初学者串口通信的学习
- 格式:doc
- 大小:15.50 KB
- 文档页数:6
串口通信UART模块基本介绍串口通信(UART)是一种通过串行接口进行数据传输的通信协议和硬件实现方式。
它是计算机和外设之间最常用的通信方式之一,也是嵌入式系统和单片机等小型设备中常用的通信方式。
UART通过串行方式传输数据,即通过单一的数据线一次只能传输一个bit位。
在串口通信中,通常需要两条线,一条用于发送数据(TX),一条用于接收数据(RX)。
UART通常通过一对相互连接的芯片实现,称为UART芯片或UART模块。
它包含一个发送器和一个接收器。
发送器将要发送的数据从并行格式转换为串行格式,并通过发送线路发送出去。
接收器则接收到的串行数据转换为并行格式以供系统使用。
UART芯片通常由硬件设计工程师在集成电路中设计和实现。
UART通信具有以下特点和优势:1.简单易用:UART通信是一种非常简单和易用的通信协议。
它的实现简单,适用于各种不同的应用场景。
2.可靠性高:UART通信使用的是硬件实现,不受软件的控制和干扰。
它具有较高的可靠性和稳定性。
3. 速度灵活可调:UART通信可以根据不同的应用需求进行速度调整。
通常,UART通信支持的波特率范围很大,可以从几十bps到多Mbps。
4.支持半双工和全双工通信:UART通信可以支持半双工和全双工两种通信方式。
在半双工模式下,发送和接收不能同时进行;而在全双工模式下,可以同时进行发送和接收。
5.通信距离远:UART通信使用串行线路进行数据传输,因此可以通过扩展串行线路的长度来实现较远距离的通信。
6.多种应用:UART通信广泛应用于各种设备和领域,如计算机、嵌入式系统、单片机、电子设备、通信设备等。
值得注意的是,UART通信只是一个物理层的通信协议,它只负责数据的传输,而不负责数据的解码和处理。
因此,在使用UART通信时,通常需要配合其他协议或编码方式,如RS-232、RS-485、Modbus等,来完成完整的通信过程。
总结来说,UART通信是一种简单、可靠、灵活的串行通信协议和硬件实现方式。
串口通信rx和tx原理摘要:一、串口通信概述1.串口协议类型2.波特率设置二、串口通信原理1.串行通信与并行通信的区别2.串口通信的基本结构三、RX和TX在串口通信中的作用1.RX(接收)2.TX(发送)四、STM32串口通信实例1.硬件连接2.软件设置与调试五、常见问题及解决方案1.接收和发送LED不亮2.串口通信速率不足正文:一、串口通信概述串口通信是一种在单一传输线上将数据以比特位进行传输的通信方式,具有成本低、传输线简洁等优点。
串口通信协议有多种,如USB转TTL、RS232转TTL、RS485转TTL等。
这些协议在传输速度和距离方面有所不同,但都基于TTL逻辑电平。
在串口通信中,发送端和接收端需要遵循相同的格式(如起始位、停止位等)进行数据传输,并设置相同的波特率。
二、串口通信原理串口通信与并行通信相比,虽然传输速度较慢,但只需使用一对传输线即可完成数据传输。
串口通信的基本结构包括地线、TX(发送)和RX(接收)线。
由于串口通信是异步的,发送端和接收端可以在TX线上发送数据。
三、RX和TX在串口通信中的作用1.RX(接收):RX线用于接收来自发送端的数据。
在接收数据时,需要确保数据格式与发送端一致,以便正确解析数据。
2.TX(发送):TX线用于发送数据至接收端。
在发送数据时,同样需要遵循一定的数据格式,如起始位、数据位、停止位等。
四、STM32串口通信实例1.硬件连接:在使用STM32进行串口通信时,需要将两个STM32的TX 和RX引脚连接起来。
例如,将STM32_TX_1与STM32_RX_1相连,同时将STM32_TX_2与STM32_RX_2相连。
2.软件设置与调试:在STM32中,可以通过设置波特率、数据位、停止位等参数实现串口通信。
通常,波特率设置为9600,数据位为8位,停止位为1位。
