,则点P 落在抛物线y =-x 2+2x +5与x 轴所围成的区域内(不含边界)的概率是_____________. 16.(2010重庆,16,4分)含有同种果蔬但浓度不同的A 、B 两种饮料,A 种饮料重40千克,B 种饮料重60千克现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是_____________千克 三、解答题:(本大题共4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.17.(2010重庆,17,6分)计算:(-1)2010-| -7 |+ 9 ×( 5 -π)0+( 1 5)-118.(2010重庆,18,6分)解方程:x x -1 + 1x=119.(2010重庆,19,6分)尺规作图:请在原图上作一个∠AOC ,使其是已知∠AOB 的 32倍(要求:写出已知、求作,保留作图痕迹,在所作图中标上必有要的字母,不写作法和结论) 已知: 求作:20.(2010重庆,20,6分)已知:如图,在Rt △ABC 中,∠C =90°,AC = 3 .点D 为BC 边上一点,且BD =2AD ,∠AD C =60°求△ABC 的周长(结果保留根号)四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.(2010重庆,21,10分)先化简,再求值:(x 2+4x -4)÷ x 2-4x 2+2x,其中x =-122.(2010重庆,22,10分)已知:如图,在平面直角坐标系xOy 中,直线AB 与x 轴交于点A (-2,0),与反比例函数在第一象限内的图象的交于点B (2,n ),连结BO ,若S △AOB =4.(1)求该反比例函数的解析式和直线AB 的解析式; (2)若直线AB 与y 轴的交点为C ,求△OCB 的面积.23.(2010重庆,23,10分)在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如下两幅不完整的统计图:(1)求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;(2)如果发了3条箴的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.24.(2010重庆,24,10分)已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°.点E是DC的中点,过点E作DC的垂线交AB于点P,交CB的延长线于点M.点F在线段ME上,且满足CF=AD,MF=MA.(1)若∠MFC=120°,求证:AM=2MB;(2)求证:∠MPB=90°-12 ∠FCM.五、解答题:(本大题共2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.(2010重庆,25,10分)今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我(元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y与周数x的变化情况满足二次函数y=-120 x2+bx+c.(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y与x 的函数关系式,并求出5月份y与x的函数关系式;(2)若4月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=14 x+1.2,5月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=-15 x+2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?(3)若5月份的第2周共销售100吨此种蔬菜.从5月份的第3周起,由于受暴雨的影响,此种蔬菜的可供销量将在第2周销量的基础上每周减少a%,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨0.8 a %.若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a的整数值.(参考数据:372=1369,382=1444,392=1521,402=1600,412=1681)26.(2010重庆,26,12分)已知:如图(1),在平面直角坐标xOy中,边长为2的等边△OAB的顶点B在第一象限,顶点A在x轴的正半轴上.另一等腰△OCA的顶点C在第四象限,OC=AC,∠C=120°.现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B 运动,当其中一个点到达终点时,另一个点也随即停止.(1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围;(2)在等边△OAB的边上(点A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;(3)如图(2),现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.1.【分析】倒数:两数的乘积为1,则这两数互为倒数,如2的倒数为12,但是要注意-2的倒数是-12.【答案】A【涉及知识点】倒数的意义【点评】本题属于基础题,主要考查学生对概念的掌握是否全面,考查知识点单一,有利于提高本题的信度.【推荐指数】★2. 【分析】幂的运算:同底数幂相乘,底数不变,指数相加.【答案】B【涉及知识点】整式的运算:单项式乘以单项式.【点评】本题属于基础题,主要考查学生对基本运算的掌握,考查知识点单一,有利于提高本题的信度.【推荐指数】★★3. 【分析】解不等式①,得:x≤4;解不等式②,得:x>3,如图,所以不等式组的解集为3<x≤4【答案】D【涉及知识点】解不等式组【点评】解不等式组是考查学生的基本计算能力,求不等式组解集的时候,可先分别求出组成不等式组的各个不等式的解集,然后借助数轴或口诀求出所有解集的公共部分.【推荐指数】★★★4. 【分析】平行线的性质,或三角形外角性质:因为DE∥BC,所以∠C=∠CDE=50°(两直线平线,内错角相等),且∠CDB=∠BDE+∠CDE=60°+50°=110°;或因为DE∥BC,所以∠A=∠BDE=60°(两直线平线,同位角相等),且∠CDB=∠A +∠C=60°+50°=110°,(三角形外角性质)【答案】C【涉及知识点】平行线的性质、三角形外角性质【点评】主要考查学生对基本定理的掌握是否全面,灵活运用平行线的性质以及三角形的外角性质.【推荐指数】★★★5. 【分析】抽样调查和全面调查中调查方法的选择:全面调查是为一特定目的对所有考查对象所作的调查;抽样调查为一特定目的对部分考查对象所作的调查.全面调查和抽样调查是统计调查的常用方法,它们所考察的对象不同,优缺点也不相同,利用全面调查能得到比较准确地数据,但需要花费大量的人力物力,利用抽样调查可以省时、省力,但是得到的数据不够准确,尤其是如果样本选不好时,就缺乏代表性,一般来说当调查的对象很多又不是每个数据都有很大的意义(如冰淇淋质量),或着调查的对象虽然不多,但是带有破坏性(如炮弹的杀伤力),应采用抽查方式;如果调查对象不需要花费太多的时间又不据有破坏性,或者生产生活中有关安全隐患的问题(大型民用直升机各零部件)就必须采用普查的调查方式进行.【答案】D【涉及知识点】抽样调查和全面调查【点评】本题属于基础题,主要考查学生对抽样调查和全面调查意义的理解,以及调查方法的选择..【推荐指数】★★★★6. 【分析】圆周角定理:同弧所对圆周角是圆心角的一半.∠ABC和∠AOC是同一条弧AC多对的圆周角和圆心角,所以∠AOC=2∠ABC=2×70°=140°【答案】A【涉及知识点】圆周角定理【点评】本题属于基础题,主要考查学生对基本定理的掌握是否全面,考查知识点单一.