概率统计第四章答案(2)
- 格式:doc
- 大小:514.50 KB
- 文档页数:10
第二章 随机变量2.1 X 2 3 4 5 6 7 8 9 10 11 12 P 1/361/181/121/95/361/65/361/91/121/181/362.2解:根据1)(0==∑∞=k k XP ,得10=∑∞=-k kae,即1111=---eae 。
故 1-=e a2.3解:用X 表示甲在两次投篮中所投中的次数,X~B(2,0.7) 用Y 表示乙在两次投篮中所投中的次数, Y~B(2,0.4) (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=1122020*********2222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ⨯+⨯+⨯=(2)甲比乙投中的次数多P{X >Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=12211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ⨯+⨯+⨯=2.4解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155++= (2) P {0.5<X<2.5}=P{X=1}+ P{X=2}=12115155+= 2.5解:(1)P{X=2,4,6,…}=246211112222k +++=11[1()]1441314k k lim→∞-=-(2)P{X ≥3}=1―P{X <3}=1―P{X=1}- P{X=2}=1111244--=2.6解:设i A 表示第i 次取出的是次品,X 的所有可能取值为0,1,212341213124123{0}{}()(|)(|)(|)P X P A A A A P A P A A P A A A P A A A A ====18171615122019181719⨯⨯⨯= 1123412342341234{1}{}{}{}{}2181716182171618182161817162322019181720191817201918172019181795P X P A A A A P A A A A P A A A A P A A A A ==+++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=12323{2}1{0}{1}1199595P X P X P X ==-=-==--=2.7解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)34314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+=(2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)345324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++=2.8 (1)X ~P(λ)=P(0.5×3)= P(1.5)0 1.51.5{0}0!P X e -=== 1.5e -(2)X ~P(λ)=P(0.5×4)= P(2)0122222{2}1{0}{1}1130!1!P X P X P X e e e ---≥=-=-==--=-2.9解:设应配备m 名设备维修人员。
概率论与数理统计习(第四版)题解答第一章 随机事件及其概率·样本空间·事件的关系及运算一、任意抛掷一颗骰子,观察出现的点数。
设事件A 表示“出现偶数点”,事件B 表示“出现的点数能被3整除”.(1)写出试验的样本点及样本空间;(2)把事件A 及B 分别表示为样本点的集合;(3)事件B A AB B A B A ,,,,分别表示什么事件?并把它们表示为样本点的集合.解:设i ω表示“出现i 点”)6,,2,1( =i ,则(1)样本点为654321,,,,,ωωωωωω;样本空间为}.,,,,,{654321ωωωωωω=Ω (2)},,{642ωωωA =; }.,{63ωωB =(3)},,{531ωωωA =,表示“出现奇数点”;},,,{5421ωωωωB =,表示“出现的点数不能被3整除”;},,,{6432ωωωωB A =⋃,表示“出现的点数能被2或3整除”;}{6ωAB =,表示“出现的点数能被2整除且能被3整除”;},{B A 51ωω= ,表示“出现的点数既不能被2整除也不能被3整除”二、写出下列随机试验的样本空间及各个事件中的样本点:(1)同时掷三枚骰子,记录三枚骰子的点数之和.A —“点数之和大于10”,B —“点数之和小于15”.(2)一盒中有5只外形相同的电子元件,分别标有号码1,2,3,4,5.从中任取3只,A —“最小号码为1”.解:(1) 设i ω表示“点数之和等于i ”)18,,4,3( =i ,则},,,{1843ωωω =Ω;},,,{181211ωωωA =;}.,,,{1443ωωωB =(2) 设ijk ω表示“出现号码为k j i ,,”);5,,2,1,,(k j i k j i ≠≠= ,则},,,,,,,,,{345245235234145135134125124123ωωωωωωωωωω=Ω }.,,,,,{145135134125124123ωωωωωωA =三、设C B A ,,为三个事件,用事件之间的运算表示下列事件: (1) A 发生, B 与C 都不发生; (2) C B A ,,都发生;(3) C B A ,,中至少有两个发生; (4) C B A ,,中至多有两个发生. 解:(1) C B A ;(2) ABC ;(3) ABC C AB C B A BC A ⋃⋃⋃或CA BC AB ⋃⋃(4) BC A C B A C AB C B A C B A C B A C B A ⋃⋃⋃⋃⋃⋃或C B A ⋃⋃或.ABC四、一个工人生产了n 个零件,以i A 表示他生产的第 i 个零件是合格品(n i ≤≤1).用i A 表示下列事件:(1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅有一个零件是不合格品; (4)至少有一个零件不是不合格品. 解:(1) n A A A 21;(2) n A A A 21或n A A A ⋃⋃⋃ 21; (3) n n n A A A A A A A A A 212121⋃⋃⋃ (4) n A A A ⋃⋃⋃ 21或.21n A A A第二章 概率的古典定义·概率加法定理一、电话号码由七个数字组成,每个数字可以是0,1,2,…,9中的任一个数(但第一个数字不能为0),求电话号码是由完全不同的数字组成的概率.解:基本事件总数为611011011011011011019109⨯=C C C C C C C 有利事件总数为456789214151617181919⨯⨯⨯⨯⨯=C C C C C C C 设A 表示“电话号码是由完全不同的数字组成”,则0605.0109456789)(62≈⨯⨯⨯⨯⨯⨯=A P二、把十本书任意地放在书架上,求其中指定的三本书放在一起的概率.解:基本事件总数为!101010=A 指定的三本书按某确定顺序排在书架上的所有可能为!777=A 种;这三本书按确定的顺序放在书架上的所以可能的位置共818=C 种;这三本书的排列顺序数为!333=A ;故有利事件总数为!3!8!38!7⨯=⨯⨯(亦可理解为)3388P P设A 表示“指定的三本书放在一起”,则067.0151!10!3!8)(≈=⨯=A P三、为了减少比赛场次,把二十个队任意分成两组(每组十队)进行比赛,求最强的两个队被分在不同组内的概率.解:20个队任意分成两组(每组10队)的所以排法,构成基本事件总数1020C ;两个最强的队不被分在一组的所有排法,构成有利事件总数91812C C 设A 表示“最强的两队被分在不同组”,则526.01910)(102091812≈==C C C A P四、某工厂生产的产品共有100个,其中有5个次品.从这批产品中任取一半来检查,求发现次品不多于1个的概率.解:设i A 表示“出现的次品为i 件”)5,4,3,2,1,0(=i ,A 表示“取出的产品中次品不多于 1个”,则 .10A A A ⋃=因为V A A =10,所以).()()(10A P A P A P +=而0281.0979942347)(5010050950≈⨯⨯⨯==C C A P 1529.09799447255)(501004995151≈⨯⨯⨯⨯==C C C A P故 181.01529.00281.0)(=+≈A P 五、一批产品共有200件, 其中有6件废品.求 (1) 任取3件产品恰有1件是废品的概率; (2) 任取3件产品没有废品的概率; (3) 任取3件产品中废品不少于2件的概率. 解:设A 表示“取出的3件产品中恰有1件废品”;B 表示“取出的3件产品中没有废品”;C 表示“取出的3件产品中废品不少于2件”,则 (1) 0855.019819920019319418)(3200219416≈⨯⨯⨯⨯==C C C A P (2) 912.0198199200192193194)(32003194≈⨯⨯⨯⨯==C C B P(3) 00223.019819920012019490)(3200019436119426≈⨯⨯⨯⨯=+=C C C C C C P六、设41)( ,0 ,31)()()(======BC P P(AC)P(AB)C P B P A P .求A , B , C 至少有一事件发生的 概率.