在调试过程中,可以通过观察接收到的数据是否符合预期来验证通信是否正常。
五、常见问题及解决方案1.接收和发送LED不亮:如果接收和发送LED不亮,可能是由于未正确连接线路或波特率设置不匹配。
目前较为常用的串口有9针串口(DB9)和25针串口(DB25),通信距离较近时(<12m),可以用电缆线直接连接标准RS232端口(RS422、RS485较远),若距离较远,需附加调制解调器(MODEM)。
最为简单且常用的是三线制接法,即地、接收数据和发送数据三脚相连,本文只涉及到最为基本的接法,且直接用RS232相连。
1、DB9和DB25的常用信号脚说明2、RS232C串口通信接线方法(三线制)首先,串口传输数据只要有接收数据针脚和发送针脚就能实现:同一个串口的接收脚和发送脚直接用线相连,两个串口相连或一个串口和多个串口相连同一个串口的接收脚和发送脚直接用线相连对9针串口和25针串口,均是2与3直接相连;两个不同串口(不论是同一台计算机的两个串口或分别是不同计算机的串口)图2上面表格是对微机标准串行口而言的,还有许多非标准设备,如接收GPS数据或电子罗盘数据,只要记住一个原则:接收数据针脚(或线)与发送数据针脚(或线)相连,彼些交叉,信号地对应相接,就能百战百胜。
3、串口调试中要注意的几点:不同编码机制不能混接,如RS232C不能直接与RS422接口相连,市面上专门的各种转换器卖,必须通过转换器才能连接;线路焊接要牢固,不然程序没问题,却因为接线问题误事;串口调试时,准备一个好用的调试工具,如串口调试助手、串口精灵等,有事半功倍之效果;强烈建议不要带电插拨串口,插拨时至少有一端是断电的,否则串口易损坏。
RS232C标准串口接线方法(第二版)检验仪器与微机的通讯主要是以RS232C标准接口为主,而串口的接线方法也有一定的标准,在此谈谈几种常用的串口接法,仅作参考:一、标准接法1、9对9(包括9针对9孔,9孔对9孔,9针对9针):说明:以下的孔、针指串口线两端的串口,不过2、3有可能不交换2-------------33-------------24-------------65-------------56-------------47-------------88-------------72、9对25(包括9孔对25孔,9孔对25针)2-------------3 (备注:2、3有可能不交换)3-------------24-------------65-------------76-------------207-------------58-------------4二、特殊接法关于串口的非标准接口一般需要参考仪器说明书或者咨询仪器厂家才能获知,下面列举几种常见的特殊接法(每台仪器的具体串口具体接法可参考LIS事业部“仪器设置”文档库):1、9孔对9针(H100尿液分析仪)2--------------25--------------52、9孔对9孔(4-channel半自动血凝仪)9孔对9孔,一一对应,全接。
串口通信参数
串口通信是一种在计算机之间或是计算机与外部设备之间进行数据传输的方式。
串口通信可以实现数据的稳定的传输,但是在使用串口通信时需要设置参数,以保证数据传输的稳定和正确。
串口通信参数主要包括波特率、数据位、停止位和奇偶校验位。
这些参数直接影响了数据传输的速率、准确性和稳定性,正确设置这些参数可以提高串口通信的可靠性。
1. 波特率
波特率是指在单位时间内传输的数据位数,常见的波特率有9600、115200等。
当波特率设置过高时,数据传输的准确性可能会降低,而设置过低则会影响数据传输的速率。
通常情况下,选择一个适当的波特率可以保证串口通信的稳定和准确。
2. 数据位
数据位是指每个字符传输的位数,通常为5、6、7或8位。
数据位设置过低会影响数据传输的准确性,而设置过高则会浪费传输带宽。
一般来说,数据位应当和打印机、调制解调器等设备的设置保持一致。
3. 停止位
停止位是指字符传输完毕后等待一段时间后再停止传输的方式。