【推荐指数】★★★7. 【分析】视图的考查:主要考查学生对物体的多方面观察的能力,一般要求学生能够通过观察事物,画出示意图,【答案】B【涉及知识点】视图8. 【分析】规律的归纳:通过观察图形可以看到每转动4次后便可重合,即4次以循环,10÷4=2…2,所以应和图②相同.【答案】B【涉及知识点】规律的归纳【点评】本题是规律的归纳题,解决本题的关键是读懂题意,理清题归纳出规律,然后套用题目提供的对应关系解决问题,具有一定的区分度.【推荐指数】★★★★9. 【分析】函数图像:通过阅读题目选择出合适的函数图象,出去时爷爷是慢步,所以函数图像平缓,打了一会儿太极拳离家的距离不变,跑步回家,离家越来越近,并且比去时下降的快.综合这些信息不能作出选择.【答案】C【涉及知识点】函数图像【点评】通过阅读题目所给的信息结合函数图像选择出正确表达意义的选项,解决本题的关键理解函数图像表达的意义,具有一定的区分度.【推荐指数】★★★10. 【答案】D【涉及知识点】三角形全等、勾股定理【点评】应用三角形全等,勾股定理进行推导计算,推理较为复杂,综合性强,计算量较大,有很强的区分度.【推荐指数】★★★11. 【分析】324可表示为3.24×100,100=102,因此324=3.24×102.【答案】3.24×102【点评】科学记数法是每年中考试卷中的必考问题,把一个数写成a×10n的形式(其中1≤a<10,n为整数,这种计数法称为科学记数法),其方法是(1)确定a,a是只有一位整数的数;(2)确定n;当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).【推荐指数】★★★★★12. 【分析】数据的描述:中位数:把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数.这七个数按从小到大的顺序排列为:5、5、5、10、10、20、50,7个数据,第4个数为中间数字,故中位数为10【答案】10【涉及知识点】数据的描述:中位数【点评】将数据排序(从大到小或从小到大)后,位置在最中间的数值.即将数据分成两部分,一部分大于该数值,一部分小于该数值.中位数的位置:当样本数为奇数时,中位数=第12n个数据; 当样本数为偶数时,中位数为第2n个数据与第2n+1个数据的算术平均值.【推荐指数】★★★★13. 【分析】相似比:两个三角形相似,则对应中线的比等于相似比,而周长的比也等于相似比.【答案】2:3【涉及知识点】相似比【点评】在相似三角形中,对应线段的比都等于相似比,对应线段包括,对应边,对应高、对应中线、对应周长等;面积比等于相似比的平方.【推荐指数】★★★14. 【分析】直线与圆的位置关系:直线与圆有三种位置关系:相离、相切、相交,因为4>3,即d>r,所以直线与圆相离【答案】相离【涉及知识点】直线与圆的位置关系【点评】直线与圆有三种位置关系:相离、相切、相交,判断的依据有两种一种是:圆心到直线的距离与半径之间的关系当d>r相离、d=r相切、d<r相交;第二种依据:交点的个数:没有交点时相离;一个交点时相切;两个交点时相交.【推荐指数】★★★★15. 【分析】可以构成的点的坐标有:(-2,4),(-1,1),(0,0),(1,1),(2,4).其中在区域内的点为:(-1,1),(1,1),(2,4).所以点P落在抛物线y=-x2+2x+5与x轴所围成的区域内(不含边界)的概率是3 5【答案】3 5【点评】概率的有关计算需要先计算出所有的情况,在计算出落在区域内的情况,即可计算出概率,要注意边界不算,其中(0,0)在x 轴上,即在边界上要注意这个点.往往将函数有关的计算和概率结合在一起考查. 【推荐指数】★★★★16. 【分析】典型的浓度配比问题:溶液的浓度=溶质的质量/全部溶液质量.在本题中两种果蔬的浓度不知道,但是因为倒出的和倒入果蔬质量相同,所以原A 种饮料混合的总质量仍然是后40千克,原B 种饮料混合的总质量仍然是后60千克.可设A 种饮料的浓度为a ,B 种饮料的浓度为b ,各自倒出和倒入的果蔬质量相同可设为x 千克,由于混合后的浓度相同,由题意可得:()()40604060x a xb x b xa -+-+=去分母()()604060406040x a xb x b xa -+=-+, 去括号得:2400606024004040a xa xb b bx xa -+=-+移项得:6060404024002400xa xb bx xa b a -++-=- 合并得:()()1002400b a x b a -=-所以:24x = 【答案】24【涉及知识点】浓度配比问题 【点评】浓度配比问题的有关计算需要注意配比前后溶质的总量相等,溶液的总量也不变,在本题中虽然浓度没有给出来,但是可以设出来作为辅助未知数,最后可以约分.本题学生开始可能没有思路,但是只要大胆做出假设,根据题目列出等式,化简到底即可.【推荐指数】★★★★★17. 【分析】要注意到-1的奇数幂是-1,偶数幂是1,任何非0数的0次幂都等于1,这是同学们容易出错的地方,要切实引起注意.【答案】(-1)2010-| -7 |+ 9 ×( 5 -π)0+( 1 5)-1=1-7+3×1+5=3【涉及知识点】基本计算,【点评】0指数幂、负指数幂的运算、绝对值、平方根、-1的偶次幂或奇次幂都是经常考查的知识点.【推荐指数】★★★18. 【分析】分式方程去分母后将其转化为整式方程,最后不要忘记验根.【答案】去分母221x x x x +-=-,移项得:221x x x x +-+= 合并得:21x =系数化1: 12x = 经检验12x =是原方程的解.【涉及知识点】分式方程的解法.【点评】解分式方程一般题目比较简单,但是解后一定要注意验根,这是学生易于忽视的地方,也是考试的热点问题.【推荐指数】★★★★★19. 【分析】本题属于一种基本作图的运用,初中要掌握如下几种基本作图:作一条线段等于已知线段、平分已知角、作一个角等于已知角、过一点作已知直线的垂线、线段的垂直平分线.而本题需分解为两个问题,平分已知角,在作一个角等于已知角,两步来完成.【答案】已知:一个角∠AOB求作:一个角∠AOC ,使∠AOC =32∠AOB【涉及知识点】基本作图题.【点评】本题区别于以前学习过的作一个角等于已知角,可以将本题分解为两个问题,平分已知角,在作一个角等于已知角,两步来完成,需要学生能够灵活的运用所学的知识解决实际问题.【推荐指数】★★★★★20. 【分析】应用锐角三角函数和勾股定理解问题,本题转化为求三角形的周长,需要分别计算出三角形的三边长.【答案】在R t ∆ADC 中,∠C =90°,AC = 3 ,∠AD C =60°因为sin ∠AD C =AC AD,即=,所以AD =2,由勾股定理得:DC =1,BD =2AD =4 ,BC =BD +DC =5在R t ∆ABC 中,∠C =90°,AC = 3 ,BC =5由勾股定理得:AB所以R t ∆ABC 的周长为AB +BC +AC =5+ 3【涉及知识点】锐角三角函数和勾股定理【点评】在直角三角形中经常用的是三角函数和勾股定理,根据角和边的关系可以有三角函数构成联系,三边之间可以有勾股定理来联系.灵活应用锐角三角函数和勾股定理解决实际问题是一个热点问题.【推荐指数】★★★★21. 【分析】根据分式的性质,对分子分母分别进行因式分解,适当约分,将分式化成最简,然后再将数据代入,一定要先化简在代入. 【答案】2224442x x x x x⎛⎫+--÷ ⎪+⎝⎭=()()()()22222x x x x x x -+⨯+-=2x -,将x =-1,代入2x -得:-1-2=-3.【涉及知识点】分式的化简计算.【点评】本题是对基本运算能力的考查,因式分解是分式运算的基础,因式分解的步骤,一提(提公因式),二套(套公式,主要是平方差公式和完全平方公式),对分式的分子和分母分别分解因式然后在约分.这是中考的一个热点问题.【推荐指数】★★★★22. 