直流磁控溅射制备透明导电ZAO薄膜退火处理时间的研究
- 格式:pdf
- 大小:290.41 KB
- 文档页数:5
磁控溅射制备ITO薄膜光电性能的研究马卫红,蔡长龙(西安工业大学光电工程学院,陕西西安710032)摘要:采用直流磁控溅射方法在玻璃基底上制备了ITO薄膜。
分别用分光光度计和四探针仪测试了所制备ITO薄膜在可见光区域内的透过率和电阻率,研究了溅射气压、氧氩流量比和溅射功率三个工艺参数对ITO薄膜光电性能的影响。
研究结果表明,制备ITO薄膜的最佳工艺参数为:溅射气压0.6Pa,氧氩流量比1:40,溅射功率108W。
采用此工艺参数制备的ITO薄膜在可见光区平均透过率为81.18%,薄膜电阻率为8.9197×10-3Ω·cm。
关键词:直流磁控溅射;ITO薄膜;工艺参数;光电特性中图分类号:TN304.055文献标识码:A文章编号:1002-0322(2011)06-0018-03Study of photoelectrical properties of ITO thin films prepared bymagnetron sputteringMA Wei-hong,CAI Chang-long(School of the optoelectrical engineering,Xi'an Technological University,Xi'an710032,China)Abstract:ITO thin films were prepared on glass substrates by DC magnetron sputtering technology.The transmittance in visible region and resistivity of the ITO films was tested by spectrophotometer and four-probe instrument,respectively.The effects of sputtering pressure,oxygen-argon flow ratio and sputtering power on the photoelectrical properties of ITO thin films were investigated.The results show that,the optimum process parameters for ITO film deposition are:sputtering pressure of 0.6Pa,oxygen-argon flow ratio of1:40,and sputtering power of108W,respectively.The average transmittance in the visible region of the prepared ITO films is81.18%,and the resistivity is8.9197×10-3Ω·cm.Key words:DC magnetron sputtering;ITO thin film;process parameters;photoelectric properties由于ITO膜高电子浓度和高禁带宽度,使其不仅具有高的电导率,而且具有高的可见光透过率[1,2]。
磁控溅射对薄膜附着力的影响概述及解释说明1. 引言1.1 概述随着科学技术的不断发展,薄膜材料的制备和应用在各个领域中起到了至关重要的作用。
而通过磁控溅射技术来制备薄膜已经成为一种常见且有效的方法。
然而,薄膜的附着力是影响其性能和稳定性的关键因素之一。
因此,深入研究磁控溅射对薄膜附着力的影响机理以及优化策略具有重要意义。
1.2 文章结构本文将围绕磁控溅射技术对薄膜附着力的影响进行系统论述,并结合实验验证和数据分析,解释结果差异的原因。
具体而言,本文分为五个主要部分:引言、磁控溅射技术概述、影响薄膜附着力的因素分析、实验验证与数据分析以及结论与展望。
1.3 目的本文旨在全面阐明磁控溅射技术对于薄膜附着力方面所产生的影响,并深入探讨影响因素的机理。
通过实验验证和数据分析,我们将尽力揭示磁控溅射下薄膜附着力变化的规律,并提出优化策略。
最终,期望为相关领域的科研工作者提供有益的参考和指导,推动薄膜制备技术在更广泛的应用中发挥更大的作用。
2. 磁控溅射技术概述:2.1 原理介绍:磁控溅射技术是一种常用的物理气相沉积技术,主要用于制备薄膜材料。
其原理是在真空条件下,通过施加外加磁场和高能粒子轰击靶材表面,使得靶材中的原子或分子离开靶面并沉积在衬底上形成薄膜。