常用的停止位有1位和2位,需要根据具体的设备要求进行设置。
4. 奇偶校验位
奇偶校验位可以用来检测并纠正数据传输中的错误。
通常有奇校验和偶校验两种,需要根据具体设备的要求进行设置。
总之,正确设置串口通信参数可以保证数据传输的稳定和正确,提高串口通信的可靠性。
在进行串口通信时,需要根据具体的设备要求设置相应的参数,以保证数据的准确传输。
串口通信模块的信息和使用一、串口通信模块的基本信息1.主要功能:串口通信模块主要用于实现串行数据的传输和接收。
它能将并行数据转为串行数据进行传输,并将接收到的串行数据再转为并行数据。
可通过串口控制器来控制通信的波特率、数据位、停止位和奇偶校验位等参数。
2.常见串口接口:如RS-232、RS-485、TTL等。
RS-232是最为常见的串口接口,一般用于个人电脑和外设的连接。
RS-485是用于多点通信的串口接口,可同时连接多个设备。
TTL串口是指以逻辑电平为3.3V或5V的串口接口,一般用于单片机和其他外设的连接。
3.通信原理:串口通信模块通过串口控制器来实现数据的传输和接收。
发送端将并行数据转为串行数据,并通过串口线将数据发送给接收端。
接收端接收到数据后,通过串口控制器将串行数据转为并行数据。
二、串口通信模块的使用1.硬件连接:首先,需要将串口通信模块连接到设备的串口接口上。
通常需要使用串口线将模块的发送引脚连接到设备的接收引脚,同时将模块的接收引脚连接到设备的发送引脚。
还需要连接好地线,以提供电路的共地参考。
3.编程实现:使用串口通信模块时,需要编写相应的程序来实现数据的传输和接收。
对于发送数据,可以通过向串口控制器的发送寄存器写入需要发送的数据。
对于接收数据,可以通过读取串口控制器的接收寄存器来获取接收到的数据。
4.错误处理:在使用串口通信模块时,可能会出现一些错误情况,如数据丢失、通信超时等。
为了确保数据的可靠传输,需要进行相应的错误处理,如重新发送数据、增加数据校验等。
5.调试工具:在开发和调试串口通信模块时,可以使用串口调试工具来进行测试和调试。
串口调试工具可以显示串口发送和接收的数据,并提供相应的调试功能,如发送数据、接收数据、改变通信参数等。
6.其他功能:除了基本的数据传输和接收,串口通信模块还可以实现其他功能,如流控制、中断处理等。
流控制可以通过软件或硬件的方式来实现,用于控制数据的传输速率。
串⼝通信概念通信(Serial Communications)的概念⾮常简单,串⼝按位(bit)发送和接收。
与串⾏通信相对的是并⾏通信。
数据传输⼀般都是以字节传输的,⼀个字节8个位。
拿⼀个并⾏通信举例来说,也就是会有8根线,每⼀根线代表⼀个位。
⼀次传输就可以传⼀个字节,⽽串⼝通信,就是传数据只有⼀根线传输,⼀次只能传⼀个位,要传⼀个字节就需要传8次。
就像⼩虎队那⾸歌⼀样,把你的⼼,我的⼼,串⼀串,再烤⼀烤。
串⼝通信就是把数据串在⼀根线上传输,所以就叫串⼝吧。
通信⽅式⼀般情况下,设备之间的通信⽅式可以分成并⾏通信和串⾏通信两种。
它们的区别是:串⾏通信分类1、按照数据传送⽅向分为:单⼯:数据传输只⽀持数据在⼀个⽅向上传输;半双⼯:允许数据在两个⽅向上传输。
但是,在某⼀时刻,只允许数据在⼀个⽅向上传输,它实际上是⼀种切换⽅向的单⼯通信;它不需要独⽴的接收端和发送端,两者可以合并⼀起使⽤⼀个端⼝。
全双⼯:允许数据同时在两个⽅向上传输。
因此,全双⼯通信是两个单⼯通信⽅式的结合,需要独⽴的接收端和发送端。
2、按照通信⽅式分为:同步通信:带时钟同步信号传输。
⽐如:SPI,IIC通信接⼝。
异步通信:不带时钟同步信号。
⽐如:UART(通⽤异步收发器),单总线。
异步通信的两个关键:第⼀,数据单元——帧,它是双⽅约定好的数据格式;第⼆,波特率,它决定了‘帧’⾥每⼀位的时间长度。
异步通信的特点:不要求收发双⽅时钟的严格⼀致,实现容易,设备开销较⼩,但每个字符要附加2~3位⽤于起⽌位,各帧之间还有间隔,因此传输效率不⾼。