【分析】运用待定系数法确定函数解析式,三角形面积的计算方法可以表先求出点B 的坐标,然后分别代入即可求出直线和反比例函数的解析式.【答案】解:(1)因为直线AB 与x 轴交于点A (-2,0),所以OA =︱-2︱=2,且S △AOB =12B AO y 所以:12B AO y =4,即122B y ⨯=4,所以B y =4,又因为点B 在第一象限,所以B y =4,即点B 的纵坐标为4,所以点B 的坐标为(2,4),设直线的解析式为y kx b =+,反比例函数为a y x=, 将A (-2,0)、B (2,4)y kx b =+得:0242x b k b =-+⎧⎨=+⎩解之得:21b k =⎧⎨=⎩,所以设直线的解析式为2y x =+B (2,4)代入a y x =得:8a =,所以反比例函数解析式为:8y x=. (2)将x =0代入2y x =+得y =2,即点C 的坐标为(0,2)因为OBC OBA AOC S S S ∆∆∆=-OCB =4-12AO OC ∙=4-2=2. 所以△OCB 的面积为2.【涉及知识点】待定系数法确定函数解析式.【点评】本题通过待定系数法确定函数解析式,注意对三角形的面积计算的应用,适当应用图形的分割法,将问题简化.待定系数法确定函数解析式是中考的一个热点问题.【推荐指数】★★★★23. 【分析】根据两幅不完整的统计图寻找出有用的信息,再分别计算出其他的数据,根据数据再将条形图补充完整.然后根据概率的计算方法计算出相应的概率.【答案】(1)由扇形图可以看到发箴言三条的有3名学生且占25%,所以,总人数为:3÷25%=12(人),所以发4条的同学人数为:12-2-2-3-1=4(人),本月学生发的箴言共2×1+2×2+3×3+4×4+1×5=36.则平均所发的条数是:36÷12=3(条)(2)可以用如下图的树形图表示出来,由树形图可以看到共有12种可能,并且每种情况出现的机会均等,恰好为一男一女的共有7种可能,所以恰好是一位男同学和一位女同学的概率为:712P =. 【涉及知识点】统计图的表示,概率的计算.【点评】本题是数据描述和概率计算的基本题型,是对学生基本运算能力的考查,树形图或列表的方法是解决概率经常运用的方法.数据的描述和概率是中考的一个热点问题,尤其是概率是中考中经常与其他的知识相结合.【推荐指数】★★★★24. 【分析】在R t ⊿AMB 中要证AM =2MB 一般要考虑到30°的角所对的直角边等于斜边的一半,所以本题的关键就在于证明∠BAM =30°,如果能证出∠MAD =120°就好了,而∠MFC =120°,所以需要证明:⊿AM D ≌⊿F MC ,然后分别求出各角,即可得出结论.【答案】(1)连接MD ,∵点E 是DC 的中点,M E ⊥DC∴MD =MC (线段垂直平分线的性质)在⊿AM D 和⊿F MC 中,CF =AD ,MF =MA ,MD =MC∴⊿AM D ≌⊿F MC (sss )∴∠MAD =∠MFC =120°又∵AD ∥BC ,∠ABC =90°∴∠BAD =90°∴∠MAB =120°-90°=30°∴AM =2MB(2) ∵AD ∥BC∴∠ADM =∠DMB ,又∵⊿AM D ≌⊿F MC∴∠ADM =∠MCF∴∠DMB =∠MCF又∵点E 是DC 的中点,M E ⊥DC∠DME =∠PMB = 1 2∠MCF 在R t ⊿PMB 中∵∠PBM =90°∴∠MPB =90°-∠PMB即:∠MPB =90°- 1 2∠FCM 【涉及知识点】三角形全等的判定及性质,线段垂直平分线的性质.【点评】本题运用了三角形的全等判定和性质的应用以及线段垂直平分线的性质的判定和性质(等腰三角形底边上三线合一的应用)辅助线的作法等基础知识的综合运用.【推荐指数】★★★★★25. 【分析】本题考查待定系数法确定函数解析式的和应用函数解决实际问题,在四月份可以看出4月份y 与x 的函数关系式应符合一次函数的关系,将五月的两对数值代入即可求出二次函数的解析式,第二问根据利润等于售价减去进价列出函数关系式比较得出函数关系式比较即可,第三问根据;总销售额=售价×出售的量,并且第三周的总销售额与第2周刚好持平得到等量关系.【答案】(1)通过观察可见四月份周数y 与x 的符合一次函数关系式:y =0.2x +1.8;将(1,2.8)(2,2.4)代入y =- 1 20 x 2+bx +c .可得:12.82012.425b c b c ⎧=-++⎪⎪⎨⎪=-++⎪⎩解之:143.1b c ⎧=-⎪⎨⎪=⎩即y =120-x 2 14-x +3.1 (2)(2)设4月份第x 周销售此种蔬菜一千克的利润为1W 元,5月份第x 周销售此种蔬菜一千克的利润为2W 元..6.005.0)2.141()8.12.0(1+-=+-+=x x x W ………………………………(3分) ∵-0.05<0,∴1W 随x 的增大而减小.∴当1=x 时,1W 最大=-0.05+0.6=0.55.……………………………………………(4分)2W ==+--+--)251()1.325.005.0(2x x x .1.105.005.02+--x x …………(5分) ∵对称轴为,5.0)05.0(205.0-=-⨯-=x 且-0.05<0, ∴x >-0.5时,y 随x 的增大而减小.∴当x=1时,2W 最大=1.………………………………………………………………(6分) 所以4月份销售此种蔬菜一千克的利润在第1周最大,最大利润为0.55元;5月份销售此种蔬菜一千克的利润在第1周最大,最大利润为1元.(3)由题意可得:()()22111110022 3.11001%222 3.110.8%204204a a ⎛⎫⎛⎫⨯-⨯-⨯+=⨯-+-⨯-⨯++⎡⎤ ⎪ ⎪⎣⎦⎝⎭⎝⎭整理得:2232500a a +-=,解之得:a =2321a -±=⨯, 所以123392a -+≈=8,223392a --≈=-31(舍去) 所以估算a 整数约为8.【涉及知识点】函数解析式的应用,一元二次方程的解法.【点评】待定系数法确定函数解析式是中考的热点问题,尤其是第一问中对函数的认识通过各点的特点来判断变量之间的函数关系式;在本题中的第三问中数据较多,需要学生能够在众多的数据中理清等量关系,代入计算,还要熟练掌握一元二次方程的求根公式法的应用.【推荐指数】★★★★★★26. 【分析】在本题中是双动点问题,要计算三角形的面积需要分别表示出三角形的底和高,然后代入面积公式,注意分段函数的不同表达方式,在第二问中,直接写答案,需要学生考虑全面不可遗漏,第三问中要注意旋转的应用,问题的关键是理解MN =OM +AN .【答案】解:(1)如图,过点Q 作QE 垂直x 轴,垂足为E ,过点C 作CF 垂直x 轴,垂足为F ,在Rt ⊿OQE 中,∵OQ =t ,∠EOQ =30°,sin 30QE OQ ︒=,∴sin302t OE QO =⨯︒=第一种情况,点P 运动到O 点前:在⊿OQP 中∵OP =2-3t ,∴11(3)(3)2224OPQ t t t S OP QE t ∆-=⨯=⨯-=(0<t <23) 第二种情况,点Q 运动到C 点前:在⊿OQP 中,∵∠AOQ =30°, ∠BOA =60°,∴∠POQ =90°∴11(32)(32)222OPQ t t S OP OQ t t ∆-=⨯=⨯-=(23<t )(2)如图可以看到有三个点:1D (23,0),2D (3,1),3D (43,3) (3)如图将CNA ∆绕着点C 旋转120°(A '与O 重合)使得CNA ∆落到CN A ''∆处.则CNA∆≌CN A ''∆(旋转的性质)∴CN '=CN , A N ''=AN ,∠NCA =∠N CA '',∴∠NCM =∠N CM '在MCN ∆和CN M '∆中∠NCM =∠N CM ',CN '=CN ,CM =CM ,∴MCN ∆≌CN M '∆,∴MN =N M ',即MN =A N ''+A M ',∴MN =AN +OM ,则△BMN 的周长为:BM +BN +MN =BM +BN +AN +OM =OB +AB =4所以则△BMN 的周长为定值,这个定值是4.【涉及知识点】直角三角形的性质,等腰三角形的性质,三角形全等的判定和性质,旋转的应用、相似三角形.【点评】本题第一问是典型的双动点的问题,是分段函数,需要学生能准确把握两种情况,并且要注意第二种情况是直角三角形;第二问中共有三个点,学生很容易找到前两个,第三个不易找到,并且计算坐标用到相似三角形的知识,学生也很难完整的把本题做出解答;本题具有较强的综合性,涉及到了多个知识点,需要学生具有扎实的基础知识和综合能力.【推荐指数】★★★★★。
