中考数学重点难点专题提高训练
- 格式:doc
- 大小:237.00 KB
- 文档页数:11
初一上册有理数、整式的加减、一元一次方程、图形的初步认识。
(1)有理数:是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。
考察内容:复数以及混合运算(期中、期末必考计算)数轴、相反数、绝对值和倒数(选择、填空)。
(2)整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。
考察内容:①整式的概念和简单的运算,主要是同类项的概念和化简求值②完全平方公式,平方差公式的几何意义③利用提公因式发和公式法分解因式。
(3)一元一次方程:是初一学习重点内容,主要学习内容有(归纳、总结、延伸)应用题思维、步骤、文字题,根据已知条件求未知。
中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。
考察内容:①方程及方程解的概念②根据题意列一元一次方程③解一元一次方程。
题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。
(4)几何:角和线段,为下册学三角形打基础初一下册相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组和数据库的收集整理与描述。
(1)相交线和平行线:相交线和平行线是历年中考中常见的考点。
通常以填空,选择题形式出现。
分值为3-4分,难易度为易。
考察内容:①平行线的性质(公理)②平行线的判别方法③构造平行线,利用平行线的性质解决问题。
(2)平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。
考察主要内容:①考察平面直角坐标系内点的坐标特征②函数自变量的取值范围和球函数的值③考察结合图像对简单实际问题中的函数关系进行分析。
(3)二元一次方程组:中考分值约为3-6分,题型主要以选择,解答为主,难易度为中。
考察内容:①方程组的解法,解方程组②根据题意列二元一次方程组解经济问题。
(4)不等式和不等式组:中考试题中分值约为3-8分,选择,填空,解答题为主。
主要考察内容:①一元一次不等式(组)的解法,不等式(组)解集的数轴表示,不等式(组)的整数解等,题型以选择,填空为主。
中考数学重点难点专题练习-第15讲非常规思维问题一、轴对称/翻折的性质1. 关于某条直线对称的两个图形是全等形;2. 如果两个图形关于某条直线对称,那么对称轴是任意一对对应点连线段的垂直平分线;3. 对称轴上的任意一点与每一对对应点所连线段相等;4. 若对应线段或对应线段的延长线相交,则交点一定在对称轴上.二、梯形常见辅助线的作法三、圆幂定理四、正弦定理与余弦定理五、阿基米德折弦定理【例题1】(1)如图1,四边形ABCD是菱形,∠BAD=∠BCD=60°,当AC=12时,则△BCD的周长=______. (2)如图2,若四边形ABCD不是菱形,∠BAD=2∠ACB=2∠ACD=60°,AC=12,判断△BCD的周长是否发生变化,并说明理由。
(3)如图2,在四边形ABCD中,∠BAD=∠ACB=∠ACD=45°,AC=12,求△BCD的周长。
【变式1】已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.(1)探究线段BD、DE、EC三条线段之间的数量关系;(2)已知:如图(2),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.图(1) 图(2)【例题2】如图,四边形ABCD 中,AD ∥BC ,∠ABC +∠DCB =90°,且BC =2AD ,以AB 、BC 、DC 为边向外作正方形,其面积分别为S 1、S 2、S 3,若S 1=3,S 3=9,则S 2的值为_____.【变式2-1】如图所示.梯形ABCD 中,AB ∥CD ,∠A +∠B =90°,AB =p ,CD =q ,E ,F 分别为AB ,CD 的中点,求EF .【变式2-2】如图,在梯形ABCD 中,AD ∥BC ,3:8:3:3:::2AB BC CD DA ,求∠B 、∠D【例题3】如图,P A切⊙O于A,PBC是⊙O的割线,如果PB=2,PC=4,则P A的长为.【变式3-1】如图,CD是⊙O的直径,以D为圆心的圆与⊙O交于A、B两点,AB交CD于点E,CD交⊙D于P,已知PC=6,PE:ED=2:1,则AB的长为()A.B.C.D.【变式3-2】九年级学生小刚是一个喜欢看书的好学生,他在学习完第二十四章圆后,在家里突然看到爸爸的初中数学书上居然还有一个相交弦定理(圆内的两条相交弦,被交点分成的两条线段长的积相等),非常好奇,仔细阅读原来就是:P A•PB=PC•PD,小刚很想知道是如何证明的,可已证明部分污损看不清了,只看到辅助线的做法,分别连结AC、BD.聪明的你一定能帮他证出,请在图1中做出辅助线,并写出详细的证明过程.小刚又看到一道课后习题,如图2,AB是⊙O弦,P是AB上一点,AB=10cm,P A=4cm,OP=5cm,求⊙O的半径,愁坏了小刚,乐于助人的你肯定会帮助他,请写出详细的证明过程.【例题4】问题呈现:阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M是的中点,∴MA=MC……(1)请按照上面的证明思路,写出该证明的剩余部分;实践应用:(2)如图3,已知△ABC内接于⊙O,BC>AB>AC,D是的中点,依据阿基米德折弦定理可得图中某三条线段的等量关系为.(3)如图4,已知等腰△ABC内接于⊙O,AB=AC,D为AB上一点,连接DB,∠ACD=45°,AE⊥CD于点E,△BDC的周长为4+2,BC=2,请求出AC的长.【变式4-1】我们知道,如图1,AB是⊙O的弦,点F是的中点,过点F作EF⊥AB于点E,易得点E 是AB的中点,即AE=EB.⊙O上一点C(AC>BC),则折线ACB称为⊙O的一条“折弦”.(1)当点C在弦AB的上方时(如图2),过点F作EF⊥AC于点E,求证:点E是“折弦ACB”的中点,即AE=EC+CB.(2)当点C在弦AB的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE、EC、CB满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圆⊙O的半径为2,过⊙O 上一点P作PH⊥AC于点H,交AB于点M,当∠P AB=45°时,求AH的长.【例题5】阅读下列材料,并完成相应的任务.托勒密定理:托勒密(Ptolemy)(公元90年~公元168年),希腊著名的天文学家,他的要著作《天文学大成》被后人称为“伟大的数学书”,托勒密有时把它叫作《数学文集》,托勒密从书中摘出并加以完善,得到了著名的托勒密(Ptolemy)定理.托勒密定理:圆内接四边形中,两条对角线的乘积等于两组对边乘积之和.已知:如图1,四边形ABCD内接于⊙O,求证:AB•CD+BC•AD=AC•BD下面是该结论的证明过程:证明:如图2,作∠BAE=∠CAD,交BD于点E.∵∴∠ABE=∠ACD∴△ABE∽△ACD∴∴AB•CD=AC•BE∵∴∠ACB=∠ADE(依据1)∵∠BAE=∠CAD∴∠BAE+∠EAC=∠CAD+∠EAC即∠BAC=∠EAD∴△ABC∽△AED(依据2)……任务:(1)请继续完成上面的证明过程,并回答上述过程中的“依据1”和“依据2”分别是什么.(2)当圆内接四边形ABCD是矩形时,托勒密定理就是我们非常熟知的一个定理:.(3)如图3,四边形ABCD内接于⊙O,AB=3,AD=5,∠BAD=60°,点C为的中点,求AC的长.【变式5-1】问题探究:(1)已知:如图①,△ABC中请你用尺规在BC边上找一点D,使得点A到点BC的距离最短.(2)托勒密(Ptolemy)定理指出,圆的内接四边形两对对边乘积的和等于两条对角线的乘积.如图②,P是正△ABC外接圆的劣弧BC上任一点(不与B、C重合),请你根据托勒密(Ptolemy)定理证明:P A=PB+PC问题解决:(3)如图③,某学校有一块两直角边长分别为30m、60m的直角三角形的草坪,现准备在草坪内放置一对石凳及垃圾箱在点P处,使P到A、B、C三点的距离之和最小,那么是否存在符合条件的点P?若存在,请作出点P的位置,并求出这个最短距离(结果保留根号);若不存在,请说明理由.【例题6】如图①,在Rt△ABC中,以下是小亮探究与之间关系的方法:∵sin A=,sin B=,∴c=,c=,∴=根据你掌握的三角函数知识.在图②的锐角△ABC中,探究、、之间的关系,并写出探究过程.【变式6-1】观察与思考:阅读下列材料,并解决后面的问题在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作AD⊥BC于D(如图(1)),则,即AD=c sin B,AD=b sin C,于是c sin B=b sin C,即,同理有:,所以.即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图(2),△ABC中,∠B=45°,∠C=75°,BC=60,则∠A=;AC=;(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻.某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75°的方向上,求此时渔政204船距钓鱼岛A的距离AB.(结果精确到0.01,)【变式6-2】在△ABC中,cos A=,cos B=,cos C=,我们称为余弦定理,请用余弦定理完成下面的问题.请用余弦定理完成下面的问题:(1)如图,已知△DEF,∠E=60°,DE=4,DF=,求EF的长度;(2)通过合理的构造,试求cos105°.1. 如图,AB是圆O的直径,弦CD⊥AB于E,P是BA延长线上一点,连接PC交圆O于F,若PF=7,FC=13,P A:AE:EB=2:4:1,则CD长为.2. 定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦.阿基米德折弦定理:如图1,AB和BC组成圆的折弦,AB>BC,M是弧ABC的中点,MF⊥AB于F,则AF=FB+BC.如图2,△ABC中,∠ABC=60°,AB=8,BC=6,D是AB上一点,BD=1,作DE⊥AB交△ABC的外接圆于E,连接EA,则∠EAC=°.3. 如图,在Rt△ABC中,∠ACB=90°,点D是AC上一点,以CD为直径的圆与AB相切于点E,若CD=3,tan∠AED=,则AD的长为.4. 已知:如图,直角梯形ABCD中AD∥BC,∠A=90°,CD=CB=2AD.点Q是AB边中点,点P在CD边上运动,以点P为直角顶点作直角∠MPN,∠MPN的两边分别与AB边、CB边交于点M、N.(1)若点P与点D重合,点M在线段AQ上,如图(1).求证:.(2)若点P是CD中点,点M在线段BQ上,如图(2).线段MQ、CN、BC的数量关系是:,并证明你的猜想.5. 已知:如图所示,E是等腰梯形一腰CD的中点,EF⊥AB,垂足为F,求证:S梯形ABCD=AB•EF.6. 如图,在⊙O中,AB=AC,点D是上一动点(点D不与C、B重合),连接DA、DB、DC,∠BAC=120°.(1)若AC=4,求⊙O的半径;(2)写出DA、DB、DC之间的关系,并证明.7. 如图:已知点A、B、C、D顺次在圆O上,AB=BD,BM⊥AC,垂足为M.证明:AM=DC+CM.8. 小明学习了垂径定理,做了下面的探究,请根据题目要求帮小明完成探究.(1)更换定理的题设和结论可以得到许多真命题.如图1,在⊙O中,C是劣弧AB的中点,直线CD ⊥AB于点E,则AE=BE.请证明此结论;(2)从圆上任意一点出发的两条弦所组成的折线,成为该圆的一条折弦.如图2,P A,PB组成⊙O的一条折弦.C是劣弧AB的中点,直线CD⊥P A于点E,则AE=PE+PB.可以通过延长DB、AP相交于点F,再连接AD证明结论成立.请写出证明过程;(3)如图3,P A.PB组成⊙O的一条折弦,若C是优弧AB的中点,直线CD⊥P A于点E,则AE,PE 与PB之间存在怎样的数量关系?写出结论,不必证明.9. 阅读与思考:阿基米德(公元前287年一公元前212年),伟大的古希腊哲学家、百科式科学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人,阿基米德流传于世的著作有10余种,多为希腊文手稿下面是《阿基米德全集》中记载的一个命题:AB是⊙O的弦,点C在⊙O上,且CD⊥AB于点D,在弦AB上取点E,使AD=DE,点F是上的一点,且=,连接BF可得BF=BE.(1)将上述问题中弦AB改为直径AB,如图1所示,试证明BF=BE;(2)如图2所示,若直径AB=10,EO=OB,作直线l与⊙O相切于点F.过点B作BP⊥l于点P.求BP的长.10. 阅读下面的材料:如图(1),在以AB为直径的半圆O内有一点P,AP、BP的延长线分别交半圆O于点C、D.求证:AP•AC+BP•BD=AB2.证明:连接AD、BC,过P作PM⊥AB,则∠ADB=∠AMP=90°,∴点D、M在以AP为直径的圆上;同理:M、C在以BP为直径的圆上.由割线定理得:AP•AC=AM•AB,BP•BD=BM•BA,所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2.当点P在半圆周上时,也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么:(1)如图(2)当点P在半圆周外时,结论AP•AC+BP•BD=AB2是否成立?为什么?(2)如图(3)当点P在切线BE外侧时,你能得到什么结论?将你得到的结论写出来.11. 已知⊙O半径为R(1)如图1,过⊙O内一点P作弦AB,连接OP.求证:P A•PB=R2﹣OP2.(2)如图2,过⊙O外一点P,作割线P AB,求证:P A•PB=OP2﹣R2.12. (1)在△ABC中,角A、B、C所对的边分别为a,b,c,试利用所学知识证明:S△ABC=ab sin C=ac sin B=bc sin A.(2)在数学中人们把(1)的结论称之为正弦定理的三角形面积公式,它在数学中有着广泛的应用;请利用此结论证明正弦定理:==.(3)探索应用:在△ABC中,∠BAC=120°,AD为∠BAC的内角平分线,试证明:+=(可能用到的知识:sin60°=sin120°).13. 已知:如图1,在锐角△ABC中,AB=c,BC=a,AC=b,AD⊥BC于D.在Rt△ABD中,sin∠B=,则AD=c sin∠B;在Rt△ACD中,sin∠C=,则AD=;所以,c sin∠B=b sin∠C,即,,进一步即得正弦定理:.参照利用正弦定理解答下题:如图2,在△ABC中,∠B=75°,∠C=45°,BC=2,求AB的长.中考数学重点难点专题练习-第15讲非常规思维问题一、轴对称/翻折的性质1. 关于某条直线对称的两个图形是全等形;2. 如果两个图形关于某条直线对称,那么对称轴是任意一对对应点连线段的垂直平分线;3. 对称轴上的任意一点与每一对对应点所连线段相等;4. 若对应线段或对应线段的延长线相交,则交点一定在对称轴上.二、梯形常见辅助线的作法三、圆幂定理四、正弦定理与余弦定理五、阿基米德折弦定理【例题1】(1)如图1,四边形ABCD是菱形,∠BAD=∠BCD=60°,当AC=12时,则△BCD的周长=______. (2)如图2,若四边形ABCD不是菱形,∠BAD=2∠ACB=2∠ACD=60°,AC=12,判断△BCD的周长是否发生变化,并说明理由。
用二次函数解决实际问题考点一用二次函数解决增长率问题考点二用二次函数解决销售问题考点三用二次函数解决拱桥问题考点四用二次函数解决喷水问题考点五用二次函数解决投球问题考点六用二次函数解决图形问题考点七用二次函数解决图形运动问题考点一用二次函数解决增长率问题例题:(2022·全国·九年级课时练习)某工厂实行技术改造,产量年均增长率为x,已知2020年产量为1万件,那么2022年的产量y(万件)与x间的关系式为___________.【变式训练】1.(2022·江西萍乡·七年级期末)某厂有一种产品现在的年产量是2万件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y(万件)将随计划所定的x的值而确定,那么y与x之间的关系式应表示为________.2.(2022·全国·九年级专题练习)为积极响应国家“旧房改造”工程,该市推出《加快推进旧房改造工作的实施方案》推进新型城镇化建设,改善民生,优化城市建设.(1)根据方案该市的旧房改造户数从2020年底的3万户增长到2022年底的4.32万户,求该市这两年旧房改造户数的平均年增长率;(2)该市计划对某小区进行旧房改造,如果计划改造300户,计划投入改造费用平均20000元/户,且计划改造的户数每增加1户,投入改造费平均减少50元/户,求旧房改造申报的最高投入费用是多少元?考点二用二次函数解决销售问题例题:(2021·宁夏·吴忠市利通区扁担沟中心学校九年级期中)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为件:(2)当每件商品降价多少元时,该商店每天销售利润最大?【变式训练】1.(2021·广东·陆丰市甲东镇钟山中学九年级期中)某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现:当销售单价是25元/件时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.求销售单价为多少元时,该文具每天的销售利润最大;最大利润为多少元?2.(2022·山东德州·九年级期末)某商厦灯具部投资销售一种进价为每件20元的护眼台灯,销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并直接写出自变量x的取值范围.(2)如果想要每月获得的利润为2000元,那么每月的单价定为多少元?(3)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?考点三用二次函数解决拱桥问题例题:(2022·四川广安·中考真题)如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降________米,水面宽8米.【变式训练】1.(2022·山东德州·九年级期末)如图是抛物线型拱桥,当拱顶高距离水面2m时,水面宽4m,如果水面上升1.5m ,则水面宽度为________.2.(2022·甘肃定西·模拟预测)有一个抛物线的拱形桥洞,桥洞离水面的最大高度为4m ,跨度为10m ,如图所示,把它的图形放在直角坐标系中.(1)求这条抛物线所对应的函数关系式;(2)如图,在对称轴右边1m 处,桥洞离水面的高是多少?考点四 用二次函数解决喷水问题例题:(2022·河南·中考真题)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P 距地面0.7m ,水柱在距喷水头P 水平距离5m 处达到最高,最高点距地面3.2m ;建立如图所示的平面直角坐标系,并设抛物线的表达式为()2y a x h k =-+,其中x (m )是水柱距喷水头的水平距离,y (m )是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m,身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.【变式训练】1.(2022·四川南充·中考真题)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高_______________m时,水柱落点距O点4m.2.(2022·浙江台州·中考真题)如图1,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度为h(单位:m).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系DE ,竖直高度为EF的中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度3m长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车到l的距离OD为d(单位:m).(1)若 1.5h = 0.5m EF =①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC ;②求下边缘抛物线与x 轴的正半轴交点B 的坐标;③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d 的取值范围;(2)若1m EF =.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h 的最小值.考点五 用二次函数解决投球问题例题:(2022·上海市张江集团中学八年级期末)如图,以地面为x 轴,一名男生推铅球,铅球行进高度y (单位:米)与水平距离x (单位:米)之间的关系是21251233y x x =-++.则他将铅球推出的距离是___米.【变式训练】 1.(2022·重庆实验外国语学校八年级期末)小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为21(3)9y x k =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离.已知该同学出手点A 的坐标为16(0,)9,则实心球飞行的水平距离OB 的长度为( )A .7mB .7.5mC .8mD .8.5m2.(2022·贵州安顺·九年级阶段练习)如图是小明站在点O 处长抛篮球的路线示意图,球在点A 处离手,且1m OA =.