在同步通讯中,收发设备上⽅会使⽤⼀根信号线传输信号,在时钟信号的驱动下双⽅进⾏协调,同步数据。
例如,通讯中通常双⽅会统⼀规定在时钟信号的上升沿或者下降沿对数据线进⾏采样。
在异步通讯中不使⽤时钟信号进⾏数据同步,它们直接在数据信号中穿插⼀些⽤于同步的信号位,或者将主题数据进⾏打包,以数据帧的格式传输数据。
通讯中还需要双⽅规约好数据的传输速率(也就是波特率)等,以便更好地同步。
串口基本信息用一台电脑实验串口自发自收,实验前要将串口(以9针为例)的发送引脚(2脚)和接受引脚(3脚)短接。
三线连接:适用于计算机之间尤其是PC机和单片机之间的数据通信。
其连接信号对为(TxD,RxD)、(RxD,TxD)、(SG,SG)。
即发送数据TxD端和接受数据RxD端交叉连接,信号地SG对应连接。
七线交叉连接:适用于同型号的计算机之间的连接,如PC机间的数据通信。
其连接信号对为:(TxD,RxD)、(RxD,TxD)、(SG,SG)、(RTS,CTS)、(CTS,RTS)、(DSR.DTR)、(DTR,DSR)。
其中,TxD、RxD、SG与前面信号的含义相同,RTS为请求发送,CTS为准许发送,DSR为数据装置准备好,DTR为数据终端准备好。
在本地连接的微机系统中,RTS、CTS、DTR、DSR用作硬件联络控制信号。
目前使用的串口连接线有DB9和DB25两种连接器,用户可以国家使用的具体机器选择相应的连接器。
一个串口通讯类在/network/serialport.shtml。
PC机的RS-232接口的电平标准是-12V标示“1”,和+12V表示“0”,有些单片机的信号电平时TTL 型,即大于2.4v表示“1”,小于0.5v表示“0”,因此采用RS-232总线进行异步通信是,发送端和接受端要有一个电平转换接口。
串口通讯方法的三种实现串口是计算机上一种非常通用的设备通信协议。
大多数计算机包含两个基于RS232的串口。
串口同时也是仪器仪表设备通用的通信协议;很多GPIB兼容的设备也带有RS一232口。
同时,串口通信协议也可以用于获取远程采集设备的数据。
串口通信(Serial Communication),是指外设和计算机间,通过数据信号线、地线、控制线等,按位进行传输数据的一种通讯方式。
串口通信方便易行,应用广泛。
在Windows应用程序的开发中,我们常常需要面临与外围数据源设备通信的问题。
PIC单片机之RS232串口通信篇大家是否觉得这样一个单片机系统似乎缺少点什么呢?不错,本期我们将介绍单片机与电脑通讯,使单片机与PC 机能够联机工作。
单片机除了需要控制外围器件完成特定的功能外,在很多应用中还要完成单片机和单片机之间、单片机和外围器件之间,以及单片机和微机之间的数据交换和指令的传输,这就是单片机的通信。
单片机的通信方式可以分为并行通信和串行通信。
并行方式传送一个字节的数据至少需要8 条数据线。
一般来讲单片机与打印机等外围设备连接时,除8条数据线外,还要状态、应答等控制线,当传送距离过远时电线要求过多,成本会增加很多。
单片机的串行通信方法较为多样,传统的串行通信方式是通过单片机自带的串行口进行RS232 方式的通信。
串行通信是以一位数据线传送数据的位信号,即使加上几条通信联络控制线,也比并行通信用的线少。
因此,串行通信适合远距离数据传送,如大型主机与其远程终端之间,处于两地的计算机之间,采用串行通信就非常经济。
串行通信又分为异步传送和同步传送两种基本方式。
异步通讯:异步通信传输的数据格式一般由1个起始位、7 个或8 个数据位、1 到2 个停止位和一个校验位组成。
它用一个起始位表示字符的开始,用停止位表示字符的结束。
其每帧的格式如图1 所示。
在一帧格式中,先是一个起始位0,然后是8个数据位,规定低位在前,高位在后,接下来是奇偶校验位(可以省略),最后是停止位1。
用这种格式表示字符,则字符可以一个接一个地传送。
在异步通讯中,通信双方采用独立的时钟,起始位触发双方同步时钟。
在异步通信中CPU 与外设之间必须有几项约定,即每一帧位数,字符格式和波特率。