解:因为0==P(AC)P(AB),所以V AC V AB ==,,从而V C AB =)(可推出0)(=ABC P设D 表示“A , B , C 至少有一事件发生”,则C B A D ⋃⋃=,于是有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃= 75.04341313131==-++=第三章 条件概率与概率乘法定理·全概率公式与贝叶斯公式一、设,6.0)|(,4.0)(,5.0)(===B A P B P A P 求)|(,)(B A A P AB P . 解:因为B A AB B B A A +=+=)(,所以)()()(B A P AB P A P +=,即14.06.0)4.01(5.0)()()()()()(=⨯--=-=-=B A P B P A P B A P A P AB P68.074.05.036.0)4.01(5.05.0)()()()()()]([)|(≈=--+=-+==B A P B P A P A P B A P B A A P B A A P二、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求他拨号不超过两次而接通所需电话的概率.若已知最后一个数字是奇数,那么此概率是多少? 解:设A 表示“第一次拨通”,B 表示“第二次拨通”,C 表示“拨号不超过两次而拨通”(1)2.0101101)()()(19111101911011=+=⋅+=+=C C C C C C A B P A P C P(2)4.05151)()()(2511141511=+=+=+=A A A A A A B P A P C P三、两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多 一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率. 解:设i A 表示“第i 台机床加工的零件”)2,1(=i ;B 表示“出现废品”;C 表示“出现合 格品”(1))()()()()()()()(22112121A C P A P A C P A P C A P C A P C A C A P C P +=+=+= 973.0)02.01(31)03.01(32≈-⨯+-⨯=(2)25.002.03103.03202.031)()()()()()()()()(22112222=⨯+⨯⨯=+==A B P A P A B P A P A B P A P B P B A P B A P四、猎人在距离100米处射击一动物,击中的概率为0.6;如果第一次未击中,则进行第二次射击,但由于动物逃跑而使距离变为150米;如果第二次又未击中,则进行第三次射击,这时距离变为200米.假定击中的概率与距离成反比,求猎人三次之内击中动物的概率.解:设i A 表示“第i 次击中”)3,2,1(=i ,则由题设,有1006.0)(1kA P ==,得60=k ,从而有4.015060150)(2===k A P ,.3.020060200)(3===k A P设A 表示“三次之内击中”,则321211A A A A A A A ++=,故有)()()()()()()(321211A P A P A P A P A P A P A P ++=832.03.0)4.01()6.01(4.0)6.01(6.0=⨯-⨯-+⨯-+= (另解)设B 表示“猎人三次均未击中”,则168.0)3.01)(4.01)(6.01()(=---=B P故所求为 832.0)(1)(=-=B P B P五、盒中放有12个乒乓球,其中有9个是新的.第一次比赛时从其中任取3个来用,比赛后仍放回盒中.第二次比赛时再从盒中任取3个,求第二次取出的都是新球的概率. 解:设i A 表示“第一次取得i 个新球”)3,2,1,0(=i ,则2201)(312330==C C A P 22027)(31219231==C C C A P 220108)(31229132==C C C A P 22084)(31239033==C C C A P 设B 表示“第二次取出的都是新球”,则312363123731238312393022084220108220272201)()()(C C C C C C C C A B P A P B P i i i ⋅+⋅+⋅+⋅==∑=146.0532400776161112208444722010855142202755212201≈=⋅+⋅+⋅+⋅=第四章 随机事件的独立性·独立试验序列一、一个工人看管三台车床,在一小时内车床不需要工人照管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7.求在一小时内三台车床中最多有一台需要工人照管的概率. 解:设i A 表示“第i 台机床不需要照管”)3,2,1(=i ,则9.0)(1=A P 8.0)(2=A P 7.0)(3=A P再设B 表示“在一小时内三台车床中最多有一台需要工人照管”,则321321321321A A A A A A A A A A A A B +++=于是有)()()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P B P +++= )7.01(8.09.07.0)8.01(9.07.08.0)9.01(7.08.09.0-⨯⨯+⨯-⨯+⨯⨯-+⨯⨯=902.0=.(另解)设i B 表示“有i 台机床需要照管”)1,0(=i ,B 表示“在一小时内三台车床中最多有一台需要工人照管”,则10B B B +=且0B 、1B 互斥,另外有 504.07.08.09.0)(0=⨯⨯=B P398.0)7.01(8.09.07.0)8.01(9.07.08.0)9.01()(1=-⨯⨯+⨯-⨯+⨯⨯-=B P 故902.0398.0504.0)()()()(1010=+=+=+=B P B P B B P B P .二、电路由电池a 与两个并联的电池b 及c 串联而成.设电池c b a ,,损坏的概率分别是0.3、0.2、0.2,求电路发生间断的概率. 解:设1A 表示“a 损坏”;2A 表示“b 损坏”;3A 表示“c 损坏”;则3.0)(1=A P 2.0)()(32==A P A P又设B 表示“电路发生间断”,则321A A A B +=于是有)()()()()(321321321A A A P A A P A P A A A P B P -+=+=)()()()()()(321321A P A P A P A P A P A P -+= 328.02.02.03.02.02.03.0=⨯⨯-⨯+=.三、三个人独立地去破译一个密码,他们能译出的概率分别为51、31、41,求能将此密码译出的概率.解:设A 表示“甲能译出”;B 表示“乙能译出”;C 表示“丙能译出”,则51)(=A P 31)(=B P 41)(=C P设D 表示“此密码能被译出”,则C B A D ⋃⋃=,从而有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++= 6.0413151415141513151413151=⨯⨯+⨯-⨯-⨯-++=. (另解)52)411)(311)(511()()()()()(=---===C P B P A P C B A P D P ,从而有6.053521)(1)(==-=-=D P D P四、甲、乙、丙三人同时对飞机进行射击,三人的命中概率分别为7.0,5.0,4.0.飞机被一人击中而被击落的概率为2.0,被两人击中而被击落的概率为6.0,若三人都击中,则 飞机必被击落.求飞机被击落的概率. 解:设1A 表示“甲命中”;2A 表示“乙命中”;3A 表示“丙命中”;则4.0)(1=A P5.0)(2=A P 7.0)(3=A P设i B 表示“i 人击中飞机” )3,2,1,0(=i ,则09.0)7.01)(5.01)(4.01()())(()()(3213210=---===A P A P A P A A A P B P )()(3213213211A A A A A A A A A P B P ++=)()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=)()(3213213212A A A A A A A A A P B P ++= )()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=41.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=14.07.05.04.0)()()()()(3213213=⨯⨯===A P A P A P A A A P B P 设A 表示“飞机被击落”,则由题设有0)(0=B A P 2.0)(1=B A P 6.0)(2=B A P 1)(3=B A P故有458.0114.06.041.02.036.0009.0)()()(30=⨯+⨯+⨯+⨯==∑=i i i B A P B P A P .五、某机构有一个9人组成的顾问小组,若每个顾问贡献正确意见的概率都是0.7,现在该机构内就某事可行与否个别征求每个顾问的意见,并按多数人意见作出决策,求作 出正确决策的概率.解:设i A 表示“第i 人贡献正确意见”,则7.0)(=i A P )9,,2,1( =i .又设m 为作出正确意见的人数,A 表示“作出正确决策”,则 )9()8()7()6()5()5()(99999P P P P P m P A P ++++=≥=+⋅⋅+⋅⋅+⋅⋅=277936694559)3.0()7.0()3.0()7.0()3.0()7.0(C C C 9991889)7.0()3.0()7.0(⋅+⋅⋅+C C+⋅⋅+⋅⋅+⋅⋅=273645)3.0()7.0(36)3.0()7.0(84)3.0()7.0(126918)7.0()3.0()7.0(9+⋅⋅+0403.01556.02668.02668.01715.0++++= 901.0=.