第一次在点D 处落地,然后弹起在点E 处落地,篮球在距O 点6m 的点B 处正上方达到最高点,最高点C 距地面的高度4m BC =,点E 到篮球框正下方的距离2m EF =,篮球框的垂直高度为3m .据试验,两次划出的抛物线形状相同,但第二次的最大高度为第一次的12,以小明站立处点O 为原点,建立如图所示的平面直角坐标系.(1)求抛物线ACD 的函数解析式;(2)求篮球第二次的落地点E 到点O 的距离.(结果保留整数)(3)若小明想一次投中篮球框,他应该向前走多少米?(结果精确到0.1m )(参考数据:36 2.45≈)考点六 用二次函数解决图形问题例题:(2021·江苏镇江·九年级期中)如图,利用一面墙(墙长26米),用总长度49米的栅栏(图中实线部分)围成一个矩形围栏ABCD ,且中间共留两个1米的小门,设栅栏BC 长为x 米.(1)AB = 米(用含x 的代数式表示);(2)若矩形围栏ABCD 面积为210平方米,求栅栏BC 的长;(3)能围成比210平方米更大的矩形围栏ABCD吗?如果能,请求出最大面积;如果不能,请说明理由.【变式训练】1.(2021·宁夏·吴忠市利通区扁担沟中心学校九年级期中)如图,利用一面墙(墙长10米)用20米的篱笆国成一个矩形场地.设垂直于墙的一边为x米.矩形场地的面积为s平方米.(1)求s与x的函数关系式,并求出x的取值范围;(2)若矩形场地的面枳最大,应该如何设计长与宽.2.(2022·山东烟台·九年级期中)某城门的截面由一段抛物线和一个正方形(OMNE为正方形)的三条边围成,已知城门宽度为4米,最高处距地面6米.如图1所示,现以O点为原点,OM所在的直线为x轴,OE所在的直线为y轴建立直角坐标系.(1)求上半部分抛物线的函数表达式,并写出其自变量的取值范围;(2)有一辆宽3米,高4.5米的消防车需要通过该城门,请问该消防车能否正常进入?(3)为营造节日气氛,需要临时搭建一个矩形“装饰门”ABCD,该“装饰门”关于抛物线对称轴对称,如图2所示,其中AB,AD,CD为三根承重钢支架,A、D在抛物线上,B,C在地面上,已知钢支架每米70元,问搭建这样一个矩形“装饰门”,仅钢支架一项,最多需要花费多少元?考点七 用二次函数解决图形运动问题例题:(2022·全国·九年级课时练习)如图1 在Rt ABC △中 90ABC ∠=︒ 已知点P 在直角边AB 上 以1cm/s的速度从点A 向点B 运动,点Q 在直角边BC 上,以2cm/s 的速度从点B 向点C 运动.若点P ,Q 同时出发,当点P 到达点B 时,点Q 恰好到达点C 处.图2是BPQ 的面积()2cm y 与点P 的运动时间()s t 之间的函数关系图像(点M 为图像的最高点),根据相关信息,计算线段AC 的长为( )A .35cmB .45cmC .55cmD .65cm【变式训练】 1.(2022·宁夏·银川唐徕回民中学二模)如图,在矩形ABCD 中,BC >CD ,BC 、CD 分别是一元二次方程x 2-7x +12=0的两个根,连接BD ,并过点C 作CN ⊥BD ,垂足为N ,点P 从B 出发,以每秒1个单位的速度沿BD 方向匀速运动到D 为止;点M 沿线段DA 以每秒1个单位的速度由点D 向点A 匀速运动,到点A 为止,点P 与点M 同时出发,设运动时间为t 秒(t >0).(1)求线段CN 的长;(2)在整个运动过程中,当t 为何值时△PMN 的面积取得最大值,最大值是多少?2.(2021·北京·九年级期中)如图,Rt ABCAC=8∠=︒6C∆中90BC=动点P,Q分别从A,C两点同时出发,点P沿边AC向C以每秒3个单位长度的速度运动,点Q沿边BC向B以每秒4个单位长度的速度t s.运动,当P,Q到达终点C,B时,运动停止.设运动时间为()(1)①当运动停止时,t的值为.②设P,C之间的距离为y,则y与t满足(选填“正比例函数关系”,“一次函数关系”,“二次函数关系” ).∆的面积为S,(2)设PCQ①求S的表达式(用含有t的代数式表示);②求当t为何值时,S取得最大值,这个最大值是多少?一、选择题1.(2022·黑龙江·鸡西市第一中学校九年级期末)某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,则每件的定价为()A.21元B.22元C.23元D.24元2.(2022·全国·九年级课时练习)如图,一抛物线型拱桥,当拱顶到水面的距离为2m时,水面宽度为4m.那么水位下降1m时,水面的宽度为()A 6mB .26mC .)64mD .()264m 3.(2022·全国·九年级课时练习)从某幢建筑物2.25米高处的窗口A 用水管向外喷水,水流呈抛物线,如果抛物线的最高点M 离墙1米,离地面3米,那么水流落点B 与墙的距离OB 是( )A .1米B .2米C .3米D .4米4.(2022·河南·辉县市城北初级中学一模)如果△ABC 和△DEF 都是边长为2的等边三角形,他们的边BC ,EF 在同一条直线l 上,点C ,E 重合,现将△ABC 沿着直线l 向右移动,直至点B 与点F 重合时停止移动,在此过程中,设点B 移动的距离为x ,两个三角形重叠部分的面积为y ,则y 随x 变化的函数图像大致为( )A .B .C .D . 二、填空题5.(2022·上海宝山·九年级期末)据了解,某蔬菜种植基地2019年的蔬菜产量为100万吨,2021年的蔬菜x x ,那么y关于x的函数解析式为产量为y万吨,如果2019年至2021年蔬菜产量的年平均增长率为(0)_________.6.(2021·广东揭阳·九年级期末)用长12m的铝合金条制成矩形窗框(如图所示),那么这个窗户的最大透光面积是___________(中间横框所占的面积忽略不计)7.(2022·湖北襄阳·一模)如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t-5t2,则小球飞出______s时,达到最大高度.8.(2022·山西·一模)某物理兴趣小组对一款饮水机的工作电路展开研究,将变阻器R的滑片从一端滑到另一端,绘制出变阻器R消耗的电功率P随电流I变化的关系图象如图所示,该图象是经过原点的一条抛物线的一部分,则变阻器R消耗的电功率P最大为__________W.三、解答题9.(2022·内蒙古北方重工业集团有限公司第一中学三模)北重一中计划利用一片空地建一个学生自行车车棚,其中一面靠墙,墙的最大可用长度为12米.另三边用总长为26米的木板材料围成.车棚形状如图中的矩形ABCD。
中考数学重点难点专题练习-第12讲运动路径长度问题想要对运动路径长度问题掌握得信手拈来,那么建议你对以下知识点进行提前学习会更好:1.《隐圆模型》2.《共顶点模型》-也可称“手拉手模型”3.《主从联动模型》-也可称“瓜豆原理模型”4.《旋转问题》—本系列的第二讲中所阐述的旋转相似模型此外,还需要明白的动点类型还有:5.线段垂直平分线——到线段两端点距离相等的动点一定在这条线段的垂直平分线上6.角平分线——到角两边距离相等的动点一定在这个角的角平分线上7.三角形中位线——动点到某条线的距离恒等于某平行线段的一半8.平行线分线段成比例——动点到某条线的距离与某平行线段成比例9.两平行线的性质——平行线间的距离,处处相等Ps强烈建议:如果您之前没有对上述模型进行过学习,建议您先到学科网搜索下载独家精品出版的:《中考数学几何模型能力提升篇》专题系列资料包,您一定可以大有提升!一、路径为圆弧型解题策略:①作出隐圆,找到圆心②作出半径,求出定长解题关键:通过《隐圆模型》中五种确定隐圆的基本条件作出隐圆,即可轻易得出结论.二、路径为直线型解题策略:①利用平行定距法或者角度固定法确定动点运动路径为直线型②确定动点的起点与终点,计算出路径长度即可解题关键:解题过程中常常出现中位线,平行线分线段成比例,相似证动角恒等于顶角等知识点三、路径为往返型解题策略:①通常为《主从联动模型》的衍生版②确定动点的起点与终点,感知运动过程中的变化③找出动点运动的最远点解题关键:解题过程中常常出现相似转线段长、《主从联动模型》中的滑动模型等【例题1】如图,等腰Rt△AOB中,∠AOB=90°,OA=,⊙O与AB相切,分别交OA、OB于N、M,以PB为直角边作等腰Rt△BPQ,点P在弧MN上由点M运动到点N,则点Q运动的路径长为()A.B.C.D.【例题2】已知⊙O,AB是直径,AB=4,弦CD⊥AB且过OB的中点,P是劣弧BC上一动点,DF垂直AP于F,则P从C运动到B的过程中,F运动的路径长度()A.πB.C.πD.2【例题3】如图,⊙O的半径为1,弦AB=1,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC的最大面积是.【例题4】如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP 交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A. B. C. 1 D. 2【例题5】已知:如图1,平面直角坐标系中,点A的坐标是(0,6),点B在x轴上,且∠BAO=30°,点D是线段OA上的一点,以BD为边向下作等边△BDE.(1)如图2,当∠ODB=45°时,求证:OE平分∠BED.(2)如图3,当点E落在y轴上时,求出点E的坐标.(3)利用图1探究并说理:点D在y轴上从点A向点O滑动的过程中,点E也会在一条直线上滑动;并直接写出点E运动路径的长度.【例题6】如图,Rt△ABC中,BC=4,AC=8,Rt△ABC的斜边在x轴的正半轴上,点A与原点重合,随着顶点A由O点出发沿y轴的正半轴方向滑动,点B也沿着x轴向点O滑动,直到与点O重合时运动结束.在这个运动过程中,点C运动的路径长是.【例题7】如图1,已知抛物线y=x2+bx+c经过原点O,它的对称轴是直线x=2,动点P从抛物线的顶点A 出发,在对称轴上以每秒1个单位的速度向上运动,设动点P运动的时间为t杪,连结OP并延长交抛物线于点B,连结OA,AB.(1)求抛物线的函数解析式;(2)当△AOB为直角三角形时,求t的值;(3)如图2,⊙M为△AOB的外接圆,在点P的运动过程中,点M也随之运动变化,请你探究:在1≤t≤5时,求点M经过的路径长度.【例题8】如图,OM⊥ON,A、B分别为射线OM、ON上两个动点,且OA+OB=5,P为AB的中点.当B由点O向右移动时,点P移动的路径长为()A.2 B.2C.D.5【例题9】如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0),在整个运动过程中,求出线段PQ中点M所经过的路径长.【例题10】(1)如图1,已知AB=2,点D是等腰Rt△ABC斜边AC上一动点,以BD为一边向右下方作等边△BDE,当点D由点A运动到点C时,求点E运动的路径长;(2)如图2,已知AB=2,点D是等腰Rt△ABC斜边AC上一动点,以BD为一边向右下方作以E为直角顶点的等腰Rt△BDE,当点D由点A运动到点C时,求点E运动的路径长;(3)如图3,已知AB=2,点D是等腰Rt△ABC斜边AC上一动点,以BD为一边向右下方作以D为直角顶点的等腰Rt△BDE,当点D由点A运动到点C时,求点E运动的路径长;(4)如图4,已知AB=2,点D是等腰Rt△ABC斜边AC上一动点,以BD为一边向右下方作以D为直顶点的等腰△BDE,且∠BDE=120°,当点D由点A运动到点C时,求点E运动的路径长;【例题11】如图,已知扇形AOB中,OA=3,∠AOB=120°,C是在上的动点.以BC为边作正方形BCDE,当点C从点A移动至点B时,点D经过的路径长是________.1.如图,在等腰Rt△ABC中,AC=BC=,点P在以斜边AB为直径的半圆上,M为PC的中点,当点P沿半圆从点A运动至点B时,点M运动的路径长是.2.已知线段AB=8,C、D是AB上两点,且AC=2,BD=4,P是线段CD上一动点,在AB同侧分别作等腰三角形APE和等腰三角形PBF,M为线段EF的中点,若∠AEP=∠BFP,则当点P由点C移动到点D时,点M移动的路径长度为.3.已知线段AB=10,P是线段AB上一动点,在AB同侧分别作等边三角形APE和等边三角形PBF,G为线段EF的中点,点P由点A移动到点B时,G点移动的路径长度为.4.如图,AB为⊙O的直径,AB=3,弧AC的度数是60°,P为弧BC上一动点,延长AP到点Q,使AP•AQ =AB2.若点P由B运动到C,则点Q运动的路径长为.5.如图,矩形ABCD中,AB=4,AD=6,点E在边AD上,且AE:ED=1:2.动点P 从点A出发,沿AB 运动到点B停止.过点E作EF⊥PE交射线BC于点F.设点M是线段EF的中点,则在点P运动的整个过程中,点M的运动路径长为________.6.等边三角形ABC的边长为2,在AC,BC边上各有一个动点E,F,满足AE=CF,连接AF,BE相交于点P.(1)∠APB的度数;(2)当E从点A运动到点C时,试求点P经过的路径长;(3)连结CP,直接写出CP长度的最小值.7.如图,AB为半圆O的直径,AB=2,C,D为半圆上两个动点(D在C右侧),且满足∠COD=60°,连结AD,BC相交于点P若点C从A出发按顺时针方向运动,当点D与B重合时运动停止,则点P所经过的路径长为________.8.如图,A(﹣3,0),B(0,3),C(﹣1,4),P,C,M按逆时针顺序排列,动点P在线段AB上,∠C=90°,∠CPM=30°,请求出当P点从A运动到B点时,点M运动的路径时什么?并求出M点运动路径长度.9.如图,矩形ABCD中,AB=6,BC=6,动点P从点A出发,以每秒个单位长度的速度沿线段AD 运动,动点Q从点D出发,以每秒2个单位长度的速度沿折线段D﹣O﹣C运动,已知P、Q同时开始移动,当动点P到达D点时,P、Q同时停止运动.设运动时间为t秒.(1)当t=1秒时,求动点P、Q之间的距离;(2)若动点P、Q之间的距离为4个单位长度,求t的值;(3)若线段PQ的中点为M,在整个运动过程中;直接写出点M运动路径的长度为.10.(2019秋•江岸区校级月考)如图,正△ABC中,AB=2,AD⊥BC于D,P,Q分别是AB,BC上的动点,且PQ=AD,点M在PQ的右上方且PM=QM,∠M=120°,当P从点A运动到点B时,M运动的路径长为.(看成固定三角板滑动处理/或反其道而行之)11.如图,在四边形ABCD中,∠C=60°,∠A=30°,CD=BC.(1)求∠B+∠D的度数.(2)连接AC,探究AD,AB,AC三者之间的数量关系,并说明理由.(3)若BC=2,点E在四边形ABCD内部运动,且满足DE2=CE2+BE2,求点E运动路径的长度.12.已知在扇形AOB中,圆心角∠AOB=120°,半径OA=OB=8.(1)如图1,过点O作OE⊥OB,交弧AB于点E,再过点E作EF⊥OA于点F,则FO的长是,∠FEO=°;(2)如图2,设点P为弧AB上的动点,过点P作PM⊥OA于点M,PN⊥OB于点N,点M,N分别在半径OA,OB上,连接MN,则①求点P运动的路径长是多少?②MN的长度是否是定值?如果是,请求出这个定值;若不是,请说明理由;(3)在(2)中的条件下,若点D是△PMN的外心,直接写出点D运动的路经长.13.如图,AB为⊙O的直径,且AB=4,点C在半圆上,OC⊥AB,垂足为点O,P为半圆上任意一点,过P点作PE⊥OC于点E,设△OPE的内心为M,连接OM、PM.(1)求∠OMP的度数;(2)当点P在半圆上从点B运动到点A时,求内心M所经过的路径长.14.(2019•兴化市模拟)正方形ABCD的边长为4,P为BC边上的动点,连接AP,作PQ⊥P A交CD边于点Q.当点P从B运动到C时,线段AQ的中点M所经过的路径长()A.2 B.1 C.4 D.15.(2019•武汉模拟)如图,半径为2cm,圆心角为90°的扇形OAB的弧AB上有一运动的点P,从点P 向半径OA引垂线PH交OA于点H.设△OPH的内心为I,当点P在弧AB上从点A运动到点B时,内心I所经过的路径长为()A.πB.πC.πD.π16.如图,BC是⊙O的直径,BC=4,M、N是半圆上不与B、C重合的两点,且∠MON=120°,△ABC的内心为E点,当点A在上从点M运动到点N时,点E运动的路径长是()A.B.C.D.17.(2020•河北模拟)如图,在正方形ABCD中,AB=1,P是边BC上的一个动点,由点B开始运动,运动到C停止.连接AP,以AP为直角边向右侧作等腰直角三角形,另一个顶点为Q.则点P从B运动到C的过程中,点Q的运动路径长为()A.πB.C.D.118.无论a取什么实数,点P(a﹣1,2a﹣3)都在直线l上.Q(m,n)是直线l上的点,则(2m﹣n+3)2的值等于.19.如图,已知点C是以AB为直径的半圆的中点,D为弧AC上任意一点,过点C作CE⊥BD于点E,连接AE,若AB=4,则AE的最小值为.20.如图,正方形OABC的边长为2,以O为圆心,EF为直径的半圆经过点A,连接AE,CF相交于点P,将正方形OABC从OA与OF重合的位置开始,绕着点O逆时针旋转90°,交点P运动的路径长是.21.如图,在平面直角坐标系中,点A(8,0),点P(0,m),将线段P A绕着点P逆时针旋转90°,得到线段PB,连接AB,OB,则BO+BA的最小值为.22.如图,P为边长为2的正方形ABCD的边BC上一动点,将线段DP绕P逆时针旋转90°得到线段PE (E为D的对应点),M为线段PE的中点,当点P从点C运动到点B的过程中,点M的运动路径长为____________.23.等边△ABC的边长为18,在AC,BC边上各取一点D,E,连接AE,BD相交于点P,若AE=BD,当D从点A运动到点C时,点P所经过的路径长为.24.(2020•武汉模拟)如图,定直线l经过圆心O,P是半径OA上一动点,AC⊥l于点C,当半径OA绕着点O旋转时,总有OP=OC,若OA绕点O旋转60°时,P、A两点的运动路径长的比值是.25.如图,已知正方形ABCD的边长为4,点P是AB边上一个动点,连接CP,过点P作PC的垂线交AD 于点E,以PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE=;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.26.如图,正方形ABCD的边长为2,动点E从点A出发,沿边AB﹣BC向终点C运动,以DE为边作正方形DEFG(点D、E、F、G按顺时针方向排列).设点E运动速度为每秒1个单位,运动的时间为x秒.(1)如图1,当点E在AB上时,求证:点G在直线BC上;(2)设正方形ABCD与正方形DEFG重叠部分的面积为S,求S与x之间的函数关系式;(3)直接写出整个运动过程中,点F经过的路径长.想要对运动路径长度问题掌握得信手拈来,那么建议你对以下知识点进行提前学习会更好:10.《隐圆模型》11.《共顶点模型》-也可称“手拉手模型”12.《主从联动模型》-也可称“瓜豆原理模型”13.《旋转问题》—本系列的第二讲中所阐述的旋转相似模型此外,还需要明白的动点类型还有:14.线段垂直平分线——到线段两端点距离相等的动点一定在这条线段的垂直平分线上15.角平分线——到角两边距离相等的动点一定在这个角的角平分线上16.三角形中位线——动点到某条线的距离恒等于某平行线段的一半17.平行线分线段成比例——动点到某条线的距离与某平行线段成比例18.两平行线的性质——平行线间的距离,处处相等Ps强烈建议:如果您之前没有对上述模型进行过学习,建议您先到学科网搜索下载独家精品出版的:《中考数学几何模型能力提升篇》专题系列资料包,您一定可以大有提升!一、路径为圆弧型解题策略:①作出隐圆,找到圆心②作出半径,求出定长解题关键:通过《隐圆模型》中五种确定隐圆的基本条件作出隐圆,即可轻易得出结论.二、路径为直线型解题策略:①利用平行定距法或者角度固定法确定动点运动路径为直线型②确定动点的起点与终点,计算出路径长度即可解题关键:解题过程中常常出现中位线,平行线分线段成比例,相似证动角恒等于顶角等知识点三、路径为往返型解题策略:①通常为《主从联动模型》的衍生版②确定动点的起点与终点,感知运动过程中的变化③找出动点运动的最远点解题关键:解题过程中常常出现相似转线段长、《主从联动模型》中的滑动模型等【例题1】如图,等腰Rt△AOB中,∠AOB=90°,OA=,⊙O与AB相切,分别交OA、OB于N、M,以PB为直角边作等腰Rt△BPQ,点P在弧MN上由点M运动到点N,则点Q运动的路径长为()A.B.C.D.【分析】解题标签:《共顶点模型》中的旋转相似、《隐圆模型》中的动点定长模型、《主从联动模型》【解析】如图,连接OP,AQ,设⊙O与AB相切于C,连接OC,则OC⊥AB,∵OA=OB,∠AOB=90°,OB=,∴AB=2,OP=OC=AB=,∵△ABO和△QBP均为等腰直角三角形,∴=,∠ABO=∠QBP=45°,∴=,∠ABQ=∠OBP,∴△ABQ∽△OBP,∴∠BAQ=∠BOP,=,即=,∴AQ=,又∵点P在弧MN上由点M运动到点N,∴0°≤∠BOP≤90°,∴0°≤∠BAQ≤90°,∴点Q的运动轨迹为以A为圆心,AQ长为半径,圆心角为90°的扇形的圆弧,∴点Q运动的路径长为=,故选:D.[本题用《主从联动模型》来接替会更快得到结果]【例题2】已知⊙O,AB是直径,AB=4,弦CD⊥AB且过OB的中点,P是劣弧BC上一动点,DF垂直AP于F,则P从C运动到B的过程中,F运动的路径长度()A.πB.C.πD.2【分析】解题标签:“定边对直角”确定隐圆模型【解析】作DQ⊥AC于Q,如图,当P点在C点时,F点与Q重合;当P点在B点时,F点与E点重合,∵∠AFD=90°,∴点F在以AD为直径的圆上,∴点F运动的路径为,∵弦CD⊥AB且过OB的中点,∴OE=OD,CE=DE=,AC=AC=2,∴∠DOE=60°,∴∠DAC=60°,∴△ACD为等边三角形,∴MQ和ME为中位线,∴MQ=,∠QME=60°,∴F运动的路径长度==.故选:A.【例题3】如图,⊙O的半径为1,弦AB=1,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC的最大面积是.