利用这种方法可以制备出均匀、致密且具有优异性能的薄膜。
2.2 工艺参数与薄膜附着力关系研究:磁控溅射工艺的参数对最终薄膜的质量和性能有很大影响。
诸如气体种类、压力、功率、溅射时间等参数都会影响到溅射过程中产生的离子束特性以及靶材表面和溅射沉积层之间的相互作用。
在进行磁控溅射时,合适选择和调节这些工艺参数可以优化沉积层的结构和性能,并且提高薄膜附着力。
2.3 典型应用领域:磁控溅射技术在许多领域有广泛应用。
其中包括但不限于光电子器件、集成电路、光学薄膜、传感器和太阳能电池等。
这种技术可以制备具有高透明性、低反射率、优异导电性以及耐腐蚀性的材料,满足不同领域对薄膜材料的需求。
磁控溅射氧化镍退火磁控溅射是一种常用的薄膜制备技术,可以在材料表面形成均匀、致密的薄膜。
而氧化镍是一种重要的功能材料,具有优良的电学、磁学和光学性能。
本文将探讨磁控溅射制备氧化镍薄膜后的退火过程及其影响。
磁控溅射是一种利用高能离子轰击材料靶材,使其表面离子溅射的技术。
在磁场的作用下,离子在真空环境中加速并击打在靶材上,使靶材表面的原子或分子被击出并沉积在基材上,形成薄膜。
磁控溅射制备的氧化镍薄膜通常具有较高的结晶度和致密度,具备优良的物理和化学性能。
然而,磁控溅射制备的氧化镍薄膜通常在制备过程中存在一定的缺陷和残余应力。
为了改善薄膜的性能和稳定性,需要进行退火处理。
退火是通过加热薄膜样品,使其达到一定温度,然后缓慢冷却的过程。
这个过程可以消除薄膜中的缺陷和残余应力,提高薄膜的结晶度和致密度,从而改善其物理性能。
退火过程中的温度和时间是影响氧化镍薄膜性能的重要因素。
一般来说,温度较高、时间较长的退火处理可以获得更高的结晶度和致密度。
然而,过高的温度和过长的时间可能会导致薄膜晶粒长大过快,从而降低薄膜的质量。
因此,在确定退火条件时需要进行合理的选择和优化。
在退火过程中,氧化镍薄膜的晶粒会发生重新排列和再结晶的过程。
这个过程会使薄膜内部的晶粒变得更大,晶界变得更清晰。
同时,退火还可以消除薄膜中的一些缺陷,如空隙和晶界错配。
这些缺陷的消除有助于提高薄膜的电学、磁学和光学性能。
退火过程还可以改善氧化镍薄膜的机械性能。
磁控溅射制备的薄膜通常具有一定的残余应力,这会影响薄膜的稳定性和可靠性。
通过退火处理,薄膜内部的应力可以得到释放和平衡,从而提高薄膜的机械强度和耐久性。
磁控溅射制备的氧化镍薄膜需要经过退火处理才能获得更好的性能。
退火能够改善薄膜的结晶度和致密度,消除缺陷和残余应力,提高薄膜的物理、化学和机械性能。
因此,在氧化镍薄膜的制备和应用过程中,退火是一个重要的工艺步骤,需要合理选择退火条件并进行优化。
磁控溅射属于等离子体镀膜的原理一、磁控溅射技术概述磁控溅射技术是一种常用的薄膜制备技术,广泛应用于光学薄膜、电子器件、陶瓷材料等领域。
它利用磁场作用下的等离子体来制备薄膜,具有高附着力、高镀率、均匀性好等优点。
二、磁控溅射镀膜原理磁控溅射镀膜的原理基于溅射效应和电子轰击效应。
在磁控溅射设备中,将待镀物作为靶材,通过高能粒子轰击靶材表面,使靶材表面的原子或分子脱离,形成等离子体。
然后,利用磁场的作用,将等离子体中的离子引导到待镀物表面,形成均匀的薄膜。
三、磁控溅射工艺过程磁控溅射工艺一般包括预处理、溅射镀膜和后处理三个步骤。
1. 预处理:在进行磁控溅射镀膜之前,需要对待镀物进行表面清洁和处理。
常用的预处理方法有超声波清洗、溶剂清洗、离子清洗等,这些方法可以有效去除表面的杂质和氧化物,提高薄膜附着力。
2. 溅射镀膜:在预处理完成后,将待镀物和靶材放置在真空室中,通过抽气将真空度提高到一定程度。
然后,在电弧放电或射频场的作用下,使靶材表面的原子或分子脱离,形成等离子体。
通过调节磁场的强度和方向,控制离子的运动轨迹,使其沉积在待镀物表面,形成均匀的薄膜。
3. 后处理:在薄膜形成后,需要进行后处理以提高薄膜的性能。
后处理包括退火、氧化、抛光等步骤,可以改善薄膜的结晶性、致密性和光学性能。
四、磁控溅射技术的优势与其他薄膜制备技术相比,磁控溅射技术具有以下优势:1. 高附着力:由于磁控溅射过程中离子能量较高,使得薄膜与基底之间的结合更紧密,附着力更强。
2. 高镀率:磁控溅射技术可以实现较高的镀率,镀膜速度快,可以提高生产效率。
3. 均匀性好:通过调节磁场的强度和方向,可以控制离子的运动轨迹,使薄膜在待镀物表面均匀沉积。
4. 可控性强:磁控溅射技术可以通过调节工艺参数,如气压、离子能量、靶材成分等,来控制薄膜的组成、结构和性能。
五、磁控溅射技术在实际应用中的例子磁控溅射技术在光学薄膜、电子器件和陶瓷材料等领域有着广泛的应用。