六、每次试验中事件A 发生的概率为p ,为了使事件A 在独立试验序列中至少发生一次的概率不小于p ,问至少需要进行多少次试验? 解:设做n 次试验,则n p A P A P )1(1}{1}{--=-=一次都不发生至少发生一次要p p n ≥--)1(1,即要p p n -≤-1)1(,从而有.1)1(log )1(=-≥-p n p 答:至少需要进行一次试验.第五章 离散随机变量的概率分布·超几何分布·二项分布·泊松分布一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的概率分布. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即亦即二、自动生产线在调整以后出现废品的概率为p .生产过程中出现废品时立即进行调整.求在两次调整之间生产的合格品数的概率分布.解:设X 表示“在两次调整之间生产的合格品数”,且设p q -=1,则ξ的概率分布为三、已知一批产品共20个,其中有4个次品.(1)不放回抽样.抽取6个产品,求样品中次品数的概率分布; (2)放回抽样.抽取6个产品,求样品中次品数的概率分布. 解:(1)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)4,3,2,0()(6206164===-x C C C x X P xx从而X 的概率分布为即(2)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)6,5,4,3,2,0()2.01()2.0()(66=-==-x C x X P xx x从而X即四、电话总机为300个电话用户服务.在一小时内每一电话用户使用电话的概率等于0.01,求在一小时内有4个用户使用电话的概率(先用二项分布计算,再用泊松分布近似计算,并求相对误差). 解:(1)用二项分布计算)01.0(=p168877.0)01.01()01.0()1()4(2964430029644300≈-=-==C p p C ξP(2)用泊松分布计算)301.0300(=⨯==np λ168031355.0!43)4(34≈==-e ξP相对误差为.5168877.0168031355.0168877.0000≈-=δ五、设事件A 在每一次试验中发生的概率为0.3,当A 发生次数不少于3次时,指示灯发出信号.现进行了5次独立试验,求指示灯发出信号的概率. 解:设X 表示“事件A 发生的次数”,则3.0)(==p A P ,5=n ,).3.0,5(~B X 于是有)5()4()3()3(=+=+==≥X P X P X P X P5554452335)1()1(p C p p C p p C +-+-=16308.000243.002835.01323.0≈++≈(另解) )2()1()0(1)3(1)3(=-=-=-=<-=≥X P X P X P X P X P322541155005)1()1()1(11p p C p p C p p C ------= 16308.0≈六、设随机变量X 的概率分布为2, 1, ,0 , !)(===k k ak X P kλ;其中λ>0为常数,试确定常数a .解:因为∑∞===01)(k k X P ,即∑∞==01!k kk λa ,亦即1=λae ,所以.λe a -=第六章 随机变量的分布函数·连续随机变量的概率密度一、函数211x +可否是连续随机变量X 的分布函数?为什么?如果X 的可能值充满区间: (1)(∞+∞- ,);(2)(0,∞-).解:(1)设211)(xx F +=,则1)(0<<x F 因为0)(lim =-∞→x F x ,0)(lim =+∞→x F x ,所以)(x F 不能是X 的分布函数.(2)设211)(x x F +=,则1)(0<<x F 且0)(lim =-∞→x F x ,1)(lim 0=-→x F x因为)0( 0)1(2)('22<>+-=x x xx F ,所以)(x F 在(0,∞-)上单增. 综上述,故)(x F 可作为X 的分布函数.二、函数x x f sin )(=可否是连续随机变量X 的概率密度?为什么?如果X 的可能值充满区间:(1)⎥⎦⎤⎢⎣⎡2,0π; (2)[]π,0; (3)⎥⎦⎤⎢⎣⎡23,0π.解:(1)因为⎥⎦⎤⎢⎣⎡∈2,0πx ,所以0sin )(≥=x x f ;又因为1cos )(2020=-=⎰ππx dx x f ,所以当⎥⎦⎤⎢⎣⎡∈2,0πx 时,函数x x f sin )(=可作为某随机变量X 的概率密度.(2)因为[]πx ,0∈,所以0sin )(≥=x x f ;但12cos )(00≠=-=⎰ππx dx x f ,所以当[]πx ,0∈时,函数x x f sin )(=不可能是某随机变量X 的概率密度.(3)因为⎥⎦⎤⎢⎣⎡∈23,0πx ,所以x x f sin )(=不是非负函数,从而它不可能是随机变量X 的概率密度.二、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的分布函数,并作出分布函数的图形. 解:设X 表示“取出的废品数”,则X 的分布律为于是,⎪⎩>3,1x四、(柯西分布)设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.求:(1)系数A 及B ;(2)随机变量X 落在区间)1 ,1(-内的概率;(3) X 的概率密度.解:(1) 由0)2()(lim =-⋅+=-∞→πB A x F x ,12)(lim =⋅+=-∞→πB A x F x ,解得.1,21πB A ==即)( ,arctan 121)(+∞<<-∞+=x x πx F .(2) .21)]1arctan(121[]1arctan 121[)1()1()11(=-+-+=--=<<-ππF F X P(3) X 的概率密度为)1(1)()(2x x F x f +='=π.五、(拉普拉斯分布)设随机变量X 的概率密度为+∞<<∞-=-x Ae x f x,)(.求:(1)系数A ;(2)随机变量X 落在区间)1,0(内的概率;(3)随机变量X 的分布函数.解:(1) 由1)(⎰+∞∞-=dx x f ,得1220⎰⎰+∞∞-+∞--===A dx e A dx Aex x,解得21=A ,即有 ).( ,21)(+∞<<-∞=-x e x f x(2) ).11(21)(2121)()10(101010ee dx e dx xf X P x x -=-===<<--⎰⎰(3) 随机变量X 的分布函数为⎪⎩⎪⎨⎧>-≤===-∞--∞-⎰⎰021102121)()(x e x e dx e dx x f x F x xx xx .第七章 均匀分布·指数分布·随机变量函数的概率分布一、公共汽车站每隔5分钟有一辆汽车通过.乘客到达汽车站的任一时刻是等可能的.求乘客候车时间不超过3分钟的概率.解:设随机变量X 表示“乘客的候车时间”,则X 服从]5,0[上的均匀分布,其密度函数为⎩⎨⎧∉∈=]5,0[,0]5,0[,51)(x x x f 于是有.6.053)()30(3===≤≤⎰dx x f X P二、已知某种电子元件的使用寿命X (单位:h)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,8001)(800x x e x f x任取3个这种电子元件,求至少有1个能使用1000h 以上的概率.解:设A 表示“至少有1个电子元件能使用1000h 以上”;321A 、A 、A 分别表示“元件甲、乙、丙能使用1000h 以上”.则287.08001)1000()()()(4510008001000800321≈=-==>===-∞+-∞+-⎰e e dx e X P A P A P A P xx)()()()()()()()()(321313221321321A A A P A A P A A P A A P A P A P A P A A A P A P +---++=⋃⋃=638.0287.0287.03287.0332≈+⨯-⨯=(另解)设A 表示“至少有1个电子元件能使用1000h 以上”.则287.08001)1000(4510008001000800≈=-==>-∞+-∞+-⎰ee dx e X P xx从而有713.01)1000(1)1000(45≈-=>-=≤-eX P X P ,进一步有638.0713.01)]1000([1)(33≈-≈≤-=X P A P三、(1) 设随机变量X 服从指数分布)(λe .证明:对于任意非负实数s 及t ,有).()(t X P s X t s X P ≥=≥+≥这个性质叫做指数分布的无记忆性.(2) 设电视机的使用年数X 服从指数分布)10(.e .某人买了一台旧电视机,求还能使用5年以上的概率. 解:(1)因为)(~λe X ,所以R x ∈∀,有xex F λ--=1)(,其中)(x F 为X 的分布函数.设t s X A +≥=,t X B ≥=.因为s 及t 都是非负实数,所以B A ⊂,从而A AB =.根据条件概率公式,我们有)(1)(1)()()()()()()()(s X P t s X P s X P t s X P B P A P B P AB P B A P s X t s X P <-+<-=≥+≥====≥+≥t st s e e e λλλ--+-=----=]1[1]1[1)(. 另一方面,我们有t t e e t F t X P t X P t X P λλ--=--=-=≤-=<-=≥)1(1)(1)(1)(1)(.综上所述,故有)()(t X P s X t s X P ≥=≥+≥.