【分析】解题标签:“定边对定角”确定隐圆模型【解析】连结OA、OB,作△ABC的外接圆D,如图1,∵OA=OB=1,AB=1,∴△OAB为等边三角形,∴∠AOB=60°,∴∠APB=∠AOB=30°,∵AC⊥AP,∴∠C=60°,∵AB=1,要使△ABC的最大面积,则点C到AB的距离最大,∵∠ACB=60°,点C在⊙D上,∴∠ADB=120°,如图2,当点C优弧AB的中点时,点C到AB的距离最大,此时△ABC为等边三角形,且面积为AB2=,∴△ABC的最大面积为.故答案为:.【例题4】如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP 交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A. B. C. 1 D. 2【分析】解题标签:“线段垂直平分线”产生“平行定距型”【解析】连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为到等腰直角三角形,∴AC=BC= AB= ,∠A=∠B=45°,∵O为AB的中点,∴OC⊥AB,OC平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=22AP=22CQ,QF=22BQ,∴PE+QF=22(CQ+BQ)=22BC=2×22=1,∵M点为PQ的中点,∴MH为梯形PEFQ的中位线,∴MH=12(PE+QF)=12,即点M到AB的距离为12,而CO=1,∴点M的运动路线为△ABC的中位线,∴当点P从点A运动到点C时,点M所经过的路线长=12AB=1,故答案为:C.[或连接OM,CM,点M运动路径为线段OC中垂线]【例题5】已知:如图1,平面直角坐标系中,点A的坐标是(0,6),点B在x轴上,且∠BAO=30°,点D是线段OA上的一点,以BD为边向下作等边△BDE.(1)如图2,当∠ODB=45°时,求证:OE平分∠BED.(2)如图3,当点E落在y轴上时,求出点E的坐标.(3)利用图1探究并说理:点D在y轴上从点A向点O滑动的过程中,点E也会在一条直线上滑动;并直接写出点E运动路径的长度.【分析】解题标签:“共顶点模型”、“全等或相似转固定角度法确定动点的直线运动”【解析】(1)∵∠ODB=45°,∠AOB=90°,∴∠OBD=∠ODB=45°,∴OD=OB,∵△BDE是等边三角形,∴DE=BE,在△DOE和△BOE中,,∴△DOE≌△BOE(SSS),∴∠DEO=∠BEO,即OE平分∠BED;(2)∵△BOE是等边三角形,∴∠EDB=60°,∵OB⊥DE,设OD=x,则OE=x,∵∠BAO=30°,∠AOB=90°,∴∠DBO=∠ABD=∠BAO=30°,∴BD=2OD=2x,AD=BD=2x,∵OA=AD+OD=3x=6,解得,x=2,∴E(0,﹣2);(3)如图1,在x轴上取点C,使BC=BA,连接CE,∵∠ABD+∠OBD=∠CBE+∠OBD=60°,∴∠ABD=∠CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴∠BCE=∠BAO=30°,∴当D在OA上滑动时,点E总在与x轴夹角为30°的直线CE上滑动,如图可知,点E运动路径的长度为6.【例题6】如图,Rt△ABC中,BC=4,AC=8,Rt△ABC的斜边在x轴的正半轴上,点A与原点重合,随着顶点A由O点出发沿y轴的正半轴方向滑动,点B也沿着x轴向点O滑动,直到与点O重合时运动结束.在这个运动过程中,点C运动的路径长是8﹣12.【分析】解题标签:“运动路径为来回型”【解析】①当A从O到现在的点A处时,如图2,此时C′A⊥y轴,点C运动的路径长是CC′的长,∴AC′=OC=8,∵AC′∥OB,∴∠AC′O=∠COB,∴cos∠AC′O=cos∠COB==,∴=,∴OC′=4,∴CC′=4﹣8;②当A再继续向上移动,直到点B与O重合时,如图3,此时点C运动的路径是从C′到C,长是CC′,CC′=OC′﹣BC=4﹣4,综上所述,点C运动的路径长是:4﹣8+4﹣4=8﹣12;故答案为:8﹣12.【例题7】如图1,已知抛物线y=x2+bx+c经过原点O,它的对称轴是直线x=2,动点P从抛物线的顶点A 出发,在对称轴上以每秒1个单位的速度向上运动,设动点P运动的时间为t杪,连结OP并延长交抛物线于点B,连结OA,AB.(1)求抛物线的函数解析式;(2)当△AOB为直角三角形时,求t的值;(3)如图2,⊙M为△AOB的外接圆,在点P的运动过程中,点M也随之运动变化,请你探究:在1≤t≤5时,求点M经过的路径长度.【分析】解题标签:“运动路径为来回型”【解析】(1)∵抛物线y=x2+bx+c经过原点O,且对称轴是直线x=2,∴c=0,﹣=2,则b=﹣4、c=0,∴抛物线解析式为y=x2﹣4x;(2)设点B(a,a2﹣4a),∵y=x2﹣4x=(x﹣2)2﹣4,∴点A(2,﹣4),则OA2=22+42=20、OB2=a2+(a2﹣4a)2、AB2=(a﹣2)2+(a2﹣4a+4)2,①若OB2=OA2+AB2,则a2+(a2﹣4a)2=20+(a﹣2)2+(a2﹣4a+4)2,解得a=2(舍)或a=,∴B(,﹣),则直线OB解析式为y=﹣x,当x=2时,y=﹣3,即P(2,﹣3),∴t=(﹣3+4)÷1=1;②若AB2=OA2+OB2,则(a﹣2)2+(a2﹣4a+4)2=20+a2+(a2﹣4a)2,解得a=0(舍)或a=,∴B(,),则直线OB解析式为y=x,当x=2时,y=1,即P(2,1),∴t=[1﹣(﹣4)]÷1=5;③若OA2=AB2+OB2,则20=(a﹣2)2+(a2﹣4a+4)2+a2+(a2﹣4a)2,整理,得:a3﹣8a2+21a﹣18=0,a3﹣3a2﹣5a2+15a+6a﹣18=0,a2(a﹣3)﹣5a(a﹣3)+6(a﹣3)=0,(a﹣3)(a2﹣5a+6)=0,(a﹣3)2(a﹣2)=0,则a=3或a=2(舍),∴B(3,﹣3),∴直线OB解析式为y=﹣x,当x=2时,y=﹣2,即P(2,﹣2),∴t=[﹣2﹣(﹣4)]÷1=2;综上,当△AOB为直角三角形时,t的值为1或2或5.(3)∵⊙M为△AOB的外接圆,∴点M在线段OA的中垂线上,∴当1≤t≤5时,点M的运动路径是在线段OA中垂线上的一条线段,当t=1时,如图1,由(2)知∠OAB=90°,∴此时Rt△OAB的外接圆圆心M是OB的中点,∵B(,﹣),∴M(,﹣);当t=5时,如图2,由(2)知,∠AOB=90°,∴此时Rt△OAB的外接圆圆心M是AB的中点,∵B(,)、A(2,﹣4),∴M(,﹣);当t=2时,如图3,由(2)知,∠OBA=90°,∴此时Rt△OAB的外接圆圆心M是OA的中点,∵A(2,﹣4),∴M(1,﹣2);则点M经过的路径长度为=.【例题8】如图,OM⊥ON,A、B分别为射线OM、ON上两个动点,且OA+OB=5,P为AB的中点.当B由点O向右移动时,点P移动的路径长为()A.2 B.2C.D.5【分析】解题标签:“利用解析法计算几何路径长”【解析】建立如图坐标系.设OB=t,则OA=5﹣t,∴B(t,0),A(0,5﹣t),∵AP=PB,∴P(,),令x=,y=,消去t得到,y=﹣x+(0≤x≤),∴点P的运动轨迹是线段HK,H(0,),K(,0),∴点P的运动路径的长为=,故选:C.【例题9】如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0),在整个运动过程中,求出线段PQ中点M所经过的路径长.【分析】解题标签:“利用解析法计算几何路径长”【解析】如图2,以C为原点,以AC所在的直线为x轴,建立平面直角坐标系.依题意,可知0≤t≤4,当t=0时,点M1的坐标为(3,0),当t=4时点M2的坐标为(1,4).设直线M1M2的解析式为y=kx+b,∴,解得,∴直线M1M2的解析式为y=-2x+6.∵点Q(0,2t),P(6-t,0)∴在运动过程中,线段PQ中点M3的坐标(,t).把x= 代入y=-2x+6得y=-2×+6=t,∴点M3在直线M1M2上.过点M2作M2N⊥x轴于点N,则M2N=4,M1N=2.∴M1M2=2∴线段PQ中点M所经过的路径长为2 单位长度.【例题10】(1)如图1,已知AB=2,点D是等腰Rt△ABC斜边AC上一动点,以BD为一边向右下方作等边△BDE,当点D由点A运动到点C时,求点E运动的路径长;(2)如图2,已知AB=2,点D是等腰Rt△ABC斜边AC上一动点,以BD为一边向右下方作以E为直角顶点的等腰Rt△BDE,当点D由点A运动到点C时,求点E运动的路径长;(3)如图3,已知AB=2,点D是等腰Rt△ABC斜边AC上一动点,以BD为一边向右下方作以D为直角顶点的等腰Rt△BDE,当点D由点A运动到点C时,求点E运动的路径长;(4)如图4,已知AB=2,点D是等腰Rt△ABC斜边AC上一动点,以BD为一边向右下方作以D为直顶点的等腰△BDE,且∠BDE=120°,当点D由点A运动到点C时,求点E运动的路径长;【分析】解题标签:“主从联动模型”【解析】22;2;4;26【例题11】如图,已知扇形AOB中,OA=3,∠AOB=120°,C是在上的动点.以BC为边作正方形BCDE,当点C从点A移动至点B时,点D经过的路径长是________.【分析】解题标签:“定边对定角”确定隐圆模型、主从联动模型【解析】如图所示,易得点D的运动轨迹的长为=2 π.1.如图,在等腰Rt△ABC中,AC=BC=,点P在以斜边AB为直径的半圆上,M为PC的中点,当点P沿半圆从点A运动至点B时,点M运动的路径长是.【解析】如图,连接OP,OC,取OC的中点K,连接MK.∵AC=BC=,∠ACB=90°,∴AB==2,∴OP=AB=1,∵CM=MP,CK=OK,∴MK=OP=,∴当点P沿半圆从点A运动至点B时,点M运动的路径是以K为圆心,长为半径的半圆,∴点M运动的路径长=•2•π•=,故答案为.2.已知线段AB=8,C、D是AB上两点,且AC=2,BD=4,P是线段CD上一动点,在AB同侧分别作等腰三角形APE和等腰三角形PBF,M为线段EF的中点,若∠AEP=∠BFP,则当点P由点C移动到点D时,点M移动的路径长度为4﹣3.【解析】如图,分别延长AE、BF交于点H.∵△APE和△PBF都是等腰三角形,且∠AEP=∠BFP∵∠A=∠FPB,∴AH∥PF,同理,BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵M为EF的中点,∴M为PH中点,即在P的运动过程中,M始终为PH的中点,所以M的运行轨迹为三角形HCD的中位线QN.∵CD=AB﹣AC﹣BD=8﹣6,∴QN=CD=4﹣3,即M的移动路径长为4﹣3.故答案是:4﹣3.3.已知线段AB=10,P是线段AB上一动点,在AB同侧分别作等边三角形APE和等边三角形PBF,G为线段EF的中点,点P由点A移动到点B时,G点移动的路径长度为5.【解析】如图,分别延长AE、BF交于点H,∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EP A=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为△HAB的中位线MN.∴MN=AB=5,即G的移动路径长为5.故答案为:54.如图,AB为⊙O的直径,AB=3,弧AC的度数是60°,P为弧BC上一动点,延长AP到点Q,使AP•AQ=AB2.若点P由B运动到C,则点Q运动的路径长为3.【解析】连接BQ,如图,∵AB为⊙O的直径,∴∠APB=90°,∵AP•AQ=AB2.即=,而∠BAP=∠QAB,∴△ABP∽△AQB,∴∠ABQ=∠APB=90°,∴BQ为⊙O的切线,点Q运动的路径长为切线长,∵弧AC的度数是60°,∴∠AOC=60°,∴∠OAC=60°,当点P在C点时,∠BAQ=60°,∴BQ=AB=3,即点P由B运动到C,则点Q运动的路径长为3.故答案为3.5.如图,矩形ABCD中,AB=4,AD=6,点E在边AD上,且AE:ED=1:2.动点P 从点A出发,沿AB 运动到点B停止.过点E作EF⊥PE交射线BC于点F.设点M是线段EF的中点,则在点P运动的整个过程中,点M的运动路径长为________.【答案】4【解析】如图所示:过点M作GH⊥AD.∵AD∥CB,GH⊥AD,∴GH⊥BC.在△EGM和△FHM中,∴△EGM≌△FHM.∴MG=MH.∴点M的轨迹是一条平行于BC的线段当点P与A重合时,BF1=AE=2,当点P与点B重合时,∠F2+∠EBF1=90∘,∠BEF1+∠EBF1=90∘,∴∠F2=∠EBF1.∵∠EF1B=∠EF1F2,∴△EF1B∽△∠EF1F2.∴,即∴F1F2=8,∵M1M2是△EF1F2的中位线,∴M1M2= F1F2=4.故答案为:4.6.等边三角形ABC的边长为2,在AC,BC边上各有一个动点E,F,满足AE=CF,连接AF,BE相交于点P.(1)∠APB的度数;(2)当E从点A运动到点C时,试求点P经过的路径长;(3)连结CP,直接写出CP长度的最小值.【解析】(1)∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,在△ABE和△CAF中,,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠BPF=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=180°﹣∠APE=120°.(2)如图1,∵AE=CF,∴点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP 为等腰三角形,且∠ABP=∠BAP=30°,∴∠AOB=120°,又∵AB=2,∴OA=2,点P的路径是l===;(3)如图2,∵AE=CF,∴点P的路径是一段弧,∴当点E运动到AC的中点时,CP长度的最小,即点P为△ABC的中心,过B作BE′⊥AC于E′,∴PC=BE′,∵△ABC是等边三角形,∴BE′=BC=3,∴PC=2.∴CP长度的最小值是2.方法二:由图1可知,CP最小值等于CO减OA,OA就是那圆弧的半径,可得PC的最小值为2.7.如图,AB为半圆O的直径,AB=2,C,D为半圆上两个动点(D在C右侧),且满足∠COD=60°,连结AD,BC相交于点P若点C从A出发按顺时针方向运动,当点D与B重合时运动停止,则点P所经过的路径长为________.【答案】【解析】解:点C从点A运动到点D与点B从何时,AD与BC的相点P运动的轨迹是一条弧,C,D两点运动到恰好是半圆的三等分点时,AD与BC的相点P是弧的最高点,作AP,BP的中垂线,两线交于点E,点E是弧APB的圆心;由题意知:AD=BD,∠PAB=∠PBA=30°,连接AE,DE,根据圆的对称性得出A、O、E三点在同一直线上,易证△ADE是一个等边三角形,∠AED=60°,在Rt△ADO中,∠DOA=90°,∠PAB=30°,AO=1,故AD=,∴AE=AD=,弧APB的长度==。
专题07 全等三角形旋转、一线三等角模型【中考考向导航】目录【直击中考】 (1)【考向一 全等三角形旋转模型】 (1)【考向二 全等三角形一线三等角模型】 (6)【直击中考】【考向一 全等三角形旋转模型】 例题:(2022·山东菏泽·菏泽一中校考模拟预测)如图①,在ABC 中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,且AD AE =.则CE BD =.现将ADE 绕点A 顺时针方向旋转,旋转角为()0180αα︒<<︒.如图②,连接CE ,BD .(1)如图②,请直接写出CE 与BD 的数量关系.(2)将ADE 旋转至如图③所示位置时,请判断CE 与BD 的数量关系和位置关系,并加以证明.(3)在旋转的过程中,当BCD △的面积最大时,α=______.(直接写出答案即可)【变式训练】 一、选择题1.(2022·重庆璧山·统考一模)如图,在正方形ABCD 中,将边BC 绕点B 逆时针旋转至点BC ',若90CC D '∠=︒,2CC '=,则线段BC '的长度为( )A .2B .52C .6D .52.(2022·四川南充·模拟预测)如图,在Rt ABC △中,90BAC ∠=︒,AB AC =,直角EPF ∠的顶点P 是BC的中点,将EPF ∠绕顶点P 旋转,两边PE ,PF 分别交AB ,AC 于点E ,F .下列四个结论:①AE CF =;②PEF 是等腰直角三角形;③EF AP =;④12ABC AEPF S S =四边形△.在EPF ∠旋转过程中,上述四个结论始终正确的有( )A .①②③B .②③④C .①③④D .①②④3.(2022秋·全国·九年级专题练习)如图,在矩形ABCD 中,DE 平分ADC ∠交BC 于点E ,点F 是CD 边上一点(不与点D 重合).点P 为DE 上一动点,PE PD <,将DPF ∠绕点P 逆时针旋转90°后,角的两边交射线DA 于H ,G 两点,有下列结论:①DH DE =;②DP DG =;③2DG DF DP +=;④DP DE DH DC ⋅=⋅,其中一定正确的是( )A .①②B .②③C .①④D .③④ 二、填空题4.(2022·广西贺州·统考中考真题)如图,在平面直角坐标系中,OAB 为等腰三角形,5OA AB ==,点B到x 轴的距离为4,若将OAB 绕点O 逆时针旋转90︒,得到OA B ''△,则点B '的坐标为__________.5.(2022·江苏无锡·模拟预测)笑笑将一副三角板按如图所示的位置放置,DOE 的直角顶点O 在边BC 的中点处,其中90,45A DOE B ∠=∠=︒∠=︒,60D ∠=︒,DOE 绕点O 自由旋转,且OD ,OE 分别交AB ,AC 于点M ,N ,当4AN =,2NC =时,MN 的长为______.6.(2022·广东广州·统考中考真题)如图,在矩形ABCD 中,BC =2AB ,点P 为边AD 上的一个动点,线段BP 绕点B 顺时针旋转60°得到线段BP ',连接PP ' ,CP '.当点P ' 落在边BC 上时,∠PP 'C 的度数为________; 当线段CP ' 的长度最小时,∠PP 'C 的度数为________三、解答题7.(2022·山东日照·校考二模)在ABC ∆中,AB AC =,BAC α∠=,点P 为线段CA 延长线上一动点,连接PB ,将线段PB 绕点P 逆时针旋转,旋转角为α,得到线段PD ,连接DB ,DC .(1)如图1,当60α=︒时,①求证:PA DC =;②求DCP ∠的度数;(2)如图2,当120α=︒时,请直接写出PA 和DC 的数量关系.(3)当120α=︒时,若6AB =,31BP =,请直接写出点D 到CP 的距离为8.(2022·河北保定·校考一模)如图1,等腰直角三角形ABC 中,∠A =90°,AB =AC =102cm ,D 为AB边上一点,tan ∠ACD =15,点P 由C 点出发,以2cm /s 的速度向终点B 运动,连接PD ,将PD 绕点D 逆时针旋转90°,得到线段DQ ,连接PQ .(1)填空:BC = ,BD = ;(2)点P 运动几秒,DQ 最短;(3)如图2,当Q 点运动到直线AB 下方时,连接BQ ,若S △BDQ =8,求tan ∠BDQ ;(4)在点P 运动过程中,若∠BPQ =15°,请直接写出BP 的长.9.(2022秋·九年级单元测试)如图,正方形ABCD 和正方形CEFG (其中BD >2CE ),直线BG 与DE 交于点H .(1)如图1,当点G 在CD 上时,请直接写出线段BG 与DE 的数量关系和位置关系;(2)将正方形CEFG 绕点C 旋转一周.①如图2,当点E 在直线CD 右侧时,求证:2BH DH CH -=;②当∠DEC =45°时,若AB =3,CE =1,请直接写出线段DH 的长.10.(2022·全国·九年级专题练习)如图,在ABC 与DEF 中,90ACB EDF ∠=∠=︒,,BC AC ED FD ==,点D 在AB 上.(1)如图1,若点F 在AC 的延长线上,连接AE ,探究线段AF 、AE 、AD 之间的数量关系,并证明你的结论;(2)如图2,若点D 与点A 重合,且32AC =,4DE =,将DEF 绕点D 旋转,连接BF ,点G 为BF 的中点,连接CG ,在旋转的过程中,求32CG BG +的最小值; (3)如图3,若点D 为AB 的中点,连接BF 、CE 交于点M ,CE 交AB 于点N ,且::7:9:10BC DE ME =,请直接写出ND CN 的值.11.(2022·内蒙古通辽·模拟预测)综合实践问题情境在图1所示的直角三角形纸片ABC 中,O 是斜边AB 的中点.数学老师让同学们将ABC 绕中点O 做图形的旋转实验,探究旋转过程中线段之间的关系.解决问题(1)“实践小组”的同学们将ABC 以点O 为中心按逆时针旋转,当点A 的对应点A '与C 重合时,BC 与它的对应边B C ''交于点D .他们发现:OD B C '⊥.请你帮助他们写出证明过程.数学思考(2)在图2的基础上,“实践小组”的同学们继续将ABC 以点O 为中心进行逆时针旋转,当AB 的对应边A B AB ''⊥时,设A B ''与BC 交于点F ,B C ''与AB 交于点E .他们认为ED FD AC +=.他们的认识是否正确?请说明理由.再探发现(3)解决完上面两个问题后,“实践小组”的同学们在图3中连接OD ,他们认为DF ,DE 与OD 也具有一定的数量关系.请你写出这个数量关系______.(不要求证明)【考向二 全等三角形一线三等角模型】例题:(2023·全国·九年级专题练习)感知:数学课上,老师给出了一个模型:如图1,点A 在直线DE 上,且90BDA BAC AEC ∠=∠=∠=︒,像这种一条直线上的三个顶点含有三个相等的角的模型我们把它称为“一线三等角“模型.应用:(1)如图2,Rt ABC △中,90,ACB CB CA ∠=︒=,直线ED 经过点C ,过A 作AD ED ⊥于点D ,过B 作BE ED ⊥于点E .求证:BEC CDA ≌.(2)如图3,在ABC 中,D 是BC 上一点,90,,CAD AC AD ∠=︒=,23DBA DAB AB ∠=∠=,求点C 到AB 边的距离.(3)如图4,在ABCD 中,E 为边BC 上的一点,F 为边AB 上的一点.若,10,6DEF B AB BE ∠=∠==,求EF DE 的值.【变式训练】一、选择题1.(2022秋·八年级课时练习)如图,在∠ABC 中,AB =AC =9,点E 在边AC 上,AE 的中垂线交BC 于点D ,若∠ADE =∠B ,CD =3BD ,则CE 等于( )A .3B .2C .94D .92 二、解答题2.(2022秋·广东惠州·八年级校考期中)如图1,90ACB AC BC AD CE BE CE ∠==⊥⊥,,,,垂足分别为D ,E .(1)若 2.5cm 1.7cm AD DE ==,,求BE 的长.(2)在其它条件不变的前提下,将CE 所在直线变换到ABC 的外部(如图2),请你猜想AD DE BE ,,三者之间的数量关系,并证明你的结论;(3)如图3,将(1)中的条件改为:在ABC 中,AC BC =,D ,C ,E 三点在同一条直线上,并且有BEC ADC BCA α∠=∠=∠=,其中α为任意钝角,那么(2)中你的猜想是否还成立?若成立,请证明;若不成立,请说明理由.3.(2022秋·云南昭通·八年级校考期末)在ABC 中,90o ACB AC BC ∠=,=,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①ACD CEB ≌;②DE AD BE =+.(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE AD BE -=;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE AD BE 、、具有怎样的等量关系?请写出这个等量关系,并加以证明.4.(2022秋·全国·八年级专题练习)已知,在ABC 中,AB AC =,D A E ,,三点都在直线m 上,且9DE cm BDA AEC BAC =∠=∠=∠,.(1)如图①,若AB AC ⊥,则BD 与AE 的数量关系为 ___________,CE 与AD 的数量关系为 ___________;(2)如图②,判断并说明线段BD ,CE 与DE 的数量关系;(3)如图③,若只保持7BDA AEC BD EF cm ∠=∠==,,点A 在线段DE 上以2cm/s 的速度由点D 向点E 运动,同时,点C 在线段EF 上以cm /s x 的速度由点E 向点F 运动,它们运动的时间为s t ().是否存在x ,使得ABD △与EAC 全等?若存在,求出相应的t 的值;若不存在,请说明理由.5.(2022秋·八年级课时练习)【问题解决】(1)已知∠ABC 中,AB =AC ,D ,A ,E 三点都在直线l 上,且有∠BDA =∠AEC =∠BAC .如图①,当∠BAC =90°时,线段DE ,BD ,CE 的数量关系为:______________;【类比探究】(2)如图②,在(1)的条件下,当0°<∠BAC <180°时,线段DE ,BD ,CE 的数量关系是否变化,若不变,请证明:若变化,写出它们的关系式;【拓展应用】(3)如图③,AC =BC ,∠ACB =90°,点C 的坐标为(-2,0),点B 的坐标为(1,2),请求出点A 的坐标.。