2010年中考模拟试卷数 学考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟 .2.答题时,应该在答题卷指定位置内写明校名,姓名和准考证号 .3.所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应 .4.考试结束后,上交试题卷和答题卷试题卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的 .注意可以用多种不同的方法来选取正确答案 .1. 如果0=+b a ,那么a ,b 两个实数一定是( )A.都等于0B.一正一负C.互为相反数D.互为倒数2. 要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是( )A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查七、八、九年级各100名学生 3. 直四棱柱,长方体和正方体之间的包含关系是( )4. 有以下三个说法:①坐标的思想是法国数学家笛卡儿首先建立的;②除了平面直角坐标系,我们也可以用方向和距离来确定物体的位置;③平面直角坐标系内的所有点都属于四个象限 .其中错误的是( )A.只有①B.只有②C.只有③D.①②③ 5. 已知点P (x ,y )在函数x xy -+=21的图象上,那么点P 应在平面直角坐标系中的( )A.第一象限B. 第二象限C. 第三象限D. 第四象限6. 在一张边长为4cm 的正方形纸上做扎针随机试验,纸上有一个半径为1cm 的圆形阴影区域,则针头扎在阴影区域内的概率为( )A.161 B.41 C.16π D.4π 7. 如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( ) A.只有1个 B.可以有2个 C.有2个以上,但有限 D.有无数个8. 如图,在菱形ABCD 中,∠A=110°,E ,F 分别是边AB 和BC的中点,EP ⊥CD 于点P ,则∠FPC=( ) A.35° B.45° C.50° D.55°9. 两个不相等的正数满足2=+b a ,1-=t ab ,设2)(b a S -=,则S 关于t 的函数图象是( )A.射线(不含端点)B.线段(不含端点)C.直线D.抛物线的一部分10. 某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点)(k k k y x P ,处,其中11=x ,11=y ,当k≥2时,⎪⎪⎩⎪⎪⎨⎧---+=----+=--]52[]51[])52[]51([5111k k y y k k x x k k k k ,[a ]表示非负实数a 的整数部分,例如[2.6]=2,[0.2]=0 .按此方案,第2009棵树种植点的坐标为( )A.(5,2009)B.(6,2010)C.(3,401) D (4,402)二. 认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案 11. 如图,镜子中号码的实际号码是___________ .12. 在实数范围内因式分解44-x = _____________________ . 13. 给出一组数据:23,22,25,23,27,25,23,则这组数据的中位数是___________;方差(精确到0.1)是_______________ .14. 如果用4个相同的长为3宽为1的长方形,拼成一个大的长方形,那么这个大的长方形的周长可以是______________ .15. 已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为______________ . 16. 如图,AB 为半圆的直径,C 是半圆弧上一点,正方形DEFG 的一边DG 在直径AB 上,另一边DE 过ΔABC 的内切圆圆心O ,且点E 在半圆弧上 .①若正方形的顶点F 也在半圆弧上,则半圆的半径与正方形边长的比是______________;②若正方形DEFG 的面积为100,且ΔABC 的内切圆半径r =4,则半圆的直径AB = __________ .三. 全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤 .如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以 . 17. (本小题满分6分)如果a ,b ,c 是三个任意的整数,那么在2b a +,2c b +,2ac +这三个数中至少会有几个整数?请利用整数的奇偶性简单说明理由 .18. (本小题满分6分)如图,,有一个圆O 和两个正六边形1T ,2T .1T 的6个顶点都在圆周上,2T 的6条边都和圆O 相切(我们称1T ,2T 分别为圆O 的内接正六边形和外切正六边形) . (1)设1T ,2T 的边长分别为a ,b ,圆O 的半径为r ,求a r :及b r :的值; (2)求正六边形1T ,2T 的面积比21:S S 的值 .如图是一个几何体的三视图 . (1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B 出发,沿表面爬到AC 的中点D ,请你求出这个线路的最短路程 .20. (本小题满分8分)如图,已知线段a .(1)只用直尺(没有刻度的尺)和圆规,求作一个直角三角形ABC ,以AB 和BC 分别为两条直角边,使AB=a ,BC=a 21(要求保留作图痕迹,不必写出作法); (2)若在(1)作出的RtΔABC 中,AB=4cm ,求AC 边上的高 .学校医务室对九年级的用眼习惯所作的调查结果如表1所示,表中空缺的部分反映在表2的扇形图和表3的条形图中.(1)请把三个表中的空缺部分补充完整;(2)请提出一个保护视力的口号(15个字以内).22. (本小题满分10分)如图,在等腰梯形ABCD中,∠C=60°,AD∥BC,且AD=DC,E、F分别在AD、DC的延长线上,且DE=CF,AF、BE交于点P .(1)求证:AF=BE;(2)请你猜测∠BPF的度数,并证明你的结论.在杭州市中学生篮球赛中,小方共打了10场球 .他在第6,7,8,9场比赛中分别得了22,15,12和19分,他的前9场比赛的平均得分y 比前5场比赛的平均得分x 要高 .如果他所参加的10场比赛的平均得分超过18分 (1)用含x 的代数式表示y ;(2)小方在前5场比赛中,总分可达到的最大值是多少? (3)小方在第10场比赛中,得分可达到的最小值是多少?24. (本小题满分12分)已知平行于x 轴的直线)0(≠=a a y 与函数x y =和函数xy 1=的图象分别交于点A 和点B ,又有定点P (2,0) . (1)若0>a ,且tan ∠POB=91,求线段AB 的长; (2)在过A ,B 两点且顶点在直线x y =上的抛物线中,已知线段AB=38,且在它的对称轴左边时,y 随着x 的增大而增大,试求出满足条件的抛物线的解析式; (3)已知经过A ,B ,P 三点的抛物线,平移后能得到259x y =的图象,求点P 到直线AB 的距离 .2010年中考模拟试卷数学参考答案一、仔细选一选(每小题3分,芬30分)二. 