(2)由题设,知X 的概率密度为⎩⎨⎧≤>=-.,;,0001.0)(1.0x x e x f x 设某人购买的这台旧电视机已经使用了s 年,则根据上述证明的(1)的结论,该电视机还能使用5年以上的概率为6065.01.0)()5()5(5.051.051.05≈=-===≥=≥+≥-∞+-∞+-∞+⎰⎰e e dx e dx xf X P s X s X P xx .答:该电视机还能使用5年以上的概率约为6065.0.四、设随机变量X 服从二项分布)4.0 ,3(B ,求下列随机变量函数的概率分布: (1)X Y 211-=;(2)2)3(2X X Y -=. 解:X 的分布律为(1)X Y 211-=的分布律为(2)2)3(2X XY -=的分布律为即五、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>+=.0,0;0,)1(2)(2x x x x f π求随机变量函数X Y ln =的概率密度.解:因为)()()(ln )()(yX yY e F e X P y X P y Y P y F =<=<=<=所以随机变量函数X Y ln =的概率密度为)( )1(2)()()()(2''+∞<<-∞+====y e e e e f e e F y F y f yyyyyyXYY π,即 )( )1(2)(2+∞<<-∞+=y e e y f y yY π.第八章 二维随机变量的联合分布与边缘分布一、把一颗均匀的骰子随机地掷两次.设随机变量X 表示第一次出现的点数,随机变量Y 表示两次出现点数的最大值,求二维随机变量),(Y X 的联合概率分布及Y 的边缘概率分布. 解:二维随机变量),(Y X 的联合概率分布为Y 的边缘概率分布为二、设二维随机变量(X ,Y )的联合分布函数)3arctan )(2arctan (),(yC x B A y x F ++=.求:(1)系数A 、B 及C ;(2)(X ,Y )的联合概率密度:(3)边缘分布函数及边缘概率密度. 解:(1)由0)0,(,0),0(,1),(=-∞=∞-=∞+-∞F F F ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=++0)2(0)2)(0(1)2)(2(πB AC πC B A πC πB A 解得2πC B ==,.12πA = (2)因为)3arctan 2)(2arctan 2(1),(2yx y x F ++=πππ,所以(X ,Y )的联合概率密度为.)9)(4(6),(),(222"y x y x F y x f xy ++==π (3)X 及Y 的边缘分布函数分别为 x xxX xdx x dy y x f dx x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰2arctan1)4(2),()(2ππ2arctan 121xπ+=yxyY ydy y dx y x f dy x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰3arctan1)9(3),()(2ππ3arctan 121y π+=X 及Y 的边缘概率密度分别为⎰⎰⎰+∞+∞∞-+∞∞-++⋅=++==0222222)9(1)4(112)9)(4(6),()(dy y x dy y x dy y x f x f X ππ)4(2)3arctan 31()4(1122022x y x +=+⋅=∞+ππ ⎰⎰⎰+∞+∞∞-+∞∞-++=++==022222241)9(12)9)(4(6),()(dx xy dx y x dx y x f y f Y ππ )9(3)2arctan 21()9(122022y x y +=+=∞+ππ三、设),(Y X 的联合概率密度为⎩⎨⎧>>=+-.,00;0,,Ae ),(3y)(2x 其它y x y x f求:(1)系数A ;(2)),(Y X 的联合分布函数;(3)X 及Y 的边缘概率密度;(4)),(Y X落在区域R :632 ,0 ,0<+>>y x y x 内的概率. 解:(1)由1),(=⎰⎰+∞∞-+∞∞-dy dx y x f ,有16132==⎰⎰∞+∞+--A dy e dx e A y x ,解得.6=A (2)),(Y X 的联合分布函数为⎪⎩⎪⎨⎧>>==⎰⎰⎰⎰--∞-∞-其它0,06),(),(0032y x dy e dx e dy y x f dx y x F x y y x xy⎩⎨⎧>>--=--其它00,0)1)(1(32y x e e y x(3)X 及Y 的边缘概率密度分别为⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰00020006),()(2032x x ex x dy e e dy y x f x f x y x X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰30006),()(3032y y ex x dxe e dx y xf y f yy x Y (4)⎰⎰⎰⎰---==∈x y xR dy e dx edxdy y x f R Y X P 32203326),(}),{(6306271)(2---⎰-=-=e dx e e x四、设二维随机变量),(Y X 在抛物线2x y =与直线2+=x y 所围成的区域R 上服从均匀分布.求:(1) ),(Y X 的联合概率密度;(2) 概率)2(≥+Y X P . 解:(1) 设),(Y X 的联合概率密度为⎩⎨⎧∉∈=.),(, 0;),(,),(R y x R y x C y x f 则由129)322()2(21322122212==-+=-+==--+-⎰⎰⎰⎰⎰C x x x C dx x x C dy dx C Cdxdy x x R解得92=C .故有⎪⎩⎪⎨⎧∉∈=.),(, 0;),(,92),(R y x R y x y x f(2) ⎰⎰⎰⎰⎰⎰++-≥++==≥+x x x x y x dy dx dy dx dxdy y x f Y X P 2212210229292),()2(⎰⎰-++=21210)2(92292dx x x xdx481.02713)322(92922132102≈=-++=x x x x . 第九章 随机变量的独立性·二维随机变量函数的分布一、设X 与Y 是两个相互独立的随机变量,X 在]1,0[上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,21)(2y y e y f yY求 (1) ),(Y X 的联合概率密度; (2) 概率)(X Y P ≥.解: (1)X 的概率密度为⎩⎨⎧∉∈=)1,0(,0)1,0(,1)(x x x f X ,),(Y X 的联合概率密度为(注意Y X ,相互独立)⎪⎩⎪⎨⎧><<==-其它,00,10,21)()(),(2y x e y f x f y x f yY X(2)dx edx e dy e dx dxdy y x f X Y P x xyxy xy ⎰⎰⎰⎰⎰⎰-∞+-∞+-≥=-===≥1021022102)(21),()(7869.0)1(2221122≈-=-=--e ex二、设随机变量X 与Y 独立,并且都服从二项分布:.,,2 ,1 ,0 ,)(; ,,2 ,1 ,0 ,)(212211n j qp C j p n i q p C i p jn jj n Y in i i n X ====--证明它们的和Y X Z +=也服从二项分布.证明: 设j i k +=, 则ik n i k i k n ki i n i i n ki Y X Z q p C q p C i k P i P k Z P k P +---=-=∑∑=-===2211)()()()( ∑=-+=ki k n n k i n in q p C C2121)( 由knm ki ik nk m C C C +=-=∑, 有k n n ki in i n C C C21210+==∑. 于是有 ),,2,1,0( )(212121n n k q p C k P kn n k i n n Z +==-++ 由此知Y X Z +=也服从二项分布.三、设随机变量X 与Y 独立,并且X 在区间[0,1]内服从均匀分布,Y 在区间[0,2]内服从辛普森分布:⎪⎩⎪⎨⎧><≤<-≤≤=.20 0,; 2 1 ,2;10 ,)(y y y y y y y f Y 或求随机变量Y X Z +=的概率密度. 解: X 的概率密度为 ⎩⎨⎧∉∈=]1,0[,0]1,0[,1)(x x y f ξ . 于是),(Y X 的联合概率密度为⎪⎩⎪⎨⎧≤<≤≤-≤≤≤≤=. 0, 2 1,10 ,210,10,),(其它当当y x y y x y y x fY X Z +=的联合分布函数为}),{(}{}{)(D y x P z Y X P z Z P z F Z ∈=≤+=≤=,其中D 是zy x ≤+与),(y x f 的定义域的公共部分.故有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<-+-≤≤><=3229321212331023,00)(222z z z z z z z zz z z F Z 从而随机变量Y X Z +=的概率密度为⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤≤><=3232132103,00)(z z z z z z z z z f Z三、电子仪器由六个相互独立的部件ij L (3,2,1;2,1==j i )组成,联接方式如右图所示.设各个部件的使用寿命ij X 服从相同的指数分布)(λe ,求仪器使用寿命的概率密度.