专题03 二次函数与面积有关的问题(知识解读)【专题说明】二次函数是初中数学的一个重点,一个难点,也是中考数学必考的一个知识点。
特别是在压轴题中,二次函数和几何综合出现的题型,才是最大的区分度。
与面积有关的问题,更是常见。
本节介绍二次函数考试题型种,与面积问题的常用解法。
同学们,只要熟练运用解法,炉火纯青,在考试答题的时候,能够轻松答题。
【知识点梳理】类型一:面积等量关系类型二:面积平分方法一:利用割补将图形割(补)成三角形或梯形面积的和差,其中需使三角形的底边在坐标轴上或平行于坐标轴;(例如以下4、5两图中,连结BD解法不简便。
)方法二: 铅锤法铅锤高水平宽⨯=21S方法三 :其他面积方法如图1,同底等高三角形的面积相等.平行线间的距离处处相等.如图2,同底三角形的面积比等于高的比.如图3,同高三角形的面积比等于底的比.如图1 如图2 如图3【典例分析】【类型一:面积等量关系】【典例21】(2022•盘锦)如图,抛物线y =x 2+bx +c 与x 轴交于A ,B (4,0)两点(A 在B 的左侧),与y 轴交于点C (0,﹣4).点P 在抛物线上,连接BC ,BP .(1)求抛物线的解析式;(2)如图1,若点P 在第四象限,点D 在线段BC 上,连接PD 并延长交x 轴于点E ,连接CE,记△DCE的面积为S1,△DBP的面积为S2,当S1=S2时,求点P的坐标;【变式1】(2022•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A (﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.(1)求a,c的值;(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.【类型二:面积平分】【典例2】(2022•沈阳)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3经过点B(6,0)和点D(4,﹣3),与x轴的另一个交点为A,与y轴交于点C,作直线AD.(1)①求抛物线的函数表达式;②直接写出直线AD的函数表达式;(2)点E是直线AD下方的抛物线上一点,连接BE交AD于点F,连接BD,DE,△BDF的面积记为S1,△DEF的面积记为S2,当S1=2S2时,求点E的坐标;【变式2】(2022•内江)如图,抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).(1)求这条抛物线所对应的函数的表达式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,求点D到直线AC的距离的最大值及此时点D的坐标;(3)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为1:5两部分,求点P的坐标.【典例3】(深圳)如图抛物线y=ax2+bx+c经过点A(﹣1,0),点C(0,3),且OB =OC.(1)求抛物线的解析式及其对称轴;(2)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为3:5两部分,求点P的坐标.【变式3】(2021秋•合川区)如图,抛物线y=ax2+bx+6(a≠0)与x轴交于A(﹣1,0),B(6,0),与y轴交于点C,点P为第一象限内抛物线上一动点,过点P作x轴的垂线,交直线BC于点D,交x轴于点E,连接PB.(1)求该抛物线的解析式;(2)当△PBD与△BDE的面积之比为1:2时,求点P的坐标;专题03 二次函数与面积有关的问题(知识解读)【专题说明】二次函数是初中数学的一个重点,一个难点,也是中考数学必考的一个知识点。
专题12 新定义型几何图形综合问题【中考考向导航】目录【直击中考】 (1)【考向一 与三角形有关的新定义型问题】..................................................................................................... 1 【考向二 与四角形有关的新定义型问题】..................................................................................................... 5 【考向三 三角形与圆综合的新定义型问题】 ................................................................................................. 8 【考向四 四角形与圆综合的新定义型问题】 .. (10)【直击中考】【考向一 与三角形有关的新定义型问题】例题:(2022·江西抚州·统考一模)定义:从三角形(不是等腰三角形)的一个顶点引出一条射线与对边相交,顶点与交点所连线段把这个三角形分割成两个小三角形,如果其中一个为等腰三角形,另一个与原三角形相似,我么就把这条线段叫做这个三角形的“华丽分割线”.例如:如图1,AD 把△ABC 分成△ABD 和△ADC ,若△ABD 是等腰三角形,且△ADC ∽△BAC ,那么AD 就是△ABC 的“华丽分割线”. 【定义感知】(1)如图1,在ABC 中,40B ∠=︒,110BAC ∠=︒,AB=BD .求证:AD 是ABC 的“华丽分割线”. 【问题解决】(2)①如图2,在ABC 中,46B ∠=︒,AD 是ABC 的“华丽分割线”,且ABD △是等腰三角形,则C ∠的度数是________;②如图3,在ABC 中,AB =2,AC =3,AD 是ABC 的“华丽分割线”,且ABD △是以AD 为底边的等腰三角形,求华丽分割线AD 的长.【变式训练】1.(2022·山东济宁·三模)我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad ).如图,在ABC 中,AB =AC ,顶角A 的正对记作sad A ,这时sad BCA AB==底边腰,容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解答下列问题:(1)sad60︒=___________,sad90︒=___________;(2)如图,已知3sin 5A =,其中A ∠为锐角,试求sad A 的值.2.(2022春·福建龙岩·九年级校考期中)在一个三角形中,如果有两个内角α与β满足290αβ+=︒,那么我们称这样的三角形为“亚直角三角形”.根据这个定义,显然90αβ+<︒,则这个三角形的第三个角为()18090αβ︒-+>︒,这就是说“亚直角三角形”是特殊的钝角三角形.(1)【尝试运用】:若某三角形是“亚直角三角形”,且一个内角为100︒,请求出它的两个锐角的度数; (2)【尝试运用】:如图1,在Rt ABC 中,90ACB ∠=︒,4AC =,8BC =,点D 在边BC 上,连接AD ,且AD 不平分BAC ∠.若ABD △是“亚直角三角形”,求线段AD 的长;(3)【素养提升】:如图2,在钝角ABC 中,90ABC ∠>︒,5AB =,35BC =,ABC 的面积为15,求证:ABC 是“亚直角三角形”.3.(2022秋·江苏常州·九年级校考期中)【理解概念】定义:如果三角形有两个内角的差为90︒,那么这样的三角形叫做“准直角三角形”. (1)已知△ABC 是“准直角三角形”,且90C ∠>︒. ①若60A ∠=︒,则B ∠=______︒; ②若40A ∠=︒,则B ∠=______︒; 【巩固新知】(2)如图①,在Rt ABC △中,9062ACB AB BC ∠=︒==,,,点D 在AC 边上,若ABD △是“准直角三角形”,求CD 的长;【解决问题】(3)如图②,在四边形ABCD 中,58CD CB ABD BCD AB BD =∠=∠==,,,,且ABC 是“准直角三角形”,求BCD △的面积.4.(2022·山东青岛·统考中考真题)【图形定义】 有一条高线相等的两个三角形称为等高三角形.例如:如图①.在ABC 和A B C '''中,,AD A D ''分别是BC 和B C ''边上的高线,且AD A D ''=,则ABC 和A B C '''是等高三角形.【性质探究】 如图①,用ABCS ,A B C S'''分别表示ABC 和A B C '''的面积.则11,22ABC A B C S BC AD S B C A D '''=⋅=''⋅''△△, ∽AD A D ''=∽::ABC A B C S S BC B C ''=''△△. 【性质应用】(1)如图②,D 是ABC 的边BC 上的一点.若3,4BD DC ==,则:ABD ADC S S =△△__________;(2)如图③,在ABC 中,D ,E 分别是BC 和AB 边上的点.若:1:2BE AB =,:1:3CD BC =,1ABC S =△,则BEC S =△__________,CDE S =△_________;(3)如图③,在ABC 中,D ,E 分别是BC 和AB 边上的点,若:1:BE AB m =,:1:CD BC n =,ABCS a =,则CDE S =△__________.【考向二 与四角形有关的新定义型问题】例题:(2022·陕西西安·校考三模)定义:两组邻边分别相等的四边形叫做筝形.(1)问题发现:如图1,筝形ABCD 中,AD CD =,AB CB =,若12AC BD +=,求筝形ABCD 的面积的最大值;(2)问题解决:如图2是一块矩形铁片ABCD ,其中60AB =厘米,90BC厘米,李优想从这块铁片中裁出一个筝形EFGH ,要求点E 是AB 边的中点,点F 、G 、H 分别在BC 、CD 、AD 上(含端点),是否存在一种裁剪方案,使得筝形EFGH 的面积最大?若存在,求出筝形EFGH 的面积最大值,若不存在,请说明理由.【变式训练】1.(2022·吉林长春·校考模拟预测)定义:如果一个四边形的一组对角互余,我们称这个四边形为对角互余四边形.(1)问题1.利用下面哪组图形可以得到一个对角互余四边形( )①两个等腰三角形;②两个等边三角形;③两个直角三角形;④两个全等三角形.(2)如图①,在对角互余四边形ABCD 中,30D ∠=︒,且AC BC ⊥,AC AD ⊥.若1BC =,求四边形ABCD 的面积和周长.(3)问题2.如图②,在对角互余四边形ABCD 中,AB BC =,13BD =,90ABC ADC ∠+∠=︒,8AD =,6CD =,求四边形ABCD 的面积和周长.(4)问题3.如图③,在对角互余四边形ABCD 中,2BC AB =,3sin 5ABC ∠=,90ABC ADC ∠+∠=︒,10BD =,求ACD 面积的最大值.2.(2023春·江西抚州·九年级金溪一中校考阶段练习)【图形定义】有一组邻边相等的凸四边形叫做“等邻边四边形”.【问题探究】(1)如图①,已知矩形ABCD 是“等邻边四边形”,则矩形ABCD ___________(填“一定”或“不一定”)是正方形;(2)如图②,在菱形ABCD 中,120ABC ∠=︒,4AB =,动点M 、N 分别在AD 、CD 上(不含端点),若60MBN ∠=︒,试判断四边形BMDN 是否为“等邻边四边形”?如果是“等邻边四边形”,请证明;如果不是,请说明理由;此时,四边形BMDN 的周长的最小值为___________; 【尝试应用】(3)现有一个平行四边形材料ABCD ,如图③,在ABCD 中,17AB =,6BC =,tan 4B =,点E 在BC 上,且4BE =,在ABCD 边AD 上有一点P ,使四边形ABEP 为“等邻边四边形”,请直接写出此时四边形ABEP的面积可能为的值___________.3.(2022·江西赣州·统考二模)我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”.例如:如图①,B C ∠=∠,则四边形ABCD 为“等邻角四边形”.(1)定义理解:以下平面图形中,是等邻角四边形的是___________. ①平行四边形;②矩形;③菱形;④等腰梯形. (2)深入探究:①已知四边形ABCD 为“等邻角四边形”,且120100A B ∠=︒∠=︒,,则D ∠=________.②如图②,在五边形ABCDE 中, DE BC ∥,对角线BD 平分ABC ∠,求证:四边形ABDE 为等邻角四边形.(3)拓展应用:如图③,在等邻角四边形ABCD 中,B C ∠=∠,点P 为边BC 上的一动点,过点P 作PM AB PN CD ⊥⊥,,垂足分别为M ,N .在点P 的运动过程中,PM PN +的值是否会发生变化?请说明理由.【考向三 三角形与圆综合的新定义型问题】例题:(2022·江西上饶·统考一模)定义:如果一个三角形有一个内角的平分线与这个角的对边的夹角是60︒,那么称该三角形为“特异角平分三角形”,这条角平分线称为“特异角平分线”.(1)如图1,ABC 是一个“特异角平分三角形”,AD 是一条“特异角平分线” ①当90C ∠=︒时,试求:AD BD 的值.②在ABC 中,过点D 作DE AB ⊥于点E ,延长至点H ,HE DE =,若:3:3DE AE =,证明:AHE ADC ≌. (2)如图2.BD 是O 的直径,AC 是O 的切线,点C 为切点,AB AC ⊥于点A 且交O 于点H ,连接DH 交BC 于点E ,4BD =,3AB =.试证明DBH △是一个“特异角平分三角形”.【变式训练】1.(2022春·九年级课时练习)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的“好角”.(1)如图1,∽E 是ABC 中∽A 的“好角”,若A α∠=,则E ∠=______;(用含α的代数式表示)(2)如图2,四边形ABCD 内接于O ,点D 是优弧ACB 的中点,直径BF ⊥弦AC ,BF 、CD 的延长线于点G ,延长BC 到点E .求证:∽BGC 是ABC 中∽BAC 的“好角”.(3)如图3,ABC 内接于O ,∽BGC 是ABC 中∽A 的“好角”,BG 过圆心O 交O 于点F ,O 的直径为8,45A ∠=︒,求FG .2.(2022·湖南长沙·长沙市开福区青竹湖湘一外国语学校校考一模)我们不妨定义:有两边之比为1:3的三角形叫敬“勤业三角形”.(1)下列各三角形中,一定是“勤业三角形”的是________;(填序号)①等边三角形;②等腰直角三角形;③含30︒角的直角三角形;④含120︒角的等腰三角形.(2)如图1,∽ABC 是∽O 的内接三角形,AC 为直径,D 为AB 上一点,且2BD AD =,作DE OA ⊥,交线段OA 于点F ,交∽O 于点E ,连接BE 交AC 于点G .试判断∽AED 和∽ABE 是否是“勤业三角形”?如果是,请给出证明,并求出EDBE的值;如果不是,请说明理由; (3)如图2,在(2)的条件下,当AF :FG =2:3时,求BED ∠的余弦值.【考向四 四角形与圆综合的新定义型问题】例题:(2022秋·九年级课时练习)定义:有一个角为45°的平行四边形称为半矩形.(1)如图1,若∽ABCD 的一组邻边AB =4,AD =7,且它的面积为142.求证:∽ABCD 为半矩形. (2)如图2,半矩形ABCD 中,∽ABD 的外心O (外心O 在∽ABD 内)到AB 的距离为1,∽O 的半径=5,求AD 的长.(3)如图3,半矩形ABCD 中,∽A =45° ①求证:CD 是∽ABD 外接圆的切线; ②求出图中阴影部分的面积.【变式训练】1.(2022·浙江宁波·校考模拟预测)定义:如果一个四边形的一组对角互余,那么我们称这个四边形为“对角互余四边形”.(1)如图1,在“对角互余四边形” ABCD 中, 6.5AD CD BD ==,,9043ABC ADC AB CB ∠+∠=︒==,,,求四边形ABCD 的面积.(2)如图2,在四边形ABCD 中,连接AC ,90BAC ∠=︒,点O 是ACD 外接圆的圆心,连接OA ,OAC ABC ∠∠=.求证:四边形ABCD 是“对角互余四边形”;(3)在(2)的条件下,如图3,已知3AD a DC b AB AC ===,,,连接BD ,求2BD 的值.(结果用带有a ,b 的代数式表示)2.(2022·江苏淮安·统考一模)定义:若一个圆内接四边形的两条对角线互相垂直,则称这个四边形为圆美四边形.(1)请在特殊四边形中找出一个圆美四边形,该四边形的名称是 ;(2)如图1,在等腰Rt ∽ABC 中,∽BAC =90°,经过点A 、B 的∽O 交AC 边于点D ,交BC 于点E ,连接DE ,若四边形ABED 为圆美四边形,则AB DE的值是 (3)如图2,在∽ABC 中,经过点A 、B 的∽O 交AC 边于点D ,交BC 于点E ,连接AE 、BD 交于点F ,若在四边形ABED 的内部存在一点P ,使得∽PBC =∽ADP =α,连接PE 交BD 于点G ,连接P A ,若P A ∽PD ,PB ∽PE . ①试说明:四边形ABED 为圆美四边形;②若2tan 3α=,8PA PE +=,33CD BC =,求DE 的最小值.。