认真填一填(本题有6个小题,每小题4分,共24分) 11、326512.)2)(2)(2(2-++x x x 13、23;2.614、14或16或2615、46-≠->m m 或16、①5∶2 ;②21三. 全面答一答(本题有8个小题,共66分) 17、(本题6分)至少会有一个整数 .因为三个任意的整数a,b,c 中,至少会有2个数的奇偶性相同,不妨设其为a ,b , 那么2ba +就一定是整数 . 18、(本题4分)(1)连接圆心O 和T 1的6个顶点可得6个全等的正三角形 . 所以r ∶a=1∶1;连接圆心O 和T 2相邻的两个顶点,得以圆O 半径为高的正三角形, 所以r ∶b=3∶2;(2) T 1∶T 2的连长比是3∶2,所以S 1∶S 2=4:3):(2=b a .19、(本题6分)(1) 圆锥; (2) 表面积S=πππππ164122=+=+=+r rl S S 圆扇形(平方厘米)(3) 如图将圆锥侧面展开,线段BD 为所求的最短路程 . 由条件得,∠BAB ′=120°,C 为弧BB ′中点,所以BD =33 .20、(本题8分)(1)作图如右,ABC ∆即为所求的直角三角形;(2)由勾股定理得,AC =52cm , 设斜边AC 上的高为h, ABC ∆面积等于h ⨯⨯=⨯⨯52212421,所以554=h 21、(本题8分)(1)补全的三张表如下:(表一)(2)例如:“象爱护生命一样地爱护眼睛!”等 . 22、(本题10分)(1)∵BA=AD ,∠BAE=∠ADF ,AE=DF , ∴△BAE ≌△ADF ,∴BE=AF ; (2)猜想∠BPF=120° .∵由(1)知△BAE ≌△ADF ,∴∠ABE=∠DAF .∴∠BPF=∠ABE+∠BAP=∠BAE ,而AD ∥BC ,∠C=∠ABC=60°, ∴∠BPF=120° . 23、(本题10分)(1)9191215225++++=x y ;(2)由题意有x x >++++9191215225,解得x <17,所以小方在前5场比赛中总分的最大值应为17×5-1=84分;(3)又由题意,小方在这10场比赛中得分至少为18×10 + 1=181分, 设他在第10场比赛中的得分为S ,则有81+(22+15+12+19)+ S ≥181 .解得S≥29,所以小方在第10场比赛中得分的最小值应为29分 .24、(本题12分)(1)设第一象限内的点B (m,n ),则tan ∠POB 91==m n ,得m=9n ,又点B 在函数xy 1=的图象上,得m n 1=,所以m =3(-3舍去),点B 为)31,3(,而AB ∥x 轴,所以点A (31,31),所以38313=-=AB ;(2)由条件可知所求抛物线开口向下,设点A (a , a ),B (a 1,a ),则AB =a1- a =38, 所以03832=-+a a ,解得313=-=a a 或 .当a = -3时,点A (―3,―3),B (―31,―3),因为顶点在y = x 上,所以顶点为(-35,-35),所以可设二次函数为35)35(2-+=x k y ,点A 代入,解得k= -43,所以所求函数解析式为35)35(432-+-=x y .同理,当a = 31时,所求函数解析式为35)35(432+--=x y ;(3)设A (a , a ),B (a 1,a ),由条件可知抛物线的对称轴为aa x 212+= .设所求二次函数解析式为:)2)1()(2(59++--=aa x x y .点A (a , a )代入,解得31=a ,1362=a ,所以点P 到直线AB 的距离为3或136.。
[键入文字]
2010 重庆中考数学试题
重庆市2010 年初中毕业暨高中招生考试
(全卷共五个大题,满分150 分,考试时间120 分钟)
题号一二三四五总分总分人
得分
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(b2a ,4acb24a ),对称轴公式为x=b2a .
一、选择题:(本大题共10 个小题,每小题4 分,共40 分)在每个小题的下面,
都给出了代号为A、B、C、D 的四个答案中,其中只有一个是正确的,请将正确答案
的代号填表在题后的括号中.
1.3 的倒数是()
A.13 B.13 C.3 D.3
2.计算2x3•x2 的结果是()
A.2x B.2x5 C.2x6 D.x5
3.不等式组的解集为()
A.x>3 B.x≤4 C.3<x<4 D.3<x≤4
4.如图,点B 是△ADC 的边AD 的延长线上一点,DE∥BC,若∠C=
50°,∠BDE=60°,则∠CDB 的度数等于()
A.70° B.100° C.110° D.120°
1。
2010年中考模拟试卷 数学参考答案及评分标准一、选择题:(每小题3分,共30分)二、填空题:(每小题4分,共24分)11.12103.62⨯ 12. 22x 4)(- 13. 25a -〉14. 0<d <1 或 d >5 15. ①、②、③、④ 16. 30 19917. (本题满分6分)先化简,再求代数式的值1a 2a 1a 1a 1a 2a 222+--++÷-+)(,请选择合适的值带入求值 2)1()1)(1(111)1(2--+++⨯-+=a a aa a a ………………………………………………..3分 1a 1a 1a 2-++-=1a 3a -+=…………………………………………………………………………………4分当a=2时原式 = 5…………………………………………………………………………………6分18. (本题满分6分)△ABD 与△ABE 的相似比为2………………………………………………………1分 ……………………………………………图1对得1分,图2对得2分,图3对得2分。
19.(本题满分6分)(1)2+22+32+36+28=120,此样本抽取了120名学生才成绩……………………………2分(2)中位数落在80.5 ~90.5这个范围内.……………………………………………4分 (3)4801202836900=+⨯所以该校获得优秀成绩学生的人数约480名。
…………6分 20.(本题满分8分)(1)由△BMC 是等边三角形可知: ∠MBC=∠MCB=60°,BM=MC 又∵ED ∥BC,∴∠EMB=∠MBC;∠DMC=∠MCB ∴∠EMB =∠DMC 又 ∵点M 平分ED, ∴EM = MD则可证△EMB ≌△DMC ………2分 ∴∠EBM =∠ECM 则可得∠EBC =∠DCB∴△ABC 是等腰三角形。
(3)21. (本题满分8分)作AE ⊥y 轴于E∵42AOD S OD ==△,∴21OD.AE=4 ∴AE=4………………………………………………… 1分 ∵AB ⊥OB,且C 为OB 的中点,∴∠DOC =∠ABC =90°,OC =BC, ∠OCD =∠BCA ∴Rt △DOC ≌Rt △ABC∴AB =CD =2…………………………………………………………………………………2分 ∴A(4,2)……………………………………………………………………………………3分 将A(4,2)代入xky 1=中,得k =8∴x8y 1=……………………………………………………………………………………… 4分 将A(4,2)和D(0,-2)代入b kx y 2+=得422a b b +=⎧⎨=-⎩解之得:12a b =⎧⎨=-⎩∴22y x =-…………………………………………………………………………………6分(2)在y 轴的右侧,当21y y 〈时,0<x <2………………………………………………8分22. (本题满分10分)(1)∵半径OD = 5,则直径AB =10∴5310BD AB BD ==,则BD=6∴若设OE=x ,则BE=5-x ,由勾股定理可得:22220E -DO BE -BD =从而列方程:26-2x 5)(-=22x 5-,…………………………………………………3分,得x=524,再由垂径定理可得CD=548…………………………………………………4分 (2) ∵∠ADO:∠EDO=4:1,则可设∠ADO=4x ,∠EDO=x 又∵OA=OD,则∠OAD=∠ODA=4X由AB 垂直CD,得:4x+4x+x=90°∴x=10°……………………………………………6分 ∴∠ADE=50°,则∠AOC=100°……………………7分 (3) ∵弧AC=9251805100=⨯∏⨯∏∴2∏r =∏925,则圆锥底面圆半径为1825 (9)∴侧S =∏=∏⨯=∏1812551825rl ……………………10分23. (本题满分10分)(1)由题意设A 型货箱用了x 节,则B 型货箱用了(50-x )节,则可列不等式组: 35x +25(50-x )≥153015x+35(50-x )≥1150………………………………………………………………2分 解得:28≤x ≤30…………………………………………………………………………3分 ∵x 取整数 ∴ x = 28、29、30……………………………………………………4分 ∴ 有三种方案:当A 型货箱用了28节时,B 型货箱用了22节。