解: 由题设,知ij X 的分布函数为⎩⎨⎧≤>-=-0,00,1x x e F x X ijλ先求各个并联组的使用寿命)3,2,1( =i Y i 的分布函数.因为当并联的两个部件都损坏时,第i 个并联组才停止工作,所以有)3,2,1(),m ax (21==i Y i i i ξξ从而有)3,2,1( =i Y i 的分布函数为⎩⎨⎧≤>-==-0,00,)1()(221y y e F F y F y X X Y i i i λ 设Z "仪器使用寿命".因为当三个并联组中任一个损坏时,仪器停止工作.所以有),,min (321Y Y Y Z =.从而有Z 的分布函数为⎩⎨⎧≤>---=⎩⎨⎧≤>----=-0,00,])1(1[10,00)],(1)][(1)][(1[1)(32321z z e z z z F z F z F z F z Y Y Y Z λ 故Z 的概率密度为⎩⎨⎧≤>--=---0,00,)2)(1(6)(23z z e e e z f z z z Z λλλλ第十章 随机变量的数学期望与方差一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取一个.如果取出的废品不再放回去,求在取得合格品以前已取出的废品数的数学期望、方差与标准差. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即1103322013220924491430=⨯+⨯+⨯+⨯=EX 即3.0004.03041.02205.0175.00≈⨯+⨯+⨯+⨯=EX2X 的分布为即于是有229220192209444914302=⨯+⨯+⨯+⨯=EX 即4091.0004.09041.04205.0175.002≈⨯+⨯+⨯+⨯=EX从而有3191.013310042471)11033(229)(222≈=-=-=EX EX DX 565.03191.0≈==DX Xσ二、对某一目标进行射击,直至击中为止.如果每次射击命中率为p ,求射击次数的数学期望及方差. 解:设X 表示“第i 次击中”),2,1( =i ,则X 的分布为p q p q q p q p iqp ipqEX i i i i i i 1)1()1()(211111=-='-='===∑∑∑∞=∞=-∞=- 2Xp pp p q q p q p q q p pqi EX i i i ii i 122)1()1()(])([223111122-=-=-+='=''==∑∑∑∞=∞=∞=- 进一步有pp p p p EX EX DX 11)1(12)(22222-=--=-=三、设离散型随机变量X 的概率函数为,,2,1,21]2)1([ ==-=k k X P k k k问X 的数学期望是否存在?若存在,请计算)(X E ;若不存在,请解释为什么.解:因为∑∑∑∑∞=∞=∞=∞=-=⋅-=-=-==1111)1(212)1(]2)1([2)1()(k k k k k k k k k k ki i i k k k X P k x X P x 不绝对收敛,所以ξ没有数学期望.四、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≥<-=.1, 0;1,11)(2x x x x f π 求数学期望)(X E 及方差)(X D .解:011)()(112=-⋅==⎰⎰-+∞∞-dx xx dx x xf X E πdx x x dx x x dx x f x X D ⎰⎰⎰-=-⋅==-∞+∞-1022112221211)()(πππ21]arcsin 2112[2102=+--=x x x π五、(拉普拉斯分布)设随机变量X 的概率密度为 )( ,21)(+∞<<-∞=-x e x f x.求数学期望)(X E 及方差)(X D . 解:021)(===⎰⎰+∞∞--+∞∞-dx xe dx x xf EX x2!2)3(21)(0222==Γ====⎰⎰⎰+∞-+∞∞--+∞∞-dx e x dx e x dx x f x DX x x(分部积分亦可)第十一章 随机变量函数的数学期望·关于数学期望与方差的定理一、设随机变量X 服从二项分布)4.0,3(B ,求2)3(X X Y -=的数学期望及方差. 解:X 的概率分布为Y 的概率分布为2Y 的分布为72.072.0128.00=⨯+⨯=EY 72.072.0128.002=⨯+⨯=EY2016.0)72.0(72.0)(222=-=-=EY EY DY二、过半径为R 的圆周上一点任意作这圆的弦,求所有这些弦的平均长度.解:在圆周上任取一点O ,并通过该点作圆得直径OA .建立平面直角坐标系,以O 为原点,且让OA 在x 轴的正半轴上.通过O 任作圆的一条弦OB ,使OB 与x 轴的夹角为θ,则θ服从]2,2[ππ-上的均匀分布,其概率密度为⎪⎩⎪⎨⎧-∉-∈=]2,2[,0]2,2[,1)(ππθππθπθf .弦OB 的长为 ]2,2[cos 2)(ππθθθ-∈=R L ,故所有弦的平均长度为⎰⎰-∞+∞-⋅==22cos 21)()()]([ππθθπθθθθd R d L f L EπθπθθπππRR d R4sin 4cos 42020===⎰.三、一工厂生产的某种设备的寿命X (以年计)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-. 0,0 ;0 ,41)(4x x e x f x工厂规定,出售的设备若在售出一年之内损坏可予以调换.若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元.试求厂方出售一台设备的平均净赢利. 解:由题设,有⎰⎰---∞--=-===<104110441141)()1(e e dx e dx x f X P x x 进而有 41)1(1)1(-=<-=≥eX P X P设Y 表示“厂方出售一台设备获得的净赢利”,则Y 的概率分布为从而有64.33200300100)1(200414141≈-⨯=⨯+-⨯-=---ee e EY答:厂方出售一台设备获得的平均净赢利约为64.33元.四、设随机变量n X X X ,,21相互独立,并且服从同一分布,数学期望为μ,方差为2σ.求这些随机变量的算术平均值∑==ni i X n X 11的数学期望与方差.解:因为μ=)(i X E ,2)(σ=i X D ,且随机变量n X X X ,,21相互独立.所以有μμ=====∑∑∑∑====ni n i i ni i n i i n X E n X E n X n E X E 11111)(1)(1)1()(,nn X D n X D n X n D X D ni ni in i i n i i 2122121211)(1)(1)1()(σσ=====∑∑∑∑====.五、一民航送客车载有20位旅客自机场开出,沿途有10个车站可以下车,到达一个车站时如没有旅客下车就不停车.假设每位旅客在各车站下车是等可能的,且各旅客是否下车相互独立.求该车停车次数的数学期望.解: 设i X 表示"第i 站的停车次数" (10,,2,1 =i ). 则i X 服从"10-"分布. 其中⎩⎨⎧=站有人下车若在第站无人下车若在第i i X i ,1,0于是i X 的概率分布为设∑==ni iXX 1, 则X 表示沿途停车次数, 故有]})10110(1[1)10110(0{10)(2020101101--⨯+-⨯===∑∑==i i i i EX X E EX748.8)9.01(1020≈-=即停车次数的数学期望为748.8.第十二章 二维随机变量的数字特征·切比雪夫不等式与大数定律一、设二维随机变量),(Y X 的联合概率密度为()(). 1,222++=y xAy x f求:(1)系数A ;(2)数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X .解: (1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f . 有()()⎰⎰⎰⎰∞+∞-∞+∞-∞+==+=++1112022222A dr rrd A dxdy y xAπθπ解得, π1=A .(2) ()011),()(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxdy dxdy y x xf X E π.由对称性, 知 0)(=Y E .⎰⎰+∞∞-+∞∞-==-=dxdy y x f x EX EX X E X D ),(])[()(222()⎰⎰∞+∞-∞+∞-++=dx y xx dy 222211π()()+∞=+++=+-+=+=∞+∞+∞+⎰⎰⎰22022220223]11)1ln([1)1(211rr dr r rr r dr rr d πθπ同理, 有 +∞=)(Y D .)()])([(),cov(XY E EY Y Ex X E Y X =--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(()011),(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxydy dxdy y x xyf π.二、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<=其它.,0;10,,1),(x x y y x f求(1) ),cov(Y X ;(2) X 与Y 是否独立,是否相关,为什么?