专题11 相似三角形的综合问题【中考考向导航】目录【直击中考】 (1)【考向一 (双)A 字型相似】 (1)【考向二 (双)8字型相似】 (3)【考向三 母子型相似】 (5)【考向四 旋转相似】 (7)【考向五 K 字型相似】 (11)【直击中考】【考向一 (双)A 字型相似】 例题:(2022·上海·九年级专题练习)如图,在△ABC 中,点D 在边AB 上,点E 、点F 在边AC 上,且DE ∥BC ,AF AE FE EC=. (1)求证:DF ∥BE ;(2)如且AF =2,EF =4,AB =63.求证△ADE △△AEB .【变式训练】1.(2022·江苏·九年级专题练习)如图,在Rt ABC 中,906ACB AC BC ∠=︒==,,D 是AB 上一点,点E 在BC 上,连接CD AE ,交于点F ,若452CFE BD AD ∠=︒=,,则CE =__________.2.(2023秋·安徽六安·九年级校考期末)如图,在ABC 中,BD 、CE 分别是AC 、AB 边上的高.求证:ACB AED ∽.3.(2021秋·山东济宁·九年级校考阶段练习)Rt ABC 中,90C ∠=︒,20cm AC =,15cm BC =,现有动点P 从点A 出发,沿AC 向点C 方向运动,动点Q 从点C 出发,沿线段CB 也向点B 方向运动,如果点P 的速度是4cm /s ,点Q 的速度是2cm /s ,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动时间为t 秒.(1)求运动时间为多少秒时,P 、Q 两点之间的距离为10cm ?(2)若CPQ 的面积为S ,求S 关于t 的函数关系式.(3)当t 为多少时,以点C ,P ,Q 为顶点的三角形与ABC 相似?4.(2023·全国·九年级专题练习)如图,ABC 中,点D 在AC 边上,且1902BDC ABD ∠=+∠.(1)求证:DB AB =;(2)点E 在BC 边上,连接AE 交BD 于点F ,且AFD ABC ∠=∠,BE CD =,求ACB ∠的度数. (3)在(2)的条件下,若16BC =,ABF △的周长等于30,求AF 的长.【考向二 (双)8字型相似】 例题:(2023·全国·九年级专题练习)如图,在菱形ABCD 中,△ADE 、△CDF 分别交BC 、AB 于点E 、F ,DF 交对角线AC 于点M ,且△ADE =△CDF .(1)求证:CE =AF ;(2)连接ME ,若CE BE=CD CE ,AF =2,求ME 的长.【变式训练】1.(2022春·九年级课时练习)如图,在平行四边形ABCD 中,点E 是AD 上一点,2AE ED =,连接BE 交AC 于点G ,延长BE 交CD 的延长线于点F ,则BG GF的值为( )A .23 B .12 C .13 D .342.(2022春·陕西渭南·八年级统考期末)如图在平行四边形ABCD 中,E 是CD 的中点,F 是AE 的中点,CF 交BE 于点G ,若8BE =,则GE =___.3.(2022秋·北京房山·九年级统考期中)如图,AD 与BC 交于O 点,A C ∠=∠,4BO =,2DO =,3AB =,求CD 的长.4.(2023秋·安徽六安·九年级校考期末)如图1,在Rt △ABC 中,△ACB =90°,AC =BC =1,D 为AB 上一点,连接CD ,分别过点A 、B 作AN △CD ,BM △CD .(1)求证:AN =CM ;(2)若点D 满足BD :AD =2:1,求DM 的长;(3)如图2,若点E 为AB 中点,连接EM ,设sin △NAD =k ,求证:EM =k .5.(2022·广东佛山·校考三模)如图1,AD 、BD 分别是ABC ∆的内角BAC ∠、ABC ∠的平分线,过点A 作AE AD ⊥,交BD 的延长线于点E .(1)求证:12E C ∠=∠; (2)如图2,如果AE AB =,且:2:3BD DE =,求cos ABC ∠的值;(3)如果ABC ∠是锐角,且ABC ∆与ADE ∆相似,求ABC ∠的度数,并直接写出ADE ABCS S ∆∆的值.例题:(2022秋·全国·八年级专题练习)定义:如图,若点P 在三角形的一条边上,且满足12∠=∠,则称点P 为这个三角形的“理想点”.(1)如图①,若点D 是ABC 的边AB 的中点,22AC =,4AB =,试判断点D 是不是ABC 的“理想点”,并说明理由;(2)如图②,在Rt ABC 中,90C ∠=︒,5AB =,4AC =,若点D 是ABC 的“理想点”,求CD 的长.【变式训练】 1.(2022秋·黑龙江哈尔滨·九年级校考期中)如图,ABC 中,点D 在AB 上,2B BCD ∠∠=,若2BD =,5BC =,则线段CD 的长为___________.2.(2022秋·安徽蚌埠·九年级校考期中)如图,在△ABC 中,D 为BC 边上的一点,且AC =26,CD =4,BD =2,求证:△ACD △△BCA .3.(2022秋·安徽蚌埠·九年级校考期中)如图,在ABC 中,90ACB ∠=︒,CD 为AB 边上的高,ABC ∠的平分线BE 分别交CD ,AC 于点F ,E .(1)求证:CBF ABE ~;(2)若10AB =,6BC =,求CBF 的面积,(3)若BC AD =,请直接写出CE AE 的值为______.4.(2022·江苏·九年级专题练习)如图:在矩形ABCD 中,6m AB =,8m BC =,动点Р以2m /s 的速度从A 点出发,沿AC 向C 点移动,同时动点Q 以1m /s 的速度从点C 出发,沿CB 向点B 移动,设P 、Q 两点移动的时间为t 秒()05t <<.(1)AP =______m ,PC ______m ,CQ =_____m (用含t 的代数式表示)(2)t 为多少秒时,以P 、Q 、C 为顶点的三角形与ABC 相似? (3)在P 、Q 两点移动过程中,四边形ABQP 与CPQ 的面积能否相等?若能,求出此时t 的值;若不能,请说明理由.【考向四 旋转相似】例题:(2022秋·贵州贵阳·九年级校考期中)如图1,在Rt ABC △中,90,4,2B AB BC ∠=︒==,点,D E 分别是边,BC AC 的中点,连接DE .将CDE 绕点C 逆时针方向旋转,记旋转角为α.(1)问题发现①当0α=︒时,AE BD=______; ②当180α=︒时,AE BD =______; (2)拓展探究试判断当0360α︒<<︒时,AE BD的大小有无变化?请仅就图2的情形给出证明; (3)问题解决 当CDE 绕点C 逆时针旋转至,,A B E 三点在同一条直线上时,求线段BD 的长.【变式训练】 1.(2023·浙江宁波·校考一模)如图1,在ABC 中,90,6,8BAC AB AC ∠=︒==,点D ,E 分别是,AB BC 的中点.把BDE △绕点B 旋转一定角度,连结,,,AD AE CD CE .(1)如图2,当线段BD 在ABC 内部时,求证:BAD BCE ∽△△.(2)当点D 落在直线AE 上时,请画出图形,并求CE 的长.(3)当ABE 面积最大时,请画出图形,并求出此时ADE 的面积.2.(2022·山东枣庄·校考模拟预测)如图1,在等腰直角三角形ADC 中,90ADC ∠=︒,4=AD .点E 是AD 的中点,以DE 为边作正方形DEFG ,连接AG ,CE .将正方形DEFG 绕点D 顺时针旋转,旋转角为α(090α︒<<︒).(1)如图2,在旋转过程中,①判断AGD △与CED △是否全等,并说明理由;②当CE CD =时,AG 与EF 交于点H ,求GH 的长.(2)如图3,延长CE 交直线AG 于点P .求证:AG CP ⊥;3.(2022·山东济南·统考二模)(1)【方法尝试】如图1,矩形ABFC 是矩形ADGE 以点A 为旋转中心,按逆时针方向旋转90︒所得的图形,CB ED 、分别是它们的对角线.则CB 与ED 数量关系_______,位置关系________;(2)【类比迁移】如图2,在Rt ABC △和Rt ADE △中,909632BAC DAE AC AB AE AD ∠∠=︒=====,,,,.将DAE 绕点A 在平面内逆时针旋转,设旋转角BAE ∠为α(0360α︒≤<︒),连接CE BD ,.请判断线段CE 和BD 的数量关系和位置关系,并说明理由;(3)【拓展延伸】如图3,在Rt ABC △中,906ACB AB ∠=︒=,,过点A 作AP BC ∥,在射线AP 上取一点D ,连接CD ,使得3tan 4ACD ∠=,请求线段BD 的最大值.4.(2023秋·河南南阳·九年级校考期末)如图,将ABC 绕点A 逆时针旋转α后,ABC 与ADE 构成位似图形,我们称ABC 与ADE 互为“旋转位似图形”.(1)知识理解:两个重合了一个顶点且边长不相等的等边三角形 (填“是”或“不是”)“旋转位似图形”; 如图1,ABC 与ADE 互为“旋转位似图形”,①若26α=︒,100B ∠=︒,29E ∠=︒,则BAE ∠= ;②若6AD =,8DE =,4AB =,则BC = ;(2)知识运用:如图2,在四边形ABCD 中,90ADC ∠=︒,AE BD ⊥于E ,DAC DBC ∠=∠,求证:ACD 和ABE 互为“旋转位似图形”;(3)拓展提高:如图3,ABC 为等腰直角三角形,点G 为AC 中点,点F 是AB 上一点,D 是GF 延长线上一点,点E 在线段GF 上,且ABD △与AGE 互为“旋转位似图形”,若6AC =,22AD =,求出DE 和BD 的值.【考向五 K 字型相似】例题:(2022·山东济南·山东师范大学第二附属中学校考模拟预测)如图,在ABC 中,点D 、E 分别是边BC 、AC 上的点,且ADE B ∠=∠.(1)如图1,若B C ∠=∠,求证:AB CE BD CD ⋅⋅=;(2)若8,10,2AB BC B C ==∠=∠.①如图2,当AD DE =时,求BD 的长;②如图3,当BD CE =时,直接写出BD 的长是______.【变式训练】1.(2021秋·湖南永州·九年级校考阶段练习)(1)如图,点C 在线段AB 上,点,D E 在直线AB 的同侧,A DCE B ∠=∠=∠,求证:AC AD BE BC=; (2)如图,点C 在线段AB 上,点,D E 在直线AB 的同侧,90A DCE CBE ∠=∠=∠=︒,ADC ABD ∠=∠,3AC =,163BC =,求tan CDB ∠的值;(3)如图,ABD △中,点C 在AB 边上,且ADC B ∠=∠,3AC =,163BC =,点E 在BD 边上,连接CE ,180BCE BAD ∠+∠=︒,125CE =,求BE CD的值.2.(2022春·全国·九年级专题练习)如图1,在ABC 中,90,3,4BCA AC BC ∠︒===,点P 为斜边AB 上一点,过点P 作射线PD PE ⊥,分别交AC 、BC 于点D ,E .(1)问题产生△若P 为AB 中点,当,PD AC PE BC ⊥⊥时,PD PE = ;(2)问题延伸:在(1)的情况下,将若△DPE 绕着点P 旋转到图2的位置,PD PE的值是否会发生改变?如果不变,请证明;如果改变,请说明理由;(3)问题解决:如图3,连接DE ,若PDE 与ABC 相似,求BP 的值.3.(2022·山东济南·校考三模)已知ABC 中,△ABC =90°,点D 、E 分别在边BC 、边AC 上,连接DE ,DF △DE ,点F 、点C 在直线DE 同侧,连接FC ,且AB DE k BC DF==.(1)点D 与点B 重合时,①如图1,k =1时,AE 和FC 的数量关系是 ,位置关系是 ;②如图2,k =2时,猜想AE 和FC 的关系,并说明理由;(2)BD =2CD 时,①如图3,k =1时,若AE =2,CDF S △=6,求FC 的长度;②如图4,k =2时,点M 、N 分别为EF 和AC 的中点,若AB =10,直接写出MN 的最小值.。
中考数学模拟试卷及答案解析学校:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.()2a b --等于( ) A .22a b +B .22a b -C .222a ab b ++D .222a ab b -+2.如图,箭头表示投影线的方向,则图中圆柱体的正投影是( )A .圆B .圆柱C .梯形D .矩形3.函数11y x =+中自变量x 的取值范围是( ) A .x ≠-lB .x>-1C .x=-lD .x<-14.某种奶制品的包装盒上注明“蛋白质≥2.9%”,它的含义是( ) A .蛋白质的含量是2.9% B .蛋白质的含量高于2. 9% C .蛋白质的含量不低于 2. 9%D .蛋白质的含量不高于 2. 9%5.数90,91,92,93的标准差是( )A B .54C D 6.在一组50个数据的数组中,平均数是42,将其中两个数l30和50舍去,则余下的数的平均数为( ) A .38B .39C . 40D .417.把方程)2(5)2(-=+x x x 化成一般式,则a 、b 、c 的值分别是( ) A .10,3,1-B .10,7,1-C .12,5,1-D .2,3,18.下列各语句中,正确的是( ) A .两个全等三角形一定关于某直线对称B .关于某直线对称的两个三角形不一定是全等三角形C .关于某直线对称的两个三角形对应点连接的线段平行于对称轴D .关于某直线对称的两个三角形一定是全等三角形9.在平面直角坐标系中,若点P (m -3,m +1)在第二象限,则m 的取值范围为( ) A .-1<m <3 B .m >3 C .m <-1 D .m >-110. 如图,已知∠C =∠D ,AC=AE ,要得到△ABC ≌△AED 还应给出的条件中错误的是( )A .∠BAD =∠EACB .∠B=∠EC .ED=BC AB =AE11.多项式21a -和2(1)a -的公因式是( ) A .1a +B .1a -C .2(1)a -D . 21a -12.如图所示,AC 与BD 互相平分于点0,要使△AOB 与△C0D 重合,则△AOB 至少绕点O 旋转( ) A .60°B .30°C .180°D .不确定13.下列物体的形状,类似于圆柱的个数是( ) ①篮球②书本③标枪头④罐头 ⑤水管 A .1个B .2个C .3个D .4个14.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的51,水中部分是淤泥中的部分的2倍多1米,露出水面的竹竿长1米,设竹竿的长度为x 米,则可列出方程( )A .51x+52x+1=x B 51x+52x+1+1=x C .51x+52x +1-1=x D .51x+52x=1 15.如图.在△ABC 中,AB AC ,AB 的中垂线DE 交AC 于点D ,交AB 于点E ,如果BC=10,△BDC 的周长为22,那么△ABC 的周长是( ) A .24B .30C .32D .3416.如图,在边长为a 的正方形上剪去一个边长为b 的小正方形(a b >),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是( ) A .22()()a b a b a b -=-+ B .222()2a b a ab b +=++ C .222()2a b a ab b -=-+ D .2()a ab a a b -=-17. 如图,四边形 EFGD 是△ABC 的内接矩形,已知高线 AH 长 8 ㎝,底边 BC 长 10cm ,设 DG=x (cm ) , DE=y ( cm ) ,那么y 与x 的函数关系式为( ) A .45y x =B .54y x =C .485y x =-D .584y x =-18.如果把多边形的边数增加l 倍,它的内角和是2160°,那么原多边形的边数是( ) A .24B .12C .7D .619.已知两圆的半径分别是 2 和 3,圆心距是 d ,若两圆有公共点,则下列结论正确的是( ) A .d=1B .d=5C .1≤d ≤5D .1<d<520.已知数据 12,-6,-1.2,π,,其中负数出现的频率是( ) A .20%B . 40%C .60%D .80%21.根据下列条件能唯一画出△ABC 的是 ( ) A .AB =3,BC =4,AC =8 B .AB =4,BC =3,∠A =30° C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =622.在一个不透明的口袋中装有若干个只有颜色不同的球,如果口袋中装有4个红球,且摸出红球的概率为13,那么袋中共有球的个数为( ) A .12 个B .9 个C .7 个D .6个23.如图,梯形护坡石坝的斜坡 AB 的坡度1:3i =,坝高 BC 为 2m ,则斜坡AB 的长是( )A .B .C .D .6m24.下列命题中的假命题是( ) A .一组邻边相等的平行四边形是菱形 B .一组邻边相等的矩形是正方形C .一组对边平行且相等的四边形是平行四边形D .一组对边相等且有一个角是直角的四边形是矩形25.如图,甲、乙、丙比赛投掷飞镖,三人的中标情况如图所示,则三人的名次应是( )A .甲第一,乙第二,丙第三B .甲第三,乙第二,丙第一C .甲第二,乙第三,丙第一D .甲第一,丙第二,乙第三26.“百城馆”中一滑梯的倾斜角α= 60°,则该滑梯的坡比为若太阳光与地面成40°角,一棵树的影长为10㎝,则树高 h 所满足的范围是( ) A .h>15B . 10<h<15C . 5<h<10D . 3<h<527.如图,梯形 ABCD 中,AB ∥CD ,如果ODC S :1:3BDC S ∆∆=,那么:ODC ABC S S ∆∆=( ) A .1:5B .1:6C .1:7D .1:928.如图,已知在△ABC 中,AB=BC ,BD 是角平分线,DE ⊥AB 于点E ,DF ⊥BC 于点F ,则下列四个结论中正确的个数有 ( )①BD 上任意一点到点A 和点C 的距离相等; ②BD 上任一点到AB 和BC 的距离相等; ③AD=CD ,BD ⊥AC ;④∠ADE=∠CDF . A .1个B .2个C .3个D .4个29.如图,已知锐角α的顶点在原点,始边在x 轴的正半轴上,终边上一点p 坐标为(1,3),那么tan α的值等于 ( )A .13B .3C D30.如图,在△ABC 中,∠B 和∠C 的平分线相交于点F ,过点F 作DE ∥BC ,交AB 于点D ,•交AC 于点E ,若BD+CE=9,则线段DE 的长为( ) A .9B .8C .7D .631.下面两个三角形一定相似的是( ) A .两个等腰三角形 B .两个直角三角形 C .两个钝角三角形 D .两个等边三角形32.如果24(2)|21|(3)x z x y -+-=-+,那么满足等式x 、y 、z 分别是( )A . 12x =、3y =、1z = B .12x =-、3y =-、1z =- C . 12x =、3y =-、14z =D .12x =、3y =、2z = 33.如图,将四边形AEFG 变换到四边形ABCD ,其中E ,G 分别是AB ,AD 的中点,下列叙述不正确的是 ( )A .这种变换是相似变换B .对应边扩大到原来的2倍C .各对应角度数不变D .面积扩大到原来的2倍34.已知等腰三角形的周长为 12,一边长为 3、则它的腰长为( ) A . 3B . 4.5C .3或4.5D . 以上都不正确35.现有两根木棒,它们的长度分别是20 cm 和30 cm .如果不改变木棒的长度,要钉成一个三角形木架,那么应在下列四根木棒中选取( ) A .10 cm 的木棒B .20 cm 的木棒C .50 cm 的木棒D .60 cm 的木捧36.正方形的玻璃被截去一个角后,剩下的角的个数为 ( ) A .3个 B .3个或4个 C .4个或5个 D .3个或4个或5个37.二次函数y =2(x -1)2+1先向左平移l 个单位,再向上平移1个单位后得解析式为 y =2x 2+bx +c ,则b, c 分别为( ) A .-8, 0B .-8, 2C . 0, 2D .0, 038.□ABCD 的四个内角度数的比∠A :∠B :∠C :∠D 可以是( ) A .2:3:3:2 B .2:3:2:3 C .1:2:3:4D .2:2:1:139.若20x y -=,则2()xy -的值为( )A .64B .64-C .16D .16-40.在数12-,0,4.5,9,-6.79中,属于正数的有( ) A .2个 B .3个C .4个D .5个二、填空题41.右表是某所学校400名学生早晨到校方式的统计数据. (1)表中数据是通过 获得的.(2)在学生早晨到校方式中,选择 的人数最多,其中选择公交车的人数占总人数的 .42.如图,已知等腰直角ΔABC 的直角边长与正方形MNPQ 的边长均为20厘米,AC 与MN 在同一直线上,开始时点A 与点N 重合.让ΔABC 以每秒2厘米的速度向左运动,最终点A 与点M 重合,则重叠部分面积y(厘米2)与时间t(秒)之间的函数关系式为____________. 43. 有四张不透明的卡片的正面分别写有 2,227,π,除正面的数不同外,其余都相同. 将它们背面朝上洗匀后,从中随机抽取一张卡片,抽到写有无理数卡片的概率为 .44.若02910422=+-+-b b a a ,则a = ,=b .45.某篮球运动员在一场比赛中,投 3 分球和2分球的命中的可能性分别为 30% 和 80%,他投了 10 次3分球,投了 15 次2分球,则他本场比赛共得了 分.46.将与水平方向成一定角度的线段AB 向右平移3个单位得到CD ,其中点A 与点C 对应,点B 与点D 对应,则AC 与BD 的关系是 .47.如图,在△ABC 中,∠ACB=90°,∠B=25°,CD ⊥AB 于D ,则∠ACD= .48.九年级三班共有学生54人,学习委员调查了班级学生参加课外活动情况(每人只参加一项活动),其中:参加读书活动的18人,参加科技活动的占全班总人数的16,参加艺术活动的比参加科技活动的多3人,其他同学参加体育活动.则在扇形图中表示参加体育活动人数的扇形的圆心角是 度.49.已知一组数据1x ,2x ,3x ,4x ,5x 的标准差为4,那么数据(14x -),(24x -),(33x -), (44x -),(54x -)的方差是 . 50.当m = 时,方程25310m x --=是一元一次方程.51.一条环城公路长l8 km ,甲沿公路骑自行车,速度为550 m /min ,乙沿公路跑步,速度为250 m /min ,两人同时从同一起点向相反方向出发,经x(min)两人又相遇,可以列出方程为 .52.a 、b 、c 、d 为实数,现规定一种新的运算ac ad bc b d=-,当241815x =-时,x = .53.若 n 表示一个三位数,现把 3 放在它的右边,得到一个四位数,可表示为 ;若把3放在它的左边,则得到的四位数可表示为 . 54.-8的立方根是 ,立方根等于4的数是 . 55.立方根等于其本身的数是 .56.在同一平面内直线m ,n 都和直线l 垂直,则直线m 与n 的位置关系是 . 57.如图,在三角形纸片ABC 中,∠A =65°,∠B =75°,将纸片的一角折叠,使点C 落在△ABC 内,若∠1=20°,则∠2的度数为________.58.已知两圆⊙O 1与⊙O 2的圆心距为 5,⊙O 1与⊙O 2的半径分别是方程29140x x -+=的两个根,则这两圆的位置关系为 .59.Rt △ABC 中,斜边与一直角边比为25:7,则较小角的正切值为 . 60.如图,已知△ABC 中,AB= AC ,D 为 BC 上一点,BF=12DC ,CE= 2BD ,若∠A = 40°,则∠FDE = 度.61.抛物线23y x bx =++经过点(30),,则b 的值为 .62.如图,直角三角形APO 的面积为 3,则此双曲线的函数解析式为 . 63.如果等腰三角形的一个角为70°,那么另外两个角为 . 64.与三角形的稳定性相反,四边形具有___________的特点.65.