2010中考数学模拟试卷 数学试卷考生须知:1、 本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟.2、 答题前,必须在答题卷密封区内填写校名、姓名和准考证号.3、 所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.4、 考试结束后,上交试题卷和答题卷.一.仔细选一选(本大题共10道小题,每小题3分,共30分.)下面给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确的答案. 1.下列计算结果为负数的是( )A.-|-3|B.(-3)0C.(-3)2D.(-3)-22.一批货物总重1.2×107千克,下列可将其一次性运走的合适运输工具是( )A. 一辆板车B.一架飞机C.一辆大卡车D.一艘万吨巨轮 3. 下列各式计算结果正确的是( )A 、a +a =a 2B 、(3a )2=6a 2C 、(a +1)2=a 2+1D 、a ·a =a 24.甲、乙两超市为了促销一种定价相同的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买此种商品更合算( )A.甲B.乙C.同样D.与商品的价格有关 5.在闭合电路中,电压U(V)一定时,电流I (A )关于电阻R (Ω)的函数图象是( )6.已知x+y= -5,xy=6, 则x 2+y 2的值是( )A.1B. 13C. 17D.257.一个扇形的圆心角是120°,它的面积是3πcm 2,用这个扇形作为一个圆锥侧面,则该圆锥的底面半径是( )A.3cmB.2cmC.1cmD.4cm 8.下列事件中是必然事件的是( )A.打开电视机,正在播放广告B.父亲的年龄比女儿年龄大C.通过长期努力学习,一定会考上重点大学D.下雨天,每个人都打着雨伞9. 如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,AD 是⊙O 的直径,则∠BEC 的度数为( ) A .15°B .30°C .45°D .60°10.矩形ABCD 中,8cm 6cm A D A B ==,.动点E 从点C 开始沿边CB 向点B 以2cm/s 的速度运动,动点F 从点C 同时出发沿边CD 向点D 以1cm/s 的速度运动至点D 停止.可得到矩形CFHE ,设运动时间为x (单第9题位:s ),此时矩形ABCD 去掉矩形CFHE 后剩余部分的面积为y (单位:cm 2),则y 与x 之间的函数关系用图象表示大致是下图中的( )二.认真填一填(本题有6个小题,每小题4分,共24分) 要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案。
2010年中考模拟试卷 数学参考答案及评分标准一. 选择题(每小题3分, 共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案 CBACBCABBB二. 填空题(每小题4分, 共24分)11. 1.58×101112. 5 13. (-1,1) 14. 7 15. X=-1 16. 6三. 解答题(8小题共66分) 17. (本题6分)计算:0(1)3π--⋅sin 60°+321(2)()4-⋅解:原式=()⎪⎭⎫⎝⎛⋅-+⋅-16182331……………………………………… 3分 =21231--………………………………………………………… 2分 =1-………………………………………………………………… 1分18. (本题6分)每个图2分19. (本题6分)解:(1)把(4,2)代入kx y =,得21=k ,所以x y 21=……………… 2分 把(4,2)代入x m y =,得8=m ,所以xy 8=…………………2分(2) x y 21=解得: 4=x 或 4-=x ……………… 1 xy 8=分 2=y 2-=y所以,还有一个交点为 (2,4--) …………………………… 1分20. (本题8分)分组 频数 频率 3.95~4.25 2 0.04 4.25~4.55 8 0.16 4.55~4.85 20 0.40 4.85~5.15 16 0.32 5.15~5.45 4 0.08 合计 501(1)见表格 …………………………… 2分 (2)见图表 …………………………… 2分(3)视力在4.55~4.85内的学生最多。
……………………………… 2分(4)2000500050416=⨯+ 答:约有2000名学生的视力不需要矫正。
……………………………… 2分21. (本题8分) 解:(1)2108686=++⨯=r ……………………………… 2分(2)dc b a sr +++=2 ……………………………… 3分证明:四边形ABCD 的周长为l ,内切圆O 的半径为r,连结OA 、OB 、OC 、OD , 四边形ABCD 被划分为四个小三角形,用S 四边形ABCD 表示四边形ABCD 的面积 ……………………………… 1分∵ S 四边形ABCD =S △OAB +S △OBC +S △OCD +S △ODA 又∵S △OAB =r AB ⋅21,S △OBC =r BC ⋅21,S △OCD =r CD ⋅21, S △OAD =r AD ⋅21 ∴S 四边形ABCD =r AB ⋅21+r BC ⋅21+r CD ⋅21+r AD ⋅21=r l ⋅21∴dc b a sr +++=2 ……………………………… 6分(3)na a a sr +++= 212 ……………………………… 8分O22. (本题8分)解: 解:(1)在抛物线y =215222x x -+-上,令y =0时,即215222x x -+-=0,得x 1=1,x 2=4令x =0时,y =-2∴ A (1,0),B (4,0),C (0,-2) ………………………2分 ∴OA =1,OB =4,OC =2 ∴12OA OC =,2142OC OB == ∴OA OCOC OB=………………………1分 又∵∠AOC =∠BOC ∴△AOC ∽△COB .………………………1分(2)设经过t 秒后,PQ =AC .由题意得:AP =DQ = t , ……………1分∵A (1,0)、B (4,0) ∴AB =3∴BP =3-t…………………………………1分∵CD ∥x 轴,点C (0,-2) ∴点D 的纵坐标为-2 ∵点D 在抛物线y =215222x x -+-上 ∴D (5,-2) ∴CD =5………………………2分23. (本题12分)解:(1)报销数额为4500×65%+(5600-5000)×75%=3375(元),所以刘老汉可以报销3375元. ··································································· 4分 (2)由题意,得y=(5000-500)×65%+(20000-5000)×75%+(x-20000)×65%=0.65x+1175 ∴所求函数关系式为y=0.65x+1175.