解: (1) 因为 ⎰⎰⎰⎰⎰====-∞+∞-∞+∞-10210322),(dx x dy xdx dxdy y x xf EX x x0),(10===⎰⎰⎰⎰-+∞∞-+∞∞-xx ydy dx dxdy y x yf EY0),()(1===⎰⎰⎰⎰-+∞∞-+∞∞-xxydy xdx dxdy y x xyf XY E所以有])32[()])([(),cov(Y X E EY Y EX X E Y X -=--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(010==⎰⎰-xxydy xdx .(2) 当)1,0(∈x 时,有 ⎰⎰+∞∞--===x dy dy y x f x f xxX 2),()(; 当)1,0(∉x 时, 有0)(=x f X .即⎩⎨⎧∉∈=)1,0(0)1,0(2)(X x x x x f 同理有 ⎩⎨⎧∉+∈-=⎪⎩⎪⎨⎧∉∈=⎰⎰-)1,0(1)1,0(1)1,0()1,0()(11Y x y x y x dx x dx y f yy因为 ),()()(y x f y f x f Y X ≠, 所以X 与Y 不是独立的.又因为0),cov(=Y X , 所以X 与Y 是不相关的.三、利用切比雪夫不等式估计随机变量X 与其数学期望)(X E 的差的绝对值大于三倍标准差)(X σ的概率.解:91)3()3(2=≤>-ξξξξξD D D E P .四、为了确定事件A 的概率,进行10000次重复独立试验.利用切比雪夫不等式估计:用事件A在10000次试验中发生的频率作为事件A 的概率的近似值时,误差小于0.01的概率. 解:设ξ表示“在10000次试验中事件A 的次数”,则)5.0,10000(~B ξ且有50005.010000=⨯==np E ξ 2500)5.01(5.010000=-⨯⨯==n p q D ξ 于是有npqp npq p np m P p n m P 22)01.0(1)01.0(1)01.0()01.0(-=-≥<-=<- 75.025.011=-=-=pq五、样检查产品质量时,如果发现次品多于10个,则认为这批产品不能接受.应该检查多少个产品,可使次品率为10%的一批产品不被接受的概率达到0.9? 解:设ξ表示“发现的次品件数”,则)1.0,(~n B ξ,现要求.nn ξE 1.0= n ξD 09.0=要使得9.0)10(=>ξP ,即9.0)10(=≤<n ξP ,因为9.0)10(=≤<n ξP ,所以 )3.01.03.01.03.01.010()10(nn n n n ξn n P ξD ξE n ξD ξE ξξD ξE P -≤-<-=-≤-<-)3.01.010()3()33.01.03.01.010(1,01,0nn n n n n ξn n P --≈≤-<-=ΦΦ1)3.0101.0()3(1,01,0--+nn n ΦΦ (德莫威尔—Laplace 定理)因为10>n ,所以53>n ,从而有1)3(1,0≈n Φ,故9.0)3.0101.0(1,0≈-nn Φ. 查表有8997.0)28.1(1,0=Φ,故有28.13.0101.0≈-nn ,解得.146≈n 答:应该检查约146个产品,方可使次品率为10%的一批产品不被接受的概率达到0.9.第十三章 正态分布的概率密度、分布函数、数学期望与方差一、设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P .解:(1) )4.2213.1()8.416.2()8.56.1(<-≤-=<-≤-=<≤-X P X P X P 8950.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ(2) )78.12178.2(1)56.4(1)56.4(<-<--=<-=≥X P X P X P )]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---=.0402.09973.09625.02=--二、已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100±(mm )之间为合格品,求这种机械零件的不合格品率. 解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p .而)26.01002()6.02.16.01006.02.1()2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ= 9544.019772.02=-⨯= 故0456.09544.01=-=p .三、测量到某一目标的距离时发生的误差X (m)具有概率密度3200)20(22401)(--=x ex f π求在三次测量中至少有一次误差的绝对值不超过30m 的概率.解:三次测量中每次误差绝对值都超过30米可表为}30{}30{}30{>⋃>⋃>=ξξξD 第三次第二次第一次因为)40,20(~2N ξ,所以由事件的相互独立性,有31,01,033)]25.0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P13025.05069.0)8944.05987.02(33≈=--= 于是有86975.013025.01)(1}30{=-=-=<D P P 米至少有一次绝对值三次测量中ξ.四、设随机变量),(~2σμN X ,求随机变量函数Xe Y =的概率密度(所得的概率分布称为对数正态分布).解:由题设,知X 的概率密度为)(21)(222)(+∞<<-∞=--x ex f x X σμσπ从而可得随机变量Y 的分布函数为)()()(y e P y Y P y F X Y ≤=≤=.当0≤y 时,有0)(=y F Y ;此时亦有0)(='y F Y . 当0>y 时,有dx ey X P y F yx Y ⎰∞---=≤=ln 2)(2221)ln ()(σμσπ.此时亦有222)(ln 21)(σμσπ--='y Y eyy F .从而可得随机变量Y 的概率密度为⎪⎩⎪⎨⎧>≤=--.0,21;0,0)(222)(ln y e yy y f y Y σμσπ五、设随机变量X 与Y 独立,),(~211σμN X ,),(~222σμN Y ,求: (1) 随机变量函数bY aX Z +=1的数学期望与方差,其中a 及b 为常数; (2) 随机变量函数XY Z=2的数学期望与方差.解:由题设,有211)(,)(σμ==X D X E ;222)(,)(σμ==Y D Y E .从而有(1)211)()()()()()(μμb a Y bE X aE bY E aX E bY aX E Z E +=+=+=+=;222212221)()()()()()(σσb a Y D b X D a bY D aX D bY aX D Z D +=+=+=+=.(2)212)()()()(μμ===Y E X E XY E Z E ;)()()()()()()()(22222222Y E X E Y E X E XY E Y X E XY D Z D -=-== )()()]()()][()([2222Y E X E Y E Y D X E X D -++= )()()()()()(22X E Y D Y E X D Y D X D ++= 212222212221μσμσσσ++=.第十四章二维正态分布·正态随机变量线性函数的分布中心极限定理一、设二维随机变量),(Y X 服从二维正态分布,已知0)()(==Y E X E ,16)(=X D ,25)(=Y D ,并且12),cov(=Y X ,求),(Y X 的联合概率密度.解:已知0==y x μμ,416==x σ,525==y σ,53),cov(),(===y x Y X Y X r σσ.从而 2516)53(1122=-=-r ,5412=-r . 进一步按公式])())((2)([)1(21222222121),(yy y x y x x x y y x r x r y x ery x f σμσσμμσμσπσ-+-------=,可得),(Y X 的联合概率密度为)2550316((322522321),(y xy x e y x f +--=π.二、设随机变量X 与Y 独立,并且)1,0(~N X ,)2,1(~2N Y .求随机变量32+-=Y X Z 的概率密度. 解:由题设,有0)(=X E ,1)(=X D ,1)(=Y E ,4)(=Y D .又根据关于数学期望的定理和方差的定理以及独立正态随机变量线性组合的分布,我们有2)3()()(2)32()(=+-=+-=E Y E X E Y X E Z E . 8)3()()(4)32()(=++=+-=D Y D X D Y X D Z D .且)8,2())(,)((~N Z D Z E N Z =,故随机变量32+-=Y X Z 的概率密度为16)2(82)2(2241821)(--⨯--==z z Z eez f ππ )(+∞<<-∞z .。
第四章补充习题一、 填空题1、 设随机变量X 则Y X 和的相关系数XY ρ= ,=),(2222Y X Cov Y X 的协方差和 。
2、设随机变量Y X 和的数学期望分别为22和-,方差分别为41和,而相关系数为5.0-,则根据切比雪夫不等式{}≤≥+6Y X P 。
3、设随机变量Y X 与相互独立且均服从正态分布2(0,)N , 则)(Y X E -= ,=-)(Y X D 。
4、随机变量ξ服从指数分布,参数λ= 时,72)(2=ξE 。
5、设随机变量Y X ,,2)(-=X E ,4)(=Y E ,4)(=X D ,9)(=Y D ,5.0-=XY ρ, =-+-)323(22Y XY X E 。
6、设随机变量Y X 与的相关系数9.0=XY ρ,若4.0-=X Z ,则=YZ ρ 。
7、设Y X ,同分布,密度函数均为⎪⎩⎪⎨⎧<<=其它若0102)(2tx xtx f ,使t Y X C E 1))2((=+, 则=C 。