一位画家把边长为1米的7个相同正方体摆成如图的形式,然后把露出的表面涂上颜色,那涂色面积为 米2.66.请写出两根分别为-2,3的一个一元二次方程 .67.一个样本有20个数据,分组以后落在20.5~22.5内的频数是4,则这一小组的频率是 .68.我们的人体中含有多少脂肪才能算适当?据科学研究表明,可以利用身体的体重(W ,单位:公斤)和身高(h ,单位:m )计算身体脂肪水平,也称为质量指数(BMI :Body Mass Index )计算公式是2wBMI h=,而且男性的BMI 指数正常范围是24至27,如果现有一位男生的体重是70公斤,身体脂肪水平属正常,那么你能否估计他的身高大约在哪个范围内?(保留3个有效数字)69.若点A 的坐标是(-7,-4),则它到x 轴的距离是 .70.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-l)、(-1,2)、(3,-1),则第四个顶点的坐标为 .71.如图,某同学不小心把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全 一样的玻璃,那么最省事的办法是带 去玻璃店.72.某校九年级一班对全班50名学生进行了“一周(按7天计算)做家务劳动所用时间(单位:小时)”的统计,其频率分布如下表:那么该班学生一周做家务劳动所用时间的平均数为 小时,中位数为 小时.三、解答题73.某校八年级(1)班的一个研究性学习小组的研究课题是“杭州市某高速公路入口的汽车流量问题”.某天上午,他们在该入口处每隔相等的时间,对3分钟内通过的汽车的数量作一次统计,得到如下数据:(1)求平均每3分钟通过汽车多少辆?(2)试估计这天上午(按4小时计)该入口处平均每小时通过多少辆汽车?74.在-2.2,-2.02,-2.002,-2.020 2,-2.002 02五个数中,若最大的数除以最小的数的商为x ,求59[1()|10x ÷-的值,并用科学记数法表示出它的结果.75.将分式10(2)(1)(2)(1)(1)x x x x x +++-+约分,再讨论x 取哪些整数时,能使分式的值是正整数.76.若(221)(221)35a b a b +-++=,试求代数a b +的值.77.把20 cm 长的一根铁丝分成两段,将每一段围成一个正方形,如果这两个正方形的面积之差是5cm 2,求这两段铁丝的长.78.2008年十一黄金周期间,某市旅游收入再创历史新高,旅游消费呈现多样化,各项消费所占的比例如图所示,其中住宿费为3438.24万元. (1)求该市2008年十一黄金周期间旅游消费共多少亿元?(2)对于十一黄金周期间的旅游消费,如果该市2009年要达到2.28亿元的目标,那么2008~2009年的增长率是多少?79.如图是由一个圆,一个半圆和一个三角形组成的图形,请你以直线AB为对称轴,把原图形补成轴对称图形(用尺规作图,不要求写作法和证明,但要保留作图痕迹).80.如图.在△ABC和△DEF中,B、E、C、F在同一直线上,下面有四个条件.请你在其中选三个作为已知条件,余下的一个作为结论,写出—个正确的结论,并说明理由.①AB=DE;②AC=DF;③∠ABC=∠DEF;④BE=CF.已知:结沦:理由:81.如图是一个被等分成12个扇形的转盘.请在转盘上选出若干个扇形涂上斜线(涂上斜线表示阴影区域,其中有一个扇形已涂),使得自由转动这个转盘,当它停止转动时,指针落在阴影区域内的概率为41.82.用科学记数法表示下列各数:(1)0.000 07 (2)-0.004 025 (3)153.7 (4)857 000 00083.有8张卡片,每张卡片上分别写有不同的从1到8的一个自然数.从中任意抽出一张卡片,请计算下列事件发生的概率:(1)卡片上的数是偶数;(2)卡片上的数是3的倍数.84.计算:(1)(-2x )3·(4x 2y ) (2)(4×106)(8×104)·105(3)(m 3)4+m 10·m 2+m·m 5·m 685.比较a 与a 的大小.86.阅读下列解法,并回答问题:如图,∠1 = 75°,∠2 = 105°,说明 AB ∥CD ,以下几种说明方法正确吗?如果正确,请说出利用了平行线的哪一种判定方法,如果不正确,请给予纠正.解法1:∵∠1 +∠3 = 180°, ∠1 = 75°,∴∠3= l05°,又∵∠2=105°,∴∠2 =∠3, ∴.AB ∥CD .解法2:∵∠2+∠4 = 180°,∠2 = 105°,∴∠4= 75°,又∵∠1= 75°,∴∠1 = ∠4,∴AB∥CD.解法 3:∵∠ 2 =∠5,∠2= 105°,∴∠5 =105°,又∵∠1 = 75°,∴∠1 +∠5 =180°,∴.AB∥CD.87.如图,花丛中有一路灯灯杆 AB,在灯光下,小明在D点处的影长 DE= 3m,沿 BD 方向行走到达G点,DG= 5m,这时小明的影长GH= 5m .如果小明的身高为 1.7m,求路灯灯杆AB 的高度(精确到0.1 m).88.某工厂 3 个小组计划在.10 天内生产 500 件产品(每天生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产 1 件产品,就能提前完成任务,每个小组原先每天生产多少件产品?89.如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形.90.已知关于x的一次函数y=(m+1)x-m-5.求:(1)当m为何值时,直线y=(m+1)x-m-5交y轴于正半轴;(2)当m为何值时,直线y=(m+1)x-m-5交y轴于负半轴;(3)当m为何值时,直线y=(m+1)x-m-5经过原点.91.如图,△ABC中,AC⊥BC,CE⊥AB于点E,AF平分∠CAB交CE于点F,过点F 作FD∥BC交AB于点D,求证:AC=AD.92.师傅做铝合金窗框,分下面三个步骤进行:(1)如图,先裁出两对符合规格的铝合金窗料(如图①),使AB=CD, EF=GH;(2)摆放成如图②的四边形,则这时窗框的形状是,根据的数学道理是;(3)将直角尺靠紧窗框的一个角(如图③)调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④)说明窗框合格,这时窗框是 ,根据的数学道理是 .93.如图所示,一蓄水池每小时的放水量q(米3/时)与放水时间 t(时)之间的函数关系图象.(1)求此蓄水池的蓄水量,并写出此图象的函数解析式;(2)当水池的水放完时,需8时,则每小时的放水量是多少?(3)当每小时放水4米3时,需多少小时放完水?(4)若要在 5 时内放完水,则每小时应至少放水多少米3?94.如图,水管内原有积水的水面宽 CD=4 cm ,水深 GH= 1 cm ,因几天连续下雨水面上升 1 cm (即 EG= 1 cm). 求此时水面 AB 的宽是多少?95.一个滑轮起重装置如图所示,滑轮的半径是10cm ,当重物上升10cm 时,滑轮的一条半径OA 绕轴心0 按逆时针方向旋转的角度约为多少呢(假设绳索与滑轮之间没有滑动, 取 3.14,结果精确到1°)?96.如图,已知线段 AB ,延长 AB 至 D ,使 BD =13AB ,再反向延长线段AB 至C ,使AC=12AB ,求 BC :CD .97.为举办毕业联欢会,小颖设计了一个游戏:游戏者分别转动如图的两个可以自由转动的转盘各一次,当两个转盘的指针所指字母相同时,他就可以获得一次指定..一位到会者为大家表演节目的机会.(1)利用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果;(2)若小亮参加一次游戏,则他能获得这种指定机会的概率是多少?98.如图所示,河对岸有一棵树,在 C点折断刚好倒在另一岸的A 点处,AB=l2m,已知树高 l8m,小明想通过这棵折断后的树通过这条河,由于各种原因,小明通过坡度大于1 2的斜坡会有危险,请.问小明通过 AC 会有危险吗?99.武当山风景管理区,为提高游客到某景点的安全性,决定将到达该景点的步行台阶进行改善,把倾角由44减至32,已知原台阶AB的长为5米(BC所在地面为水平面).(1)改善后的台阶会加长多少?(精确到0.01米)(2)改善后的台阶多占多长一段地面?(精确到0.01米)100.有一个两位数,个位上的数字与十位上的数字之和是11,如果把十位上的数字与个位上的数字对调,那么所得的两位数比原两位数大9,求原来的两位数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C2.D3.A4.C5.D解析:D.6.C7.A8.D9.A10.D11.B12.C13.B14.B15.D16.A17.C19.C20.C21.C22.A23.B24.D25.A26.C27.B28.D29.B30.A31.D32.C33.D34.B35.B36.D37.C38.B39.A40.A二、填空题41.(1)调查 (2)自行车;22%42.2)10(2ty-=43.1 244.2,5 45.33 46.平行且相等48.10049.1650.351.25055018000x x +=52.353.103n +,3000n +54.-2,6455.0,1±56.平行57.60°58.内切59.24760.7061.4-62.6y x =63.70°,40°或55°,55°64.不稳定65.2366.如(2)(3)0x x +-=等67.0.268.1.61至1.71m .69.470.(3,2)71.③72.2.46,2.5三、解答题73.(1)54辆(2)1080辆74.这一列数中最大的数是-2.002,最小的数是-2.2,它们的商是 2.002912.2100x -==-,∴555510991901[1()][1()](1)10011010100100100x ÷-=÷-=÷==⨯ 75.101x -,当 x=2或3 或6或 11 76.由已知,得2(22)1=35a b +-,24()36a b +=,2()9a b +=,3a b +=±.77.设较长的线段长为x ,则有2220()()544xx --=,解这个方程得12x =, 所以这两段铁丝的长分别为 l2cm 、8 cm.78.(1)由图,知住宿消费为 3438.24万元,占旅游消费的22.62%,所以旅游消费共计3438.2422.62%=15200÷(万元)= 1.52(亿元);(2)设2008年到2009年旅游消费的年平均增长率是x ,由题意,得1.52(1) 2.28x +=,解得0.5x =答:2008年到 2009年旅游消费的年平均增长率是50%.79.略80.①③④,②,BE=CF ,则BC=EF ,ΔABC ≌ΔDEF (SAS ).81.略.82.(1) 7×10-5;(2)-4.025×10-3;(3)1.537×102;(4)8.57×108.83.(1)21=P ;(2)41=P . 84.(1)-32x 5y ,(2)3.2×1016,(3)3m 1285.分情况:a>0 ,a=0,a<0 进行讨86.解法都是正确的,解法l 利用了同位角相等来判定两直线平行,解法2得用了内错角相等来判定两直线平行,解法3利用了同旁内角互补来证明两直线平行87.设 AB=x, BD=y ,△ABE 中,∵CD ∥AB ,∴△ECD ∽△EAB ,∴1.733x y =+ △ABH 中,∵FG ∥AB ,∴△HGF ∽△HBA ,∴1.7510x y=+,解得 x=5.95 即路灯杆 AB 的高度约为 6.0 m .88.16件89.(1)16;(2)图略90.(1)m<-5;(2)m>-5且m ≠-l ;(3)m=-591.利用“ASA ”证△ACF ≌△ADF ,得AC=AD92.(2)平行四边形,两组对边分别相等的四边形是平行四边形 (3)矩形,有一个角是直角的平行四边形是矩形93.(1)图象过点(12,3),∴蓄水量=l2×3=36 米3,∵36qt =,∴36q t=(2)当 t=8 时,36 4.58q ==米3/时; (3)当 q=4 时,363694t q ===时; (4)当 t=5 时,367.25q ==,∴每小时至少放水7.2 米3. 94.连结 CO 、AO ,∴.OG ⊥AB ,∴.CG=GD=2. 在 Rt △OCG 中,222CO GG OG =+,∴CO=2. 5cm ,同理222E AO A OE =+∴cm ,∴此时水面 AB 的宽是95.旋转的角度约为:018010573.1410⨯≈⨯ 96.9:1197.(1)可列表如下:(2)由上表可知,小亮能获得这种指定机会的概率是6 98.设 BC=x ,则 AC=18-x,则222(18)12x x -=+,x= 5 , 18 -x= 13,∴51tan 122BC A AB ==<,∴小明通过 AC 不会有危险. 99.解:(1)如图,在Rt ABC △中, sin 445sin 44 3.473AC AB ==≈.在Rt ACD △中,3.473 6.554sin 32sin 32AC AD ==≈,6.5545 1.55AD AB ∴-=-≈.即改善后的台阶会加长1.55米.(2)如图,在Rt ABC △中,cos 445cos 44 3.597BC AB ==≈. 在Rt ACD △中,3.473 5.558tan 32tan 32AC CD ==≈, 5.558 3.597 1.96BD CD BC ∴=-=-≈. 即改善后的台阶多占1.96米长的一段地面. 100.设这个两位数十位上、个位上的数字分别是x 、y ,则11(10)(10x )9x y y x y +=⎧⎨+-+=⎩,解这个方程组得56x y =⎧⎨=⎩,经检验,符合题意, 答:这个两位数是 56。
2024年中考数学复习重难点题型训练—简单几何证明题(含答案解析)类型一三角形全等1.(2022·西藏)如图,已知AD平分∠BAC,AB=AC.求证:△ABD≌△ACD.【答案】证明:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△ACD中,AB=AC∠BAD=∠CADAD=AD,∴△ABD≌△ACD(SAS).2.(2022·湖南省益阳市)如图,在Rt△ABC中,∠B=90°,CD//AB,DE⊥AC于点E,且CE=AB.求证:△CED≌△ABC.【答案】证明:∵DE⊥AC,∠B=90°,∴∠DEC =∠B =90°,∵CD//AB ,∴∠A =∠DCE ,在△CED 和△ABC 中,∠DCE =∠A CE =AB ∠DEC =∠B ,∴△CED≌△ABC(ASA).3.(2022·江苏省南通市)如图,AC 和BD 相交于点O ,OA =OC ,OB =OD .(1)求证:∠A =∠C ;(2)求证:AB//CD .【答案】证明:(1)在△AOB 和△COD 中,OA =OC ∠AOB =∠COD OB =OD ,∴△AOB≌△COD(SAS),∴∠A =∠C ;(2)由(1)得∠A =∠C ,∴AB//CD .4.(2022·上海市)如图所示,在等腰三角形ABC 中,AB =AC ,点E ,F 在线段BC 上,点Q 在线段AB 上,且CF =BE ,AE 2=AQ ⋅AB .求证:(1)∠CAE =∠BAF ;(2)CF ⋅FQ =AF ⋅BQ .【答案】证明:(1)∵AB=AC,∴∠B=∠C,∵CF=BE,∴CF−EF=BE−EF,即CE=BF,在△ACE和△ABF中,AC=AB∠C=∠BCE=BF,∴△ACE≌△ABF(SAS),∴∠CAE=∠BAF;(2)∵△ACE≌△ABF,∴AE=AF,∠CAE=∠BAF,∵AE2=AQ⋅AB,AC=AB,∴AE AQ=AC AF,∴△ACE∽AFQ,∴∠AEC=∠AQF,∴∠AEF=∠BQF,∵AE=AF,∴∠AEF=∠AFE,∴∠BQF=∠AFE,∵∠B=∠C,∴△CAF∽△BFQ,∴CF BQ=AF FQ,即CF⋅FQ=AF⋅BQ.5.(2022·贵州省铜仁市)如图,点C在BD上,AB⊥BD,ED⊥BD,AC⊥CE,AB=CD.求证:△ABC≌△CDE.【答案】证明:∵AB⊥BD,ED⊥BD,AC⊥CE,∴∠B=∠D=∠ACE=90°,∴∠DCE+∠DEC=90°,∠BCA+∠DCE=90°,∴∠BCA=∠DEC,在△ABC和△CDE中,∠BCA=∠DEC∠B=∠DAB=CD,∴△ABC≌△CDE(AAS).6.(2022·广东省云浮市)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.【答案】证明:∵∠AOC=∠BOC,PD⊥OA,PE⊥OB,∴PD=PE,在Rt△OPD和Rt△OPE中,OP=OPPD=PE,∴Rt△OPD≌Rt△OPE(HL).7.(2022·四川省宜宾市)已知:如图,点A、D、C、F在同一直线上,AB//DE,∠B=∠E,BC=EF.求证:AD=CF.【答案】证明:∵AB//DE,∴∠A=∠EDF.在△ABC和△DEF中,∠A=∠EDF∠B=∠EBC=EF,∴△ABC≌△DEF(AAS).∴AC=DF,∴AC−DC=DF−DC,即:AD=CF.8.(2022·陕西省)如图,在△ABC中,点D在边BC上,CD=AB,DE//AB,∠DCE=∠A.求证:DE=BC.【答案】.证明:∵DE//AB,∴∠EDC=∠B,在△CDE和△ABC中,∠EDC=∠BCD=AB∠DCE=∠A,∴△CDE≌△ABC(ASA),∴DE=BC.9.(2022·湖南省衡阳市)如图,在△ABC中,AB=AC,D、E是BC边上的点,且BD=CE.求证:AD=AE.【答案】证明:∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,AB=AC∠B=∠CBD=CE,∴△ABD≌△ACE(SAS),∴AD=AE.10.(2022·四川省乐山市)如图,B是线段AC的中点,AD//BE,BD//CE.求证:△ABD≌△BCE.【答案】证明:∵点B为线段AC的中点,∴AB=BC,∵AD//BE,∴∠A =∠EBC ,∵BD//CE ,∴∠C =∠DBA ,在△ABD 与△BCE 中,∠A =∠EBC AB =BC ∠DBA =∠C ,∴△ABD≌△BCE.(ASA).11.(2021·湖南衡阳市·中考真题)如图,点A 、B 、D 、E 在同一条直线上,,//,//AB DE AC DFBC EF =.求证:ABC DEF △≌△.【答案】见解析【分析】根据//,//AC DF BC EF ,可以得到,A FDE ABC DEF ∠=∠∠=∠,然后根据题目中的条件,利用ASA 证明△ABC ≌△DEF 即可.【详解】证明:点A ,B ,C ,D ,E 在一条直线上∵//,//AC DF BC EF∴,A FDE ABC DEF∠=∠∠=∠在ABC 与DEF 中CAB FDE AB DE ABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ABC DEF ASA △≌△【点睛】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目.12.(2021·四川乐山市·中考真题)如图,已知AB DC =,A D ∠=∠,AC 与DB 相交于点O ,求证:OBC OCB ∠=∠.【答案】证明见解析【分析】根据全等三角形的性质,通过证明ABO DCO △≌△,得OB OC =,结合等腰三角形的性质,即可得到答案.【详解】∵A D AOB DOC AB DC ∠=∠∠=∠=⎧⎪⎨⎪⎩,∴ABO DCO △≌△(AAS ),∴OB OC =,∴OBC OCB ∠=∠.【点睛】本题考查了全等三角形、等腰三角形的知识;解题的关键是熟练掌握全等三角形、等腰三角形的性质,从而完成求解.13.(2021·四川泸州市·中考真题)如图,点D 在AB 上,点E 在AC 上,AB=AC ,∠B=∠C ,求证:BD=CE【答案】证明见详解.【分析】根据“ASA”证明△ABE ≌△ACD ,然后根据全等三角形的对应边相等即可得到结论.【详解】证明:在△ABE 和△ACD 中,∵A A AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩,△ABE ≌△ACD (ASA),∴AE=AD ,∴BD=AB–AD=AC-AE=CE .【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.14.(2021·云南中考真题)如图,在四边形ABCD 中,,,AD BC AC BD AC ==与BD 相交于点E .求证:DAC CBD ∠=∠.【答案】见解析【分析】直接利用SSS 证明△ACD ≌△BDC ,即可证明.【详解】解:在△ACD 和△BDC 中,AD BC AC BD CD DC =⎧⎪=⎨⎪=⎩,∴△ACD ≌△BDC (SSS ),∴∠DAC=∠CBD .【点睛】本题考查了全等三角形的判定和性质,解题的关键是根据题意灵活运用SSS 的方法.15.(2020•菏泽)如图,在△ABC 中,∠ACB =90°,点E 在AC 的延长线上,ED ⊥AB 于点D ,若BC =ED ,求证:CE =DB.【分析】由“AAS ”可证△ABC ≌△AED ,可得AE =AB ,AC =AD ,由线段的和差关系可得结论.【解答】证明:∵ED ⊥AB ,∴∠ADE =∠ACB =90°,∠A =∠A ,BC =DE ,∴△ABC ≌△AED (AAS ),∴AE =AB ,AC =AD ,∴CE =BD .16.(2020•南充)如图,点C 在线段BD 上,且AB ⊥BD ,DE ⊥BD ,AC ⊥CE ,BC =DE .求证:AB =CD .【分析】证明△ABC≌△CDE(ASA),可得出结论.【解答】证明:∵AB⊥BD,ED⊥BD,AC⊥CE,∴∠ACE=∠ABC=∠CDE=90°,∴∠ACB+∠ECD=90°,∠ECD+∠CED=90°,∴∠ACB=∠CED.在△ABC和△CDE中,∠ACB=∠CEDBC=DE∠ABC=∠CDE,∴△ABC≌△CDE(ASA),∴AB=CD.17.(2020•硚口区模拟)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.