(x >20000)········································· 4分 (注:不写x 的取值范围不扣分) (3)由题意,得14825=0.65x+1175. 解得x=21000(元).所以刘老汉这次住院花去医疗费21000元. ··················································· 4分24. (本题12分)xy A CBO DPQy解:(1)在Rt △AOB 中,可求得AB =332 ………………………………1分∵∠OAB =∠BAC ,∠AOB =∠ABC=Rt ∠ ,∴△ABO ∽△ABC ……………………………2分 ∴AC AB AB AO =,由此可求得:AC =34………………………………3分(2)当B 不与O 重合时,延长CB 交y 轴于点D ,过C 作CH ⊥x 轴,交x轴于点H ,则可证得AC =AD ,BD =BC …………………4分 ∵AO ⊥OB ,AB ⊥BD ,∴△ABO ∽△BDO ,则OB2=AO ×OD----6′,即yx -⨯=⎪⎭⎫⎝⎛122化简得:y=42x ,当O 、B 、C 三点重合时,y=x=0,∴y 与x 的函数关系式为:y=42x ………………………………7分(3)设直线的解析式为y=kx+b ,则由题意可得:⎪⎩⎪⎨⎧=+=241x y bkx y ,消去y 得:x 2-4kx-4b=0,则有⎩⎨⎧-=⨯=+b x x kx x 442121, ……………………………… 8分由题设知:x 12+x 22-6(x 1+x 2)=8,即(4k)2+8b-24k=8,且b=-1,则16k 2-24k -16=0,解之得:k 1=2,k 2=21-,……………………………… 10分 当k 1=2、b=-1时,△=16k2+16b=64-16>0,符合题意当k 2=21-,b=-1时,△=16k2+16b=4-16<0,不合题意(舍去),∴所求的直线l 的解析式为:y=2x-1 ……………………………… 12分2010年中考模拟试卷 数学卷考生须知:1.本科目试卷分试题卷和答题卷两部分. 满分120分,考试时间100分钟.2.答题前,必须在答题卷的密封区内填写姓名与准考证号.3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.4.考试结束后,只需上交答题卷.试题卷y AO BxCD GH一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1.2010年3月5日,第十一届全国人大三次会议在北京人民大会堂开幕. 温家宝总理在政府工作报告中指出,2009年,我国国内生产总值达到33.5万亿元。
A'A BCDE FG ONAD FCBE(第14题图)2010中考数学模拟试题(一)一、选择题(每小题3分,共30分) 1、下列计算正确的是( )A .3232a a a =B .632a a a ÷=C .()122a a -=- D .()32628aa -=-2、给出下列命题:(1)平行四边形的对角线互相平分; (2)对角线相等的四边形是矩形;(3)菱形的对角线互相垂直平分; (4)对角线互相垂直的四边形是菱形. 其中,真命题的个数是( )A.4 B.3 C.2 D.1 3、下列各函数中,y 随x 增大而增大的是( ) ①1y x =-+. ②3y x=-(x < 0) ③21y x =+. ④23y x =- A .①② B .②③ C .②④ D .①③ 4、如图,EF 是圆O 的直径,5cm OE =,弦8cm MN =,则E ,F 两点到直线MN 距离的和等于( ) A.12cm B.6cm C.8cmD.3cm5、反比例函数k y x=的图象如左图所示,那么二次函数221y kx k x =--的图象大致为( ) y y y yx x x x6.AC 是电杆AB 的一根拉线,测得BC=6米,52ACB ∠=o ,则拉线AC 的长为( ) A.︒526sin 米 B. ︒526tan 米 C. 6·cos 52°米 D. ︒526cos 米 7、某几何体的三视图如下所示,则该几何体可以是( ).8、现有2008年奥运会福娃卡片20张,其中贝贝6张,京京5张,欢欢4张,迎迎3张,妮妮2张,每张卡片大小、质地均匀相同,将画有福娃的一面朝下反扣在桌子上,从中随机抽取一张,抽到京京的概率是 ( )A 、101 B 、103 C 、41 D 、519、二次函数2y ax bx c =++的图像如图所示,则点c Q a b ⎛⎫ ⎪⎝⎭,在( )A .第一象限B .第二象限C .第三象限D .第四象限10、如图,直线33y x =+与x 轴、y 轴分别相交于A B , 两点,圆心P 的坐标为(10),,圆P 与y 轴相切于点O .若将圆P沿x 轴向左移动,当圆P 与该直线相交时,横坐标为整数的点P 的个数是 ( )A. 2B. 3C. 4D. 5 二、填空题(每小题4分,共24分)11、因式分解:324x xy -=___________. 12、当m=_________时,关于x 的分式方程132-=-+x mx 无解. 13、如图,已知正方形纸片ABCD 的边长为8,⊙0的半径为2,圆心 在正方形的中心上,将纸片按图示方式折叠,使E A ′恰好与⊙0相 切于点A ′(△EFA ′与⊙0除切点外无重叠部分),延长FA ′交CD 边 于点G ,则A ′G 的长是14、如图,有一块边长为4的正方形塑料摸板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 .OOA .OB. OC. Oy xD .OK M G EN (第4题图)ABC┐ (第9题图)yxO 第10题图O yBA P15、如图,ABC △与A B C '''△是位似图形,且顶点都在格点上,则位似中心的坐标是 .16、对于每个非零自然数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于A n 、B n 两点,以n n A B 表示这两点间的距离,则112220092009A B A B A B +++L 的值是_________.三、解答题(共66分)17、(1)(4分)计算:12012cos30(2)(1)|3-⎛⎫-+-⨯-- ⎪⎝⎭o .(2)(4分)解方程:22570x x --=18、16. (5分)解不等式组33213(1)8x xx x -⎧+≥⎪⎨⎪--<-⎩,并把解集表示在数轴上。
2010年重庆市中考数学模拟试卷 一、选择题(共10小题,每小题4分,满分40分) 1.﹣的值是( ) A.﹣3 B.3 C.±3 D.﹣81
2.下列等式中,一定成立的是( ) A.(a+b)2=a2+b2 B.2a2+a=3a3 C.2a﹣1= D.a2•a3=a5
3.下列说法:①过两点有且只有一条直线;②连接两点的线段叫两点的距离;③两点之间线段最短;④如果AB=BC,则点B是AC的中点.其中正确的有( ) A.1个 B.2个 C.3个 D.4个
4.下列图形中,是旋转对称图形,但不是中心对称图形的是( ) A.等腰梯形 B.等边三角形 C.平行四边形 D.直角梯形
5.(2009•内江)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )
A.(a+b)2=a2+2ab+b2 B.(a﹣b)2=a2﹣2ab+b2 C.a2﹣b2=(a+b)(a﹣b) D.(a+2b)(a﹣b)=a2+ab﹣2b2
6.(2007•宁德)如图,AB是⊙O的直径,∠C=20°,则∠BOC的度数是( )
A.40° B.30° C.20° D.10° 7.(2009•泰安)若2x=3,4y=5.则2x﹣2y的值为( ) A. B.﹣2 C. D.