8、设随机变量X 的数学期望和方差均为0,则{}=≠0X P 。
9、将一枚均匀硬币连掷3次,用X 表示正面出现的总次数,Y 表示第一次掷得的正面数, 则=)(XY E ,=),(Y X Cov ,=XY ρ 。
二、选择题1、设随机变量Y X 和独立同分布,记 Y X V Y X U +=-=,,则随机变量V U 与必然( ) (A )不独立, (B) 独立, (C) 相关系数不为零, (D) 相关系数为零。
2、将一枚硬币掷n 次,以Y X 和分别表示正面朝上和反面朝上的次数,则Y X 和的相关系数等于( )。
(A )1- (B) 0 (C)21(D) 1。
3、设随机变量Y X 和相互独立且分别服从正态分布(0, 1)N 和(1, 1)N ,则( )。
(A) {}210=≤+Y X P , (B) {}211=≤+Y X P , (C) {}210=≤-Y X P , (D) {}211=≤-Y X P 。
一、单项选择题1. 设B A 、表示事件,则=+B A ( )A.B AB.B AC.ABD.B A +答案:B2. 某人射击三次,以A i 表示事件“第i 次击中目标”(i=1,2,3),则事件“至多击中目标一次”的正确表达式为( )A.321A A AB.313221A A A A A AC.321321321A A A A A A A A AD.321A A A答案:B3. 袋中有10个形状相同的小球,其中4白6黑,现随机地将球一个一个地取出,则第4次取得白球的概率为( )A.101 B.102C.103D.104 答案:D 4. 线路由A ,B 两元件并联组成(如图)A ,B 元件独立工作,A 正常工作的概率为p ,B 正常工作的概率为q ,则此线路正常工作的概率为( )A. pqB. p+qC. p+q-pqD.1-pq答案:C 5. 设A ,B ,C 表示三个事件,则C B A 表示( )A.A ,B ,C 中有一个发生B.A ,B ,C 中不多于一个发生C.A ,B ,C 中恰有两个发生D.A ,B ,C 都不发生答案:D6. 设随机变量ξ可取无穷多个值:0,1,2,…,其概率分布为P (K ;3)=3k e !k 3- (即ξ~P (3))则下式成立的是( )A.E ξ=D ξ=3B.E ξ=D ξ=31 C.E ξ=3,D ξ=31D.E ξ=31,D ξ=3 答案:A7. 设随机变量ξ的分布列为P{ξ=k}=Ak,k=1,2,3,4,5,则常数A=( ) A.5 B.10C.15D.20答案:C 8. 设ξ的分布为则常数α=( ) A.0.1B.0.2C.0.3D.0.4答案:A9. 设ζ的分布列为则E ζ2=( ) A.-0.2 B.0.2 C.2.76 D.2.8答案:D10. 设随机变量ξ的密度函数p(x)=⎪⎩⎪⎨⎧∈ 其它 ,x ,Cx 0[0,1]4,则常数C =( )A .51B .41 C .4D .5答案:D11.设随机变量ζ的概率密度为p(x)=⎪⎩⎪⎨⎧<<-其他,0,21a x a a,其中A>0,要使P{ζ>1}=31,则A=( ) A.1B.2C.3D.4答案:C12.设ζ的分布函数为F(x)=A++∞<<∞-πx x arctan 1,则常数A=( )A.21B.1C.2D.π答案:A13. 独立随机变量ξ,η,若ξ~N (1,4),η~N (3,16),下式中不成立...的是( ) A .E (ξ+η)=4B .E (ξη)=3C .D (ξ-η)=12D .D (η+2)=16答案:C14.将一枚均匀硬币反复抛掷10次,已知前三次抛掷中恰出现了一次正面,则第二次出现正面的概率为( )A.31B.21C.41D.103 答案:A15. 13.设随机变量ζ的密度函数p(x)=⎩⎨⎧π∈其他,0],0[x ,ASinx ,则常数A=( )A.41B.21 C.1D.2答案:B16.设试验成功概率是p(0<p<1),则在三次重复独立试验中至少失败一次的概率是( ) A. (1-p)3 B. 1-p 3C. 3(1-p)D. (1-p)3+p(1-p)2+p 2(1-p)答案:B 17.设随机变量X 在[A ,B]上服从均匀分布,则其标准差)(X D 为 A.12/)(2a b -B. 6/)(2a b -C. 32/)(a b -D. 6/)(a b -答案:C18.设),(~2σμN X ,则=)(2X E A.22σμ+B. 2σμ+C.σμ+2D. σμ+答案:A19.若,2)(=X D 则=-)14(X D A.32B.8C. 2D. 31答案:A20.若,2)(,1)(==Y E X E 则=-)2(Y X E A.0B.-1C. 1D. 2答案:A二、多项选择题(略) 三、名词解释1.古典概型2.随机事件的独立性3.分布函数4.依概率收敛[参考答案]1.古典概型:古典概型是指满足下面两个特征的随机试验模型:1)样本空间是有限的,{}n ωωω,,,21 =Ω其中),,2,1(n i i =ω是样本点(基本随机事件);2)各基本事件的出现是等可能的,即它们发生的概率相同; 3)各基本事件互不相容,即);,,2,1,(j i n j i j i ≠=Φ= ωω2.随机事件的独立性:若事件A 、B 满足)()()(B P A P AB P =,称A 、B 相互独立。
129第四章 随机变量的数字特征在前面两章中我们讨论了随机变量的概率分布,这是关于随机变量统计规律的一种完整描述,然而在实际问题中,确定一个随机变量的分布往往不是一件容易的事,况且许多问题并不需要考虑随机变量的全面情况,只需知道它的某些特征数值.例如,在测量某种零件的长度时,测得的长度是一个随机变量,它有自己的分布,但是人们关心的往往是这些零件的平均长度以及测量结果的精确程度;再如,检查一批棉花的质量,既要考虑棉花纤维的平均长度,又要考虑纤维长度与平均长度的偏离程度,平均长度越大,偏离程度越小,质量越好.这些与随机变量有关的数值,我们称之为随机变量的数字特征,在概率论与数理统计中起着重要的作用.本章主要介绍随机变量的数学期望、方差、矩以及两个随机变量的协方差和相关系数.§1 数学期望1.1 数学期望的概念在实际问题中,我们常常需要知道某一随机变量的平均值,怎样合理地规定随机变量的的平均值呢?先看下面的一个实例.例1.1 设有一批钢筋共10根,它们的抗拉强度指标为110,135,140的各有一根;120和130的各有两根;125的有三根.显然它们的平均抗拉强度指标绝对不是10根钢筋所取到的6个不同抗拉强度:110,120,125,130,135,140的算术平均,而是以取这些值的次数与试验总次数的比值(取到这些值的频率)为权重的加权平均,即平均抗拉强度1(110120212531302135140)10=+⨯+⨯+⨯++⨯123211110120125130135140101010101010=⨯+⨯+⨯+⨯+⨯+⨯ 126=.从上例可以看出,对于一个离散型随机变量X ,其可能取值为12,,,n x x x ,如果将这n 个数相加后除n 作为“均值”是不对的.因为X取各个值的频率是不同的,对频率大的取值,该值出现的机会就大,也就是在计算取值的平均时其权数大.如果用概率替换频率,用取值的概率作为一种“权数”做加权计算平均值是十分合理的.经以上分析,我们可以给出离散型随机变量数学期望的一般定义.1301.离散型随机变量的数学期望定义 1.1 设X 为一离散型随机变量,其分布律为{}k kP X x p ==(1,2,k = ),若级数1k k k x p ∞=∑绝对收敛,则称此级数之和为随机变量X的数学期望,简称期望或均值.记为()E X ,即1()kk k E X xp ∞==∑ (1.1)例 1.2. 某人从n 把钥匙中任取一把去试房门,打不开则除去,另取一把再试直至房门打开.已知钥匙中只有一把能够把房门打开,求试开次数的数学期望.解 设试开次数为X ,则分布律为1{},1,2,,P X k k n n=== ,从而111(1)1()22nk n n n E X k nn =++=⋅=⋅=∑. 例1.3 设随机变量(,)X B n p ,求()E X .解 因为{}C (1)k k n kk n p P X k p p -===- (0,1,,)k n = ,11!()C (1)(1)(1)!()!n n nk kn kk n kk nk k k n E X kp k p p p p k n k --=====-=---∑∑∑11(1)11(1)!(1)(1)![1(1)]![(1)]nk n k k n n np pp k n k np p p np----=--=-----=+-=∑例1.4 设随机变量()X P λ ,求()E X . 解 因为()X P λ ,有131{}!kP X k ek λλ-==0,1,2,,k = ()因此11()!(1)!k k k k E X eeee k k λλλλλλλλλ-∞∞---=====⋅=-∑∑.我们可以类似地给出连续型随机变量数学期望的定义,只要把分布律中的概率k p 改为概率密度()f x ,将求和改为求积分即可.因此,我们有下面的定义.2 . 连续型随机变量的数学期望定义1.2 设X 为一连续型随机变量,其概率密度为()f x ,若广义积分()d xf x x +∞-∞⎰绝对收敛,则称广义积分()d xf x x +∞-∞⎰的值为连续型随机变量X 的数学期望或均值,记为()E X ,即 ()()d E X xf x x +∞-∞=⎰. (1.2)例1.5 设随机变量X 的概率密度为2,01()0,x x f x <<⎧=⎨⎩,其他,求()E X .解 依题意,得,102()()d 2d 3E X xf x x x x x +∞-∞==⋅=⎰⎰.例1.6 设随机变量X 服从区间(,)a b 上的均匀分布,求()E X . 