【分析】要证BD=CE只要证明AD=AE即可,而证明△ABE≌△ACD,则可得AD=AE.【解答】证明:在△ABE与△ACD中∠A=∠AAB=AC∠B=∠C,∴△ABE≌△ACD.∴AD =AE .∴BD =CE .18.(2020•铜仁市)如图,∠B =∠E ,BF =EC ,AC ∥DF .求证:△ABC ≌△DEF .【分析】首先利用平行线的性质得出∠ACB =∠DFE ,进而利用全等三角形的判定定理ASA ,进而得出答案.【解答】证明:∵AC ∥DF ,∴∠ACB =∠DFE ,∵BF =CE ,∴BC =EF ,在△ABC 和△DEF 中,∠B =∠E BC =EF ∠ACB =∠DFE ,∴△ABC ≌△DEF (ASA ).19.(2020•无锡)如图,已知AB ∥CD ,AB =CD ,BE =CF .求证:(1)△ABF ≌△DCE ;(2)AF ∥DE .【分析】(1)先由平行线的性质得∠B =∠C ,从而利用SAS 判定△ABF ≌△DCE ;(2)根据全等三角形的性质得∠AFB =∠DEC ,由等角的补角相等可得∠AFE =∠DEF ,再由平行线的判定可得结论.【解答】证明:(1)∵AB ∥CD ,∴∠B =∠C ,∵BE =CF ,∴BE ﹣EF =CF ﹣EF ,即BF =CE ,在△ABF 和△DCE 中,∵AB =CD ∠B =∠C BF =CE ,∴△ABF ≌△DCE (SAS );(2)∵△ABF ≌△DCE ,∴∠AFB =∠DEC ,∴∠AFE =∠DEF ,∴AF ∥DE .20.(2020•台州)如图,已知AB =AC ,AD =AE ,BD 和CE 相交于点O .(1)求证:△ABD ≌△ACE ;(2)判断△BOC 的形状,并说明理由.【分析】(1)由“SAS ”可证△ABD ≌△ACE ;(2)由全等三角形的性质可得∠ABD =∠ACE ,由等腰三角形的性质可得∠ABC =∠ACB ,可求∠OBC=∠OCB,可得BO=CO,即可得结论.【解答】证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.21.如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.【分析】(1)根据平行线的性质求出∠B=∠C,根据AAS推出△ABE≌△DCF,根据全等三角形的性质得出即可;(2)根据全等得出AB=CD,BE=CF,∠B=∠C,求出CF=CD,推出∠D=∠CFD,即可求出答案.【解答】(1)证明:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,∠A=∠D∠B=∠CAE=DF,∴△ABE≌△DCF(AAS),∴AB=CD;(2)解:∵△ABE≌△DCF,∴AB=CD,BE=CF,∠B=∠C,∵∠B=40°,∴∠C=40°∵AB=CF,∴CF=CD,∴∠D=∠CFD=12×(180°﹣40°)=70°.类型二特殊四边形判定及性质22.(2022·广西壮族自治区河池市)如图,点A,F,C,D在同一直线上,AB=DE,AF=CD,BC=EF.(1)求证:∠ACB=∠DFE;(2)连接BF,CE,直接判断四边形BFEC的形状.【答案】(1)证明:∵AF=CD,∴AF+CF=CD+CF,即AC=DF,在△ABC和△DEF中,AB=DEBC=EFAC=DF,∴△ABC≌△DEF(SSS),∴∠ACB=∠DFE;(2)解:如图,四边形BFEC是平行四边形,理由如下:由(1)可知,∠ACB=∠DFE,∴BC//EF,又∵BC=EF,∴四边形BFEC是平行四边形.23.(2022·青海省西宁市)如图,四边形ABCD是菱形,AE⊥BC于点E,AF⊥CD于点F.(1)求证:△ABE≌△ADF;(2)若AE=4,CF=2,求菱形的边长.【答案】(1)证明:∵四边形ABCD 是菱形,∴AB =BC =CD =AD ,∠B =∠D ,∵AE ⊥BC ,AF ⊥CD ,∴∠AEB =∠AFD ,在△ABE 和△ADF 中,∠AEB =∠AFD ∠B =∠D AB =AD ,∴△ABE≌△ADF(AAS);(2)解:设菱形的边长为x ,∵AB =CD =x ,CF =2,∴DF =x −2,∵△ABE≌△ADF ,∴BE =DF =x −2,在Rt △ABE 中,根据勾股定理得,AE 2+BE 2=AB 2,即42+(x −2)2=x 2,解得x =5,∴菱形的边长是5.24.(2022·江苏省无锡市)如图,已知四边形ABCD为矩形,AB=22,BC=4,点E在BC 上,CE=AE,将△ABC沿AC翻折到△AFC,连接EF.(1)求EF的长;(2)求sin∠CEF的值.【答案】解:(1)∵CE=AE,∴∠ECA=∠EAC,根据翻折可得:∠ECA=∠FCA,∠BAC=∠CAF,∵四边形ABCD是矩形,∴DA//CB,∴∠ECA=∠CAD,∴∠EAC=∠CAD,∴∠DAF=∠BAE,∵∠BAD=90°,∴∠EAF=90°,设CE=AE=x,则BE=4−x,在△BAE中,根据勾股定理可得:BA2+BE2=AE2,即:(22)2+(4−x)2= x2,解得:x=3,在Rt△EAF中,EF=AF2+AE2=17.(2)过点F作FG⊥BC交BC于点G,设CG=x,则GB=3−x,∵FC=4,FE=17,∴FG2=FC2−CG2=FE2−EG2,即:16−x2=17−(3−x)2,解得:x=43,∴FG=FC2−CG2∴sin∠CEF=FG EF=25.(2022·湖北省荆门市)如图,已知矩形ABCD中,AB=8,BC=x(0<x<8),将△ACB 沿AC对折到△ACE的位置,AE和CD交于点F.(1)求证:△CEF≌△ADF;(2)求tan∠DAF的值(用含x的式子表示).【答案】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,BC=AD,根据折叠的性质得:BC=CE,∠E=∠B=90°,∴∠E=∠D=90°,AD=CE,在△CEF与△ADF中,∠ CFE=∠AFD∠D=∠E=90°AD=CE,∴△CEF≌△ADF(AAS);(2)解:设DF=a,则CF=8−a,∵四边形ABCD是矩形,∴AB//CD,AD=BC=x,∴∠DCA=∠BAC,根据折叠的性质得:∠EAC=∠BAC,∴∠DCA=∠EAC,∴AF=CF=8−a,在Rt△ADF中,∵AD2+DF2=AF2,∴x2+a2=(8−a)2,∴a=64−x216,∴tan∠DAF=DF AD=64−x216x.26.(2022·四川省遂宁市)如图,在菱形ABCD中,对角线AC、BD相交于点O,点E是AD的中点,连接OE,过点D作DF//AC交OE的延长线于点F,连接AF.(1)求证:△AOE≌△DFE;(2)判定四边形AODF的形状并说明理由.【答案】(1)证明:∵E是AD的中点,∴AE=DE,∵DF//AC,∴∠OAD=∠ADF,∵∠AEO=∠DEF,∴△AOE≌△DFE(ASA).(2)解:四边形AODF为矩形.理由:∵△AOE≌△DFE,∴AO=DF,∵DF//AC,∴四边形AODF为平行四边形,∵四边形ABCD为菱形,∴AC⊥BD,即∠AOD=90°,∴平行四边形AODF为矩形.27.(2022·湖北省)如图,已知E、F分别是▱ABCD的边BC,AD上的点,且BE=DF(1)求证:四边形AECF是平行四边形;(2)若四边形AECF是菱形,且BC=10,∠BAC=90°,求BE的长.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD//BC,且AD=BC,∴AF//EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形;(2)如图所示:∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠3=90°−∠2,∠4=90°−∠1,∴∠3=∠4,∴AE=BE,∴BE=AE=CE=12BC=5.28.(2022·云南省)如图,在平行四边形ABCD中,连接BD,E为线段AD的中点,延长BE 与CD的延长线交于点F,连接AF,∠BDF=90°.(1)求证:四边形ABDF是矩形;(2)若AD=5,DF=3,求四边形ABCF的面积S.【答案】.(1)证明:∵四边形ABCD是平行四边形,∴BA//CD,∴∠BAE=∠FDE,∵点E是AD的中点,∴AE=DE,在△BEA和△FED中,∠BAE=∠FDEAE=DE∠BEA=∠FED,∴△BEA≌△FED(ASA),∴EF=EB,又∵AE=DE,∴四边形ABDF是平行四边形,∵∠BDF=90°.∴四边形ABDF是矩形;(2)解:由(1)得四边形ABDF是矩形,∴∠AFD=90°,AB=DF=3,AF=BD,∴AF=AD2−DF2=52−32=4,∴S矩形ABDF=DF⋅AF=3×4=12,BD=AF=4,∵四边形ABCD是平行四边形,∴CD=AB=3,∴S△BCD=12BD⋅CD=12×4×3=6,∴四边形ABCF的面积S=S矩形ABDF+S△BCD=12+6=18,答:四边形ABCF的面积S为18.29.(2022·广西壮族自治区河池市)如图,点A,F,C,D在同一直线上,AB=DE,AF=CD,BC=EF.(1)求证:∠ACB=∠DFE;(2)连接BF,CE,直接判断四边形BFEC的形状.【答案】(1)证明:∵AF=CD,∴AF+CF=CD+CF,即AC=DF,在△ABC和△DEF中,AB=DEBC=EFAC=DF,∴△ABC≌△DEF(SSS),∴∠ACB=∠DFE;(2)解:如图,四边形BFEC是平行四边形,理由如下:由(1)可知,∠ACB=∠DFE,∴BC//EF,又∵BC=EF,∴四边形BFEC是平行四边形.30.(2022·湖南省郴州市)如图,四边形ABCD是菱形,E,F是对角线AC上的两点,且AE=CF,连接BF,FD,DE,EB.求证:四边形DEBF是菱形.【答案】证明:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠DAB=∠DCB,AC平分∠DAB,AC平分∠DCB,∴∠DAC=∠BAC=12∠DAB,∠DCA=∠ACB=12∠DCB,∴∠DAC=∠BAC=∠DCA=∠ACB,∵AE=CF,∴△DAE≌△BAE≌△BCF≌△DCF(SAS),∴DE=BE=BF=DF,∴四边形DEBF是菱形.31.(2022·山东省聊城市)如图,△ABC中,点D是AB上一点,点E是AC的中点,过点C 作CF//AB,交DE的延长线于点F.(1)求证:AD=CF;(2)连接AF,CD.如果点D是AB的中点,那么当AC与BC满足什么条件时,四边形ADCF 是菱形,证明你的结论.【答案】(1)证明:∵CF//AB,∴∠ADF=∠CFD,∠DAC=∠FCA,∵点E是AC的中点,∴AE=CE,∴△ADE≌△CFE(AAS),∴AD=CF;(2)解:当AC⊥BC时,四边形ADCF是菱形,证明如下:由(1)知,AD=CF,∵AD//CF,∴四边形ADCF是平行四边形,∵AC⊥BC,∴△ABC是直角三角形,∵点D是AB的中点,∴CD=12AB=AD,∴四边形ADCF是菱形.32.(2022·北京市)如图,在▱ABCD中,AC,BD交于点O,点E,F在AC上,AE=CF.(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC,求证:四边形EBFD是菱形.【答案】证明:(1)在▱ABCD中,OA=OC,OB=OD,∵AE=CF.∴OE=OF,∴四边形EBFD是平行四边形;(2)∵四边形ABCD是平行四边形,∴AB//DC,∴∠BAC=∠DCA,∵∠BAC=∠DAC,∴∠DCA=∠DAC,∴DA=DC,∵OA=OC,∴DB⊥EF,∴平行四边形EBFD是菱形.33.(2022·湖南省张家界市)如图,菱形ABCD的对角线AC、BD相交于点O,点E是CD的中点,连接OE,过点C作CF//BD交OE的延长线于点F,连接DF.(1)求证:△ODE≌△FCE;(2)试判断四边形ODFC的形状,并写出证明过程.【答案】.(1)证明:∵点E是CD的中点,∴CE=DE,又∵CF//BD∴∠ODE=∠FCE,在△ODE和△FCE中,∠ODE=∠FCEDE=CE∠DEO=∠CEF,∴△ODE≌△FCE(ASA);(2)解:四边形ODFC为矩形,证明如下:∵△ODE≌△FCE,∴OE=FE,又∵CE=DE,∴四边形ODFC为平行四边形,又∵四边形ABCD为菱形,∴AC⊥BD,即∠DOC=90°,∴四边形ODFC为矩形.34.(2022·四川省内江市)如图,在▱ABCD中,点E、F在对角线BD上,且BE=DF.求证:(1)△ABE≌△CDF;(2)四边形AECF是平行四边形.【答案】证明:(1)∵四边形ABCD为平行四边形,∴AB=CD,AB//CD,∴∠ABD=∠CDB,在△ABE和△CDF中,AB=CD∠ABE=∠CDFBE=DF,∴△ABE≌△CDF(SAS);(2)由(1)可知,△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴180°−∠AEB=180°−∠CFD,即∠AEF=∠CFE,∴AE//CF,∵AE=CF,AE//CF,∴四边形AECF是平行四边形.35.(2022·湖南省长沙市)如图,在▱ABCD中,对角线AC,BD相交于点O,AB=AD.(1)求证:AC⊥BD;(2)若点E,F分别为AD,AO的中点,连接EF,EF=32,AO=2,求BD的长及四边形ABCD 的周长.【答案】(1)证明:∵四边形ABCD是平行四边形,AB=AD,∴▱ABCD是菱形,∴AC⊥BD;(2)解:∵点E,F分别为AD,AO的中点,∴EF是△AOD的中位线,∴OD=2EF=3,由(1)可知,四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,BD=2OD=6,在Rt△AOD中,由勾股定理得:AD=AO2+OD2=22+32=13,∴菱形ABCD的周长=4AD=41336.(2021·四川广安市·中考真题)如图,四边形ABCD是菱形,点E、F分别在边AB、AD=.连接CE、CF.的延长线上,且BE DF求证:CE CF=.【答案】见解析【分析】根据菱形的性质得到BC=CD,∠ADC=∠ABC,根据SAS证明△BEC≌△DFC,可得CE=CF.【详解】解:∵四边形ABCD 是菱形,∴BC=CD ,∠ADC=∠ABC ,∴∠CDF=∠CBE ,在△BEC 和△DFC 中,BE DF CBE CDF BC CD =⎧⎪∠=∠⎨⎪=⎩,∴△BEC ≌△DFC (SAS ),∴CE=CF .【点睛】本题考查了菱形的性质,全等三角形的判定和性质,解题的关键是根据菱形得到判定全等的条件.37.(2021·江苏扬州市·中考真题)如图,在ABC 中,BAC ∠的角平分线交BC 于点D ,//,//DE AB DF AC.(1)试判断四边形AFDE 的形状,并说明理由;(2)若90BAC ∠=︒,且AD =,求四边形AFDE 的面积.【答案】(1)菱形,理由见解析;(2)4【分析】(1)根据DE ∥AB ,DF ∥AC 判定四边形AFDE 是平行四边形,再根据平行线的性质和角平分线的定义得到∠EDA=∠EAD ,可得AE=DE ,即可证明;(2)根据∠BAC=90°得到菱形AFDE是正方形,根据对角线AD求出边长,再根据面积公式计算即可.【详解】解:(1)四边形AFDE是菱形,理由是:∵DE∥AB,DF∥AC,∴四边形AFDE是平行四边形,∵AD平分∠BAC,∴∠FAD=∠EAD,∵DE∥AB,∴∠EDA=∠FAD,∴∠EDA=∠EAD,∴AE=DE,∴平行四边形AFDE是菱形;(2)∵∠BAC=90°,∴四边形AFDE是正方形,∵AD=,=2,∴∴四边形AFDE的面积为2×2=4.【点睛】本题考查了菱形的判定,正方形的判定和性质,平行线的性质,角平分线的定义,解题的关键是掌握特殊四边形的判定方法.38.(2021·江苏连云港市·中考真题)如图,点C是BE的中点,四边形ABCD是平行四边形.(1)求证:四边形ACED是平行四边形;,求证:四边形ACED是矩形.(2)如果AB AE【答案】(1)见解析;(2)见解析【分析】(1)由平行四边形的性质以及点C是BE的中点,得到AD∥CE,AD=CE,从而证明四边形ACED是平行四边形;(2)由平行四边形的性质证得DC=AE,从而证明平行四边形ACED是矩形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC.∵点C是BE的中点,∴BC=CE,∴AD=CE,∵AD∥CE,∴四边形ACED是平行四边形;(2)∵四边形ABCD是平行四边形,∴AB=DC,∵AB=AE,∴DC=AE,∵四边形ACED是平行四边形,∴四边形ACED是矩形.【点睛】本题考查了平行四边形和矩形的判定和性质,正确的识别图形是解题的关键.39.(2021·四川遂宁市·中考真题)如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,过点O 的直线EF 与BA 、DC 的延长线分别交于点E 、F .(1)求证:AE =CF ;(2)请再添加一个条件,使四边形BFDE是菱形,并说明理由.【答案】(1)见解析;(2)EF ⊥BD 或EB =ED ,见解析【分析】(1)根据平行四边形的性质和全等三角形的证明方法证明AOE COF V V ≌,则可得到AE =CF ;(2)连接BF ,DE ,由AOE COF V V ≌,得到OE=OF ,又AO=CO ,所以四边形AECF 是平行四边形,则根据EF ⊥BD 可得四边形BFDE 是菱形.【详解】证明:(1)∵四边形ABCD 是平行四边形∴OA =OC ,BE ∥DF∴∠E =∠F在△AOE 和△COF 中E F AOE COF OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AOE COF V V ≌()AAS ∴AE =CF(2)当EF ⊥BD 时,四边形BFDE 是菱形,理由如下:如图:连结BF ,DE∵四边形ABCD 是平行四边形∴OB =OD∵AOE COFV V ≌∴OE OF=∴四边形BFDE 是平行四边形∵EF ⊥BD ,∴四边形BFDE 是菱形【点睛】本题主要考查了全等三角形的性质与判定、平行四边形的性质,菱形的判定等知识点,熟悉相关性质,能全等三角形的性质解决问题是解题的关键.40(2020•黄冈)已知:如图,在▱ABCD 中,点O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E ,求证:AD =CE .【分析】只要证明△AOD≌△EOC(ASA)即可解决问题;【解答】证明:∵O是CD的中点,∴OD=CO,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠OCE,在△ADO和△ECO中,∠D=∠OCEOD=OC∠AOD=∠EOC,∴△AOD≌△EOC(ASA),∴AD=CE.41.(2020•扬州)如图,▱ABCD的对角线AC、BD相交于点O,过点O作EF⊥AC,分别交AB、DC于点E、F,连接AF、CE.(1)若OE=32,求EF的长;(2)判断四边形AECF的形状,并说明理由.【分析】(1)判定△AOE≌△COF(ASA),即可得OE=OF=32,进而得出EF的长;(2)先判定四边形AECF是平行四边形,再根据EF⊥AC,即可得到四边形AECF是菱形.【解析】(1)∵四边形ABCD是平行四边形,∴AB∥CD,AO=CO,∴∠FCO=∠EAO,又∵∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF=32,∴EF=2OE=3;(2)四边形AECF是菱形,理由:∵△AOE≌△COF,∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形,又∵EF⊥AC,∴四边形AECF是菱形.42.(2020•青岛)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE=BF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)连接AF,CE.当BD平分∠ABC时,四边形AFCE是什么特殊四边形?请说明理由.【分析】(1)根据四边形ABCD是平行四边形,可以得到AD=CB,∠ADC=∠CBA,从而可以得到∠ADE=∠CBF,然后根据SAS即可证明结论成立;(2)根据BD平分∠ABC和平行四边形的性质,可以证明▱ABCD是菱形,从而可以得到AC ⊥BD,然后即可得到AC⊥EF,再根据题目中的条件,可以证明四边形AFCE是平行四边形,然后根据AC⊥EF,即可得到四边形AFCE是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,∠ADC=∠CBA,∴∠ADE=∠CBF,在△ADE和△CBF中,AD=CB∠ADE=∠CBFDE=BF,∴△ADE≌△CBF(SAS);(2)当BD平分∠ABC时,四边形AFCE是菱形,理由:∵BD平分∠ABC,∴∠ABD=∠CBD,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠ADB=∠CBD,∴∠ABD=∠ADB,∴AB=AD,∴平行四边形ABCD是菱形,∴AC⊥BD,∴AC⊥EF,∵DE=BF,∴OE=OF,又∵OA=OC,∴四边形AFCE是平行四边形,∵AC⊥EF,∴四边形AFCE是菱形.43.(2020•新疆)如图,四边形ABCD是平行四边形,DE∥BF,且分别交对角线AC于点E,F,连接BE,DF.(1)求证:AE=CF;(2)若BE=DE,求证:四边形EBFD为菱形.【分析】(1)根据平行四边形的性质,可以得到AD=CB,AD∥CB,从而可以得到∠DAE=∠BCF,再根据DE∥BF和等角的补角相等,从而可以得到∠AED=∠CFB,然后即可证明△ADE和△CBF全等,从而可以得到AE=CF;(2)根据(1)中的△ADE和△CBF全等,可以得到DE=BF,再根据DE∥BF,即可得到四边形EBFD是平行四边形,再根据BE=DE,即可得到四边形EBFD为菱形.