8.(2009•乐山)为了解初三学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图(如图所示).那么关于该班45名同学一周参加体育锻炼时间的说法错误的是( ) 菁优网 www.jyeoo.com
©2010-2012 菁优网 A.众数是9 B.中位数是9 C.平均数是9 D.锻炼时间不低于9小时的有14人 9.(2008•齐齐哈尔)如图,将△ABC沿DE折叠,使点A与BC边的中点F重合,下列结论中:①EF∥AB且EF=AB;②∠BAF=∠CAF;③S四边形ADFE=AF•DE;④∠BDF+∠FEC=2∠BAC,正确的个数是( )
A.1 B.2 C.3 D.4 10.(2009•兰州)如图,A,B,C,D为⊙O的四等分点,动点P从圆心O出发,沿O﹣C﹣D﹣O路线作匀速运动,设运动时间为t(s).∠APB=y(°),则下列图象中表示y与t之间函数关系最恰当的是( )
A. B. C. D. 二、填空题(共6小题,每小题4分,满分24分) 11.(2005•宿迁)一种细菌的半径约为0.000045米,用科学记数法表示为 _________ 米.
12.已知⊙O1和⊙O2相切,且圆心距为10cm,若⊙O1的半径为3cm,⊙O2的半径为 _________ cm. 13.(2010•凉山州)如图,如果从半径为3cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的体积是 _________ cm3. 菁优网 www.jyeoo.com
©2010-2012 菁优网 14.如图,边长为1的正方形ABCD绕点A逆时针旋转30°,得到正方形A′B′C′D′,则图中阴影部分的面积为 _________ .
15.某列从永川到重庆的火车,包括起始和终点在内共有5个停靠站,小王乘坐这趟列车从永川到重庆,一路上小王在他乘坐的车厢内观测到下列情况:①在起始站(第一站)以后每一站都有车厢内人数(包括小王)的一半人下车;②又有下车人数的一半人上这节车厢;③到第四站(终点站)包括小王在内还有27人.那么起始站上车的人数是 _________ .
16.已知正比例函数y1=x,反比例函数,由y1,y2构造一个新函数y=x+其图象如图所示.(因其图
象似双钩,我们称之为“双钩函数”).给出下列几个命题: ①该函数的图象是中心对称图形; ②当x<0时,该函数在x=﹣1时取得最大值﹣2; ③y的值不可能为1; ④在每个象限内,函数值y随自变量x的增大而增大. 其中正确的命题是 _________ .(请写出所有正确的命题的序号)
三、解答题(共10小题,满分86分) 17.计算:﹣
18.(2008•莆田)解不等式组:. 19.已知:线段a,b,∠α(如图).请用直尺和圆规作一个平行四边形,使它的两条邻边长分别等于线段a,b,它们的夹角等于∠α.(要求仅用直尺和圆规作图,写出已知,求作,不写作法,并保留作图痕迹.) 菁优网 www.jyeoo.com
©2010-2012 菁优网 20.(2007•昆明)我省某地区结合本地自然条件,大力发展茶叶、蔗糖、水果、药材等产业,取得良好的经济效益,经过多年发展,茶叶、蔗糖、水果、药材成了该地区四大产业.图1,图2是根据该地区2006年各项产业统计资料绘制的两幅不完整统计图,请你根据统计图提供的信息解答: (1)该地区2006年各项产业总产值共 _________ 万元; (2)图1中蔗糖所占的百分数是 _________ ,2006年该地区蔗糖业的产值有 _________ 万元; (3)将图2中“蔗糖”部分的图形补充完整.
21.(2009•青岛)在一次数学活动课上,老师带领同学们去测量一座古塔CD的高度.他们首先从A处安置测倾器,测得塔顶C的仰角∠CFE=21°,然后往塔的方向前进50米到达B处,此时测得仰角∠CGE=37°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD的高度. (参考数据:sin37°≈,tan37°≈,sin21°≈,tan21°≈)
22.有四张背面图案相同的卡片A、B、C、D,其正面分别画有四个不同的几何图形(如图).小敏将这四张卡片背面朝上洗匀摸出一张,放回洗匀再摸出一张.
(1)用树状图(或列表法)表示两次摸出卡片所有可能的结果;(卡片可用A、B、C、D表示) (2)求摸出的两张卡片图形都是中心对称图形的概率.
23.(2006•重庆)机械加工需要拥有进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关. (1)甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克? (2)乙车间通过技术革新后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%.这样乙车间加工一台大型机械设备的实际耗菁优网 www.jyeoo.com
©2010-2012 菁优网 油量下降到12千克.问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?
24.(2009•荆门)一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4). (1)求该函数的解析式; (2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点的坐标.
25.(2008•海南)如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2与x轴交于点C,直线y=﹣
2x﹣1经过抛物线上一点B(﹣2,m),且与y轴、直线x=2分别交于点D、E. (1)求m的值及该抛物线对应的函数关系式; (2)求证:①CB=CE;②D是BE的中点; (3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.
26.(2009•青岛)如图,在梯形ABCD中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10cm,点P由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交BD于Q,连接PE.若设运动时间为t(s)(0<t<5).解答下列问题: (1)当t为何值时,PE∥AB; (2)设△PEQ的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S△PEQ=S△BCD?若存在,求出此时t的值;若不存在,说明理由;
(4)连接PF,在上述运动过程中,五边形PFCDE的面积是否发生变化?说明理由. 菁优网 www.jyeoo.com
©2010-2012 菁优网 2010年重庆市中考数学模拟试卷 参考答案与试题解析 一、选择题(共10小题,每小题4分,满分40分) 1.﹣的值是( ) A.﹣3 B.3 C.±3 D.﹣81 考点:算术平方根。 分析:本题考查的是算术平方根的定义.一个非负数的非负平方根叫做这个数的算术平方根. 解答:解:﹣=﹣3. 故选A. 点评:此题主要考查了算术平方根的定义,比较简单.
2.下列等式中,一定成立的是( ) A.(a+b)2=a2+b2 B.2a2+a=3a3 C.2a﹣1= D.a2•a3=a5 考点:负整数指数幂;合并同类项;同底数幂的乘法;完全平方公式。 专题:计算题。 分析:根据完全平方公式、合并同类项的法则、负指数次幂和同底数幂乘法的运算,计算后利用排除法求解. 解答:解:A、(a+b)2=a2+b2+2ab,错误; B、不是同类项,不能合并,错误;
C、2a﹣1=,错误; D、a2•a3=a5,正确. 故选D. 点评:本题综合考查了整式运算的多个考点,包括同底数幂的乘法,完全平方公式的计算,熟练掌握运算法则和公式是解题的关键.
3.下列说法:①过两点有且只有一条直线;②连接两点的线段叫两点的距离;③两点之间线段最短;④如果AB=BC,则点B是AC的中点.其中正确的有( ) A.1个 B.2个 C.3个 D.4个 考点:命题与定理;直线、射线、线段;线段的性质:两点之间线段最短;比较线段的长短。 分析:分析命题的正误,需要分别分析各题设是否能推出结论,从而利用排除法得出答案. 解答:解:①是直线的公理,正确;②连接两点的线段的长度叫两点的距离,所以错误;③是线段的性质,正确;④点B有可能不在AC上,故错误. 故选B. 点评:判断命题的正误关键是要熟悉课本中的性质定理.
4.下列图形中,是旋转对称图形,但不是中心对称图形的是( ) A.等腰梯形 B.等边三角形 C.平行四边形 D.直角梯形 考点:旋转对称图形;中心对称图形。 分析:根据旋转对称图形及中心对称图形的定义作答. 解答:解:A、等腰梯形不是旋转对称图形,错误; B、等边三角形是旋转对称图形,但不是中心对称图形,正确; C、平行四边形是中心对称图形,错误; D、直角梯形不是旋转对称图形,错误.