字符格式的规定是双方能够在对同一种0 和1 的数据串理解成同一种意义。
原则上字符格式可以由通讯的双方自由制定,但从通用、方便的角度出发,一般还是使用一些标准为好,如采用ASCII 标准。
同步通讯:在同步通讯中所传输的数据格式是由多个数据组成,每帧有一个或两个同步字符作为起始位以触发同步时钟开始发送或接收。
串口通信rx和tx原理
摘要:
1.串口通信简介
2.串口通信的RX 和TX 原理
3.串口通信的应用领域
正文:
串口通信是一种异步通信方式,它在通信过程中只需要使用一对传输线,即RX(接收)和TX(发送)。
这种通信方式在电子设备之间传输数据时被广泛采用,因为它具有简单、成本低、传输距离远等优点。
串口通信的RX 和TX 原理是利用不同的电平来表示数据。
在发送端,TX 线上的电平根据数据信号进行变化,从而将数据传输到接收端。
而在接收端,RX 线上的电平变化被识别为对应的数据信号。
在数据传输过程中,发送端和接收端都需要设置相同的波特率,以确保数据传输的准确性。
串口通信的应用领域非常广泛,包括但不限于以下几个方面:
1.计算机外设:如鼠标、键盘、打印机等设备,它们通常使用串口通信与计算机进行数据交换。
2.通信设备:如电话、modem 等,它们利用串口通信进行数据传输。
3.嵌入式系统:如单片机、微控制器等,它们通常使用串口通信与其他设备或上位机进行数据交互。
4.物联网:在物联网应用中,串口通信被广泛应用于各种传感器、执行器等设备之间的数据传输。
总之,串口通信作为一种基本的通信方式,在电子设备之间传输数据时发挥着重要作用。
#include
#define uchar unsigned char
#define uint unsigned int
sbit ring=P3^7;
sbit CASE1=P2^0;
sbit CASE2=P2^1;
sbit CASE3=P2^2;
sbit CASE4=P2^3;
uchar se=0,re=0; 定义send 和receive
uchar temp=0; 缓存区temp
void wait(uint cnt)
{
while(--cnt);
}
//串口发送程序
void send(uchar se)
{
SBUF=se; //发送数据
while(TI == 0);???TI发送的标志位
TI = 0;
}
//串口接收程序
uchar receive(void)
{
re=SBUF; //接收数据
while(RI==0);???RI接收的标志位
RI=0;
return re;
}
//串口初始化
void sinti(void)
{
SCON = 0x50;
TMOD |= 0x20;
TH1 = 0xFD;
TR1 = 1;
EA = 1;
ES = 1;
}
void delay(int cnt)
{
while(--cnt);
}
//主程序
int main (void)
{
int i;
sinti(); //串口初始化程序
ring=1;
while(1)
{
while (1)
{
if(CASE1==0)
{
send('a');
ring=0;
break;
}
if(CASE2==0)
{
send('b');
ring=0;
break;
}
if(CASE3==0)
{
send('c');
ring=0;
break;
}
if(CASE4==0)
{
send('d');
ring=0;
break;
}
}
if(ring==0)
{
wait(60000);
ring=1;
}
for(i=0;i<10000;i++);
}
}
//串口中断程序
void UART_SER (void) interrupt 4 //串行中断服务程序
{
if(RI) //判断是接收中断产生
{
RI=0; //标志位清零
temp=SBUF;
}
if(TI) //如果是发送标志位,清
零
TI=0;
}