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥CB ,∴∠DAE =∠BCF ,∵DE ∥BF ,∴∠DEF =∠BFE ,∴∠AED =∠CFB ,在△ADE 和△CBF 中,∠DAE =∠BCF ∠AED =∠CFB AD =CB ,∴△ADE ≌△CBF (AAS ),∴AE =CF ;(2)证明:由(1)知△ADE ≌△CBF ,则DE =BF ,又∵DE ∥BF ,∴四边形EBFD 是平行四边形,∵BE =DE ,∴四边形EBFD 为菱形.类型三与相似有关的证明44.(2021·广东中考真题)如图,边长为1的正方形ABCD 中,点E 为AD 的中点.连接BE ,将ABE △沿BE 折叠得到,FBE BF 交AC 于点G ,求CG 的长.【答案】CG =【分析】根据题意,延长BF 交CD 于H 连EH ,通过证明()Rt EDH Rt EFH HL ≌、DHE AEB ∽得到34CH =,再由HGC BGA ∽得到()34CG AC CG =-,进而即可求得CG 的长.【详解】解:延长BF 交CD 于H 连EH ,∵FBE 由ABE △沿BE 折叠得到,∴EA EF =,90EFB EAB ∠=∠=︒,∵E 为AD 中点,正方形ABCD 边长为1,∴12EA ED ==,∴12ED EF ==,∵四边形ABCD 是正方形,∴90D EFB EFH ∠=∠=∠=︒,在Rt EDH △和Rt EFH 中,ED EF EH EH=⎧⎨=⎩,∴()Rt EDH Rt EFH HL ≌,又∵AEB FEB ∠=∠,∴90DEH AEB ∠+∠=︒,∵90ABE AEB ∠+∠=︒,∴ABE DEH ∠=∠,∴DHE AEB ∽,∴12DH AE DE AB ==,∴14DH =,∴13144CH CD DH =-=-=,∵CH AB ∥,∴HGC BGA ∽,∴34CG CH AG AB ==,∴()3344CG AG AC CG ==-,∵1AB =,1CB =,90CBA ∠=︒,∴AC =,∴)34CG CG =,∴CG =.【点睛】本题主要考查了三角形全等的判定及性质、三角形相似的判定及性质以及正方形的性质,熟练掌握相关几何知识是解决本题的关键.45.(2021·湖北鄂州市·中考真题)如图,在ABCD 中,点E 、F 分别在边AD 、BC 上,(1)探究四边形BEDF的形状,并说明理由;(2)连接AC,分别交BE、DF于点G、H,连接BD交AC于点O.若23AGOG=,4AE=,求BC的长.【答案】(1)平行四边形,见解析;(2)16【分析】(1)利用平行四边形的判定定理,两组对边分别平行是平行四边形即可证明;(2)根据23AGOG=,找到边与边的等量关系,再利用三角形相似,建立等式进行求解即可.【详解】(1)四边形BEDF为平行四边形.理由如下:∵四边形ABCD为平行四边形∴ABC ADC∠=∠∵ABE CDF∠=∠∴EBF EDF∠=∠∵四边形ABCD为平行四边形∴//AD BC∴EDF DFC EBF∠=∠=∠∴//BE DF∵//AD BC∴四边形BEDF 为平行四边形(2)设2AG a =,∵23AG OG =∴3OG a =,5AO a=∵四边形ABCD 为平行四边形∴5AO CO a ==,10AC a =,8CG a=∵//AD BC,,AGE CGB AEG CBG EAG BCG ∠=∠∠=∠∠=∠,∴AGE CGB∆∆∽∴14AE AG BC GC ==∵4AE =∴16BC =.【点睛】本题考查了平行四边形的判定定理、相似三角形的判定定理,解题的关键是:熟练掌握相关定理,能进行相关的证明.46.(2021·北京中考真题)如图,在ABC 中,,,AB AC BAC M α=∠=为BC 的中点,点D 在MC 上,以点A 为中心,将线段AD 顺时针旋转α得到线段AE ,连接,BE DE .(1)比较BAE ∠与CAD ∠的大小;用等式表示线段,,BE BM MD 之间的数量关系,并证明;(2)过点M 作AB 的垂线,交DE 于点N ,用等式表示线段NE 与ND 的数量关系,并证明.【答案】(1)BAE CAD ∠=∠,BM BE MD =+,理由见详解;(2)DN EN =,理由见详解.【分析】(1)由题意及旋转的性质易得BAC EAD α∠=∠=,AE AD =,然后可证ABE ACD △≌△,进而问题可求解;(2)过点E 作EH ⊥AB ,垂足为点Q ,交AB 于点H ,由(1)可得ABE ACD ∠=∠,BE CD =,易证BH BE CD ==,进而可得HM DM =,然后可得DMN DHE ∽,最后根据相似三角形的性质可求证.【详解】(1)证明:∵BAC EAD α∠=∠=,∴BAE BAD BAD CAD α∠+∠=∠+∠=,∴BAE CAD ∠=∠,由旋转的性质可得AE AD =,∵AB AC =,∴()ABE ACD SAS ≌,∴BE CD =,∵点M 为BC 的中点,∴BM CM =,∵CM MD CD MD BE =+=+,∴BM BE MD =+;(2)证明:DN EN =,理由如下:过点E 作EH ⊥AB ,垂足为点Q ,交AB 于点H ,如图所示:∴90EQB HQB ∠=∠=︒,由(1)可得ABE ACD △≌△,∴ABE ACD ∠=∠,BE CD =,∵AB AC =,∴ABC C ABE ∠=∠=∠,∵BQ BQ =,∴()BQE BQH ASA ≌,∴BH BE CD ==,∵MB MC =,∴HM DM =,∵MN AB ⊥,∴//MN EH ,∴DMN DHE ∽,∴12DM DN DH DE ==,∴DN EN =.【点睛】本题主要考查全等三角形的性质与判定、相似三角形的性质与判定及等腰三角形的性质、旋转的性质,熟练掌握全等三角形的性质与判定、相似三角形的性质与判定及等腰三角形的性质、旋转的性质是解题的关键.47.(2020•长沙)在矩形ABCD 中,E 为DC 边上一点,把△ADE 沿AE 翻折,使点D 恰好落在BC边上的点F.(1)求证:△ABF∽△FCE;(2)若AB=23,AD=4,求EC的长;(3)若AE﹣DE=2EC,记∠BAF=α,∠FAE=β,求tanα+tanβ的值.【分析】(1)根据两角对应相等的两个三角形相似证明即可.(2)设EC=x,证明△ABF∽△FCE,可得AB CF=BF EC,由此即可解决问题.(3)首先证明tanα+tanβ=BF AB+EF AF=BF AB+CF AB=BF+CF AB=BC AB,设AB=CD=a,BC=AD=b,DE=x,解直角三角形求出a,b之间的关系即可解决问题.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,由翻折可知,∠D=∠AFE=90°,∴∠AFB+∠EFC=90°,∠EFC+∠CEF=90°,∴∠AFB=∠FEC,∴△ABF∽△FCE.(2)设EC=x,由翻折可知,AD=AF=4,∴BF=AF2−AB2=16−12=2,∴CF=BC﹣BF=2,∵△ABF∽△FCE,∴AB CF=BF EC,∴2322,∴x=∴EC=(3)∵△ABF∽△FCE,∴AF EF=AB CF,∴tanα+tanβ=BF AB+EF AF=BF AB+CF AB=BF+CF AB=BC AB,设AB=CD=a,BC=AD=b,DE=x,∴AE=DE+2CE=x+2(a﹣x)=2a﹣x,∵AD=AF=b,DE=EF=x,∠B=∠C=∠D=90°,∴BF=b2−a2,CF=x2−(a−x)2=2ax−a2,∵AD2+DE2=AE2,∴b2+x2=(2a﹣x)2,∴a2﹣ax=14b2,∵△ABF∽△FCE,∴AB CF=BF EC,−(a−x)=b2−a2a−x,∴a2﹣ax=b2−a2•2ax−a2,∴14b2=b2−a2•整理得,16a4﹣24a2b2+9b4=0,∴(4a2﹣3b2)2=0,∴b a=233,∴tanα+tanβ=BC AB=48.(2020•怀化)如图,在⊙O中,AB为直径,点C为圆上一点,延长AB到点D,使CD =CA,且∠D=30°.(1)求证:CD是⊙O的切线.(2)分别过A、B两点作直线CD的垂线,垂足分别为E、F两点,过C点作AB的垂线,垂足为点G.求证:CG2=AE•BF.【分析】(1)连接OC,∠CAD=∠D=30°,由OC=OA,进而得到∠OCA=∠CAD=30°,由三角形外角定理得到∠COD=∠A+∠OCA=60°,在△OCD中由内角和定理可知∠OCD=90°即可证明;(2)证明AC是∠EAG的角平分线,CB是∠FCG的角平分线,得到CE=CG,CF=CG,再证明△AEC∽△CFB,对应线段成比例即可求解.【解答】(1)证明:连接OC,如右图所示,∵CA=CD,且∠D=30°,∴∠CAD=∠D=30°,∵OA=OC,∴∠CAD=∠ACO=30°,∴∠COD=∠CAD+∠ACO=30°+30°=60°,∴∠OCD=180°﹣∠D﹣∠COD=180°﹣30°﹣60°=90°,∴OC⊥CD,∴CD是⊙O的切线;(2)∵∠COB=60°,且OC=OB,∴△OCB为等边三角形,∴∠CBG=60°,又∵CG⊥AD,∴∠CGB=90°,∴∠GCB=∠CGB﹣∠CBG=30°,又∵∠GCD=60°,∴CB是∠GCD的角平分线,∵BF⊥CD,BG⊥CG,∴BF=BG,又∵BC=BC,∴Rt△BCG≌Rt△BCF(HL),∴CF=CG.∵∠D=30°,AE⊥ED,∠E=90°,∴∠EAD=60°,又∵∠CAD=30°,∴AC是∠EAG的角平分线,∵CE⊥AE,CG⊥AB,∴CE=CG,∵∠E=∠BFC=90°,∠EAC=30°=∠BCF,∴△AEC∽△CFB,。
初中数学基本运算能力训练1.计算:345tan 32312110-︒-⨯⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-- 。
2.计算:()()()︒⨯-+-+-+⎪⎭⎫⎝⎛-30tan 33121201220103110012。
3.计算:()()112230sin 4260cos 18-+︒-÷︒---。
4.解不等式组:⎪⎩⎪⎨⎧-≤--x x x x 238262> ,并把它的解集表示在数轴上。
5.解不等式组:⎪⎩⎪⎨⎧-≤-++x x x x 231121)1(375> 。
【例题】解分式方程:15612-∙=+⎪⎭⎫⎝⎛-x x x x 。
6.解方程:32223=-++x x x 7.解方程:()()0223222=++-+xx x x8.如果关于x 的方程3132--=-x mx 有增根,则m 的值等于 。
9.化简:422311222--÷+++∙⎪⎭⎫ ⎝⎛+-a a a a a a a a a 。
10.先化简,再求值:⎪⎭⎫⎝⎛+---÷--11211222x x x x x x ,其中21=x 。
11.先化简,再求值:44221212+-÷⎪⎭⎫ ⎝⎛++-a a a a a ,其中4-=a 。
12.先化简,再求值:⎪⎭⎫⎝⎛++⨯--111112x x x ,其中0=x 。
13. 91的算术平方根是 , 32的平方根是 。
14.2)23(-的值是 ,将132-分母有理化的值是 。
15.规定运算:b a b a -=*)(,其中b a 、为实数,则=+*7)37( 。
16.设1-=x x A ,1132+-=x B ,当x 为何值时,A 与B 的值相等?复习专项之一元二次方程第一部分:填空题1、一元二次方程12)3)(31(2+=-+x x x 化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。
2、有一个一元二次方程,未知数为y ,二次项的系数为-1,一次项的系数为3,常数项为-6,请你写出它的一般形式______________。
3、在关于x 的方程(m-5)x m-7+(m+3)x-3=0中:当m=_____时,它是一元二次方程;当m=_____时,它是一元一次方程。
4、已知关于x 的一元二次方程x 2+kx+k=0的一个根是–2,那么k=_ __。
5、若-2是关于x 的一元二次方程(k 2-1)x 2+2kx+4=0的一个根,则k=________.6、已知方程3ax 2-bx-1=0和ax 2+2bx-5=0,有共同的根-1, 则a= , b= .7、若一元二次方程ax 2+bx+c=0(a ≠0)有一个根为1,则a+b+c= ;若有一个根为-1,则b 与a 、c 之间的关系为 ;若有一个根为零,则c= .8、方程x x =23的解是 。
方程x 2-2x-3=0的根是________.9、已知y=x 2-2x-3,当x= 时,y 的值是-3。
10、已知x 2+3x+5的值为11,则代数式3x 2+9x+12的值为11、已知一元二次方程有一个根是2,那么这个方程可以是 (填上你认为正确的一个方程即可)12、若方程032=+-m x x 有两个相等的实数根,则m = ,两个根分别为 。
13、已知关于x 的方程x 2-(a +2)x +a -2b =0的判别式等于0,且x =12是方程的根,则a +b 的值为 ______________。
14、已知关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实数根,则m 的取值范围是15、如果关于x 的一元二次方程2x(ax -4)-x 2+6=0没有实数根,那么a 的最小整数值是 。
16、已知二次三项式x 2+2mx+4-m 2是一个完全平方式,则m= 。
17、代数式22418x x -+-有最________值为________。
18、若方程0892=+-x kx 的一个根为1,则k = ,另一个根为 。
19、已知x 2+mx+7=0的一个根,则m= ,另一根为 . 20、已知关于x 的方程x 2-3x+m=0的一个根是另一个根的2倍,则m•的值为_______. 21、已知x 1、x 2是方程2x 2+3x -4=0的两个根,那么:x 1+x 2= ;x 1·x 2= ;11x +21x = ;x 21+x 22= ;|x 1-x 2|= 。
22、已知x 1、x 2是关于x 的方程(a-1)x 2+x+a 2-1=0的两个实数根,且x 1+x 2=13,则x 1·x 2=__ __. 23、已知α,β是方程0522=-+x x 的两个实数根,则α2+β2+2α+2β的值为_________。
24、已知一元二次方程两根之和为4,两根之积为3,则此方程为____ ______。
25、以为根的一元二次方程是____ _____.26、长方形铁片四角各截去一个边长为5cm 的正方形, 而后折起来做一个没盖的盒子,铁片的长是宽的2倍,作成的盒子容积为 1. 5 立方分米, 则铁片的长等于_____,宽等于______.27、已知三角形的两边分别是1和2,第三边的数值是方程2x 2-5x+3=0的根,则这个三角形的周长为_______.28、两数和为-7,积为12,则这两个数是 。
29、等腰三角形的底和腰是方程x 2-6x+8=0的两根,则这个三角形的周长是 30、某厂2003年的钢产量是a 吨,计划以后每一年比上一年的增长率为x,那么2005年的钢产量是_________________吨.31、市政府为了解决市民看病难的问题,决定下调药品的价格。
某种药品经过连续两次降价后,由每盒200元下调至128元,求这种药品平均每次降价的百分率是 。
32、一种药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是 。
第二部分:选择题1、方程()()1231=+-x x 化为02=++c bx ax 形式后,a 、b 、c 的值为( )(A )1,–2,–15 (B )1,–2,–15(C )1,2,–15 (D )–1,2,–15 2、已知x =2是方程32x 2-2a =0的一个解,则2a -1的值是 ( )A .3B .4C .5D .63、一元二次方程2x(x -3)=5(x -3)的根为 ( ) A .x =52 B .x =3 C .x 1=3,x 2=52 D .x =-524、使分式2561x x x --+ 的值等于零的x 是 ( )A.6B.-1或6C.-1D.-6 5、方程x 2-4│x │+3=0的解是 ( )A.x=±1或x=±3B.x=1和x=3C.x=-1或x=-3D.无实数根6、当代数式x 2+3x+5的值为7时,代数式3x 2+9x-2的值是( ). (A )4 (B )0 (C )-2 (D )-47、用配方法解关于x 的方程x 2+ px + q = 0时,此方程可变形为 ( )(A ) 22()24p p x += (B ) 224()24p p qx -+=(C ) 224()24p p qx +-=(D ) 224()24p q p x --=8、将方程2x 2-4x-3=0配方后所得的方程正确的是( )A 、(2x-1)2=0 B 、(2x-1)2-4=0 C 、2(x-1)2-1=0 D 、2(x-1)2-5=0 9、下列一元二次方程中,有实数根是( ).A.x 2-x+1=0B.x 2-2x+3=0;C.x 2+x-1=0D.x 2+4=0 10、方程()()1132=-+x x 的解的情况是( )(A ) 有两个不相等的实数根 (B )没有实数根 (C )有两个相等的实数根 (D )有一个实数根11、关于x 的一元二次方程x 2+kx -1=0的根的情况是 ( )A 、有两个不相等的同号实数根B 、有两个不相等的异号实数C 、有两个相等的实数根D 、没有实数根12、已知关于x 的方程221(3)04x m x m --+= 有两个不相等的实根,则m 的最大整数是( )A .2B .-1C .0D .l13、关于x 的一元二次方程02=++m nx x 的两根中只有一个等于0,则下列条件正确的是( )(A )0,0==n m (B )0,0≠=n m (C )0,0=≠n m (D )0,0≠≠n m14、若方程07532=--x x 的两根为x 1,x 2,下列表示根与系数关系的等式中,正确的是( )(A )7,52121-=⋅=+x x x x (B )37,352121=⋅-=+x x x x (C )37,352121=⋅=+x x x x (D )37,352121-=⋅=+x x x x15、已知21x x 、是方程122+=x x 的两个根,则2111x x +的值为( ) (A )21-(B )2 (C )21(D )-216、以2,-3为根的一元二次方程是 ( )A.x 2+x+6=0B.x 2+x -6=0C.x 2-x+6=0D.x 2-x -6=0 17、如果关于x 的一元二次方程x 2+px+q=0的两根分别为x 1=3,x 2=1,•那么这个一元二次方程是( ).(A )x 2+3x+4=0 (B )x 2-4x+3=0 (C )x 2+4x-3=0 (D )x 2+3x-4=018、如果一元二次方程()012=+++m x m x 的两个根是互为相反数,那么( ) (A )m =0 (B )m =-1 (C )m =1 (D )以上结论都不对19、已知x 1,x 2是方程2560x x --=的两个根,则代数式2212x x +的值是 ( ) A 、10 B 、13 C 、26 D 、3720、已知x 1 、x 2是方程x 2-2mx+3m=0的两根,且满足(x 1+2) (x 2+2)=22-m 2则m 等于( ) A 、2 B —9 C 、—9 或2 D 9 或221、某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为 ( )A .x(x +1)=1035B .x(x -1)=1035×2C .x(x -1)=1035D .2x(x +1)=103522、已知直角三角形的三边恰好是三个连续整数,则这个直角三角形的斜边长是( )A 、 ±5B 、 5C 、 4D 、 不能确定23、若两个连续整数的积是56,则它们的和是 ( )A 、±15 B、15 C 、-15 D 、1124、某商品降价20%后欲恢复原价,则提价的百分数为( )A 、18%B 、20%C 、25%、D 、 30% 25、某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,则这个百分数为 ( )A 、10%B 、20%C 、120%D 、180%26、某型号的手机连续两次降阶,每个售价由原来的1185元降到580元,设平均每次降价的百分率为x ,则列出方程正确的是( )A.2580(1+x )=1185B.21185(1+x )=580C.2580(1-x )=1185D.21185(1-x )=58027、某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为 ( ) A 、200(1+x)2=1000 B 、200+200×2x=1000 C 、200+200×3x=1000 D 、200[1+(1+x)+(1+x)2]=100028、在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,•制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5 400cm 2,设金色纸边的宽为xcm ,•那么x 满足的方程是( ).(A )x 2+130x-1 400=0 (B )x 2+65x-350=0(C )x 2-130x-1 400=0 (D )x 2-65x-350=0第三部分:解答题 基础题; 1、解方程(1)3x 2-7x =O ; (2) 2x(x +3)=6(x +3) (因式分解法)(3)9)12(2=-x (直接开平方法) (4)8y 2-2=4y (配方法)(5)2x 2-7x +7=0; (6)(x -2)(x -5)=-22、关于x 的一元二次方程mx 2-(3m-1)x+2m-1=0,其根的判别式的值为1,求m 的值及该方程的根.3、已知方程5x 2+mx -10=0的一根是-5,求方程的另一根及m 的值。