解 依题意,X 的概率密度为1,()0,a x b f x b a⎧<<⎪=-⎨⎪⎩,其他, 因此1321()()d d 2b aa b E X xf x x x x b a+∞-∞+==⋅=-⎰⎰.例1.7 设随机变量X 服从λ为参数的指数分布,求()E X . 解 依题意, X 的概率密度为e ,0,()0,0x x f x x λλ-⎧>=⎨≤⎩,因此1()()d ed xE X xf x x x x λλλ+∞+∞--∞==⋅=⎰⎰.例1.8 设随机变量X 服从正态分布2(,)N μσ,求()E X .解 由于22()21()x f x m s--= ()x -?<+因此()()d E X xf x x x+∞+∞-∞-∞==⎰⎰22()2d x x m s--22()()ed tx t t t 令m s m s+---==+22ed tt m +--==.例1.9 已知二维随机变量(,)X Y 的概率密度为(34)12e ,0,0,(,)0,x y x y f x y -+⎧>>=⎨⎩其他,求()E X .解 由第三章例3.2的结果关于X 的边缘概率密度为33e ,0,()0,0x X x f x x -⎧>=⎨≤⎩,133即(3)X E ,因此1()3E X =.1.2 随机变量函数的数学期望定理1.1 设随机变量Y 是随机变量X 的函数, ()Y g X =(其中g 为一元连续函数).(1)X 是离散型随机变量,概率分布律为{}k k P X x p ==, 1,2,k = ,则当无穷级数1()k k k g x p ∞=∑绝对收敛时,则随机变量Y 的数学期望为1()[()]()kk k E Y E g X g xp ∞===∑; (1.3)(2)X 是连续型随机变量,其概率密度为()f x ,则当广义积分()()d g x f x x +-ò绝对收敛时,则随机变量Y 的数学期望为()[()]()()d E Y E g X g x f x x +∞-∞==⎰.(1.4) 这一定理的重要意义在于,求随机变量()Y g X =的数学期望时,只需利用X 的分布律或概率密度就可以了,无需求Y 的分布,这给我们计算随机变量函数的数学期望提供了极大的方便.定理的证明超出了本书的范围,下面我们仅就连续型随机变量,且()Y g X =单调的情形给出证明.证明 第二章定理4.2给出了随机变量Y 的概率密度[()](),()0,X Y f h y h y y f y αβ⎧⎪⎨⎪⎩'<<=,其他.其中)(x f X 为随机变量X 概率密度,函数)(x g y =是处处可导的严格单134调函数,它的反函数为)(y h x =,则有()()d Y E Y yf y y +∞-∞=⎰[()]|()|d X yf f y h y y βα'=⎰.当()0h y '>时()E Y [()]()d ()()d X X yf f y h y y g x f x x βα+∞-∞'==⎰⎰,当()0h y '<时()E Y [()]()d ()()d X X yf f y h y y g x f x x βα-∞+∞'=-=-⎰⎰()()d X g x f x x +∞-∞=⎰.例1.10 设离散型随机变量X 的分布律为求随机变量232Y X =-的数学期望.解 依题意,可得,22()[3(1)2]0.1(302)0.3E Y =⨯--⨯+⨯-⨯2(312)0.4+⨯-⨯2(322)0.2+⨯-⨯1.9=.例1.11 随机变量X (0,1)N ,求2Y X =的数学期望. 解 依题意,可得22()()()d E Y E X x f x x +∞-∞==⎰222d xxx +∞--∞=⎰22dexx+∞--∞=⎰2222e e dx xx x+∞+∞---∞-∞⎛⎫⎪=-⎪⎭⎰22e d1xx+∞--∞==⎰例 1.12 国际市场每年对我国某种商品的需求量是随机变量X(单位:吨),它服从[2000,4000]上的均匀分布,已知每售出1吨商品,可挣得外汇3万元;若售不出去而积压,则每吨商品需花费库存费等共1万元,问需要组织多少货源,才能使国家受益期望最大?解设组织货源t吨,[2000,4000]tÎ,受益为随机变量Y(单位:万元),按照题意Y是需求X的函数3(),,()3,,X t X X tY g Xt X t当当ì--<ïï==íï³ïîX的概率密度为1,20004000()20000,xf xìïï#ï=íïïïî其它.由(1.4),得()[()]()()dE Y E g X g x f x x+-==ò400020001{[3()]d3d}2000ttx t x x t x=--+蝌21[2140008000000]2000t t=-+-当3500t=时()E Y达到最大值,也就是说组织货源3500吨时国家的期望受益最大.135136例1.13 柯西分布211()1f x xπ=+()x -∞<<+∞的数学期望由于21||d (1)x x x π+∞-∞=+∞+⎰,所以不存在.上述的定理可以推广到两个或两个以上随机变量的函数上去,我们有下面的定理.定理 1.2 设随机变量Z 是随机变量(,)X Y 的函数,(,)Z g X Y =,其中g 为二元连续函数,则(1)如果(,)X Y 为二维离散型随机变量,其分布律为ij j i p y Y x X P ===},{ ,1,2,i j = ,且11(,)ijij j i g x yp ∞∞==∑∑绝对收敛,则随机变量(,)Z g X Y =的数学期望为11()[(,)](,)ijij j i E Z E g X Y g x yp ∞∞====∑∑; (1.5)(2)如果(,)X Y 为二维连续型随机变量时,概率密度为(,)f x y ,且(,)(,)d d g x y f x y x y +∞+∞-∞-∞⎰⎰绝对收敛,则随机变量(,)Z g X Y =的数学期望为()[(,)](,)(,)d d E Z E g X Y g x y f x y x y +∞+∞-∞-∞==⎰⎰. (1.6)例1.14 设二维离散型随机变量(,)X Y 的分布律为137求()E XY 和()E Z ,其中max(,)Z X Y =.解 依题意,可得()000.1010.3100.4110.20.2E XY =⨯⨯+⨯⨯+⨯⨯+⨯⨯=; ()00.110.90.9E Z =⨯+⨯=.例1.15 设二维连续型随机变量(,)X Y 的概率密度为212,01,(,)0,y y x f x y ⎧≤≤≤=⎨⎩其他,求(1)()E XY ;(2)2()E X .解 (1)由公式(1.6)得,121()(,)d d d (12)d 2xE X Y xy f x y x y x x y y y +∞+∞-∞-∞===⎰⎰⎰⎰,(2)将2X 看成是函数(,)Z g X Y =的特殊情况,从而利用公式(1.6)进行求解,即122222()(,)d d d 12d 3xE X x f x y x y x x y y +∞+∞-∞-∞===⎰⎰⎰⎰.需要说明的是:本题在求解2()E X 时,也可以先求出(,)X Y 关于X 的边缘概率密度,再利用公式22()()d X E X x f x x +∞-∞=⎰,求解2()E X (请读者自行完成).例 1.16 一商店经销某种商品,每周进货量X 与顾客对商品的需求量Y 是相互独立的随机变量,且都服从[10,20]上的均匀分布,商店每售出一单位商品可得利润1000元,若需求量超过进货量,商店可从其它商店调剂供应,这时每单位商品获利润500元,计算经销此商品每周所获得平均利润.解 设Z 表示商店每周所获利润,依题意1000,,(,)1000500(),,Y Y X Z g X Y X Y X Y X ì£ïï==íï+->ïî138由于(,)X Y 的概率密度为1,1020,1020(,)1000,x y f x y ,其他,ìïï##ï=íïïïî所以20201010()(,)(,)d d E Z g x y f x y x y =蝌20202010101011d 1000d d 500()d 100100yyyy xyx y x =?+蝌蝌202021010310(20)d 5(1050)d 2y y y y y y =-+--蝌 200005150014166.673=+椿(元).1.3 数学期望的性质设C 为常数,随机变量X ,Y 的数学期望都存在.关于数学期望有如下性质成立:性质1.则()E X C =; 性质2.()()E CX CE X =; 性质3.()()()E X Y E X E Y +=+;性质4. 如果随机变量X 和Y 相互独立,则()()()E XY E X E Y =. 这里只就连续型随机变量的情形对性质3和性质4给出证明,对于离散型随机变量情况,请读者自行完成.证明:设二维连续型随机变量(,)X Y 的概率密度为(,)f x y ,(,)X Y 关于X 和关于Y 的边缘概率密度为()X f x 和()Y f y ,则有()()(,)d d E X Y x y f x y x y +∞+∞-∞-∞+=+⎰⎰(,)d d xf x y x y +∞+∞-∞-∞=⎰⎰(,)d d yf x y x y +∞+∞-∞-∞+⎰⎰139(,)d d x f x y y x +∞+∞-∞-∞⎡⎤=⎢⎥⎣⎦⎰⎰(,)d d y f x y x y +∞+∞-∞-∞⎡⎤+⎢⎥⎣⎦⎰⎰()d X xf x x +∞-∞=⎰()d Y yf y y +∞-∞+⎰()()E X E Y =+.如果X 和Y 相互独立,则(,)f x y =()X f x ()Y f y ,有()(,)d d E XY xyf x y x y +∞+∞-∞-∞=⎰⎰()()d d X Y xyf x f y x y +∞-∞=⎰ ()d ()d X Y xf x x yf y y +∞+∞-∞-∞=⋅⎰⎰()E XY =例1.17 设两个随机变量X 和Y ,设2()E X 和2()E Y 都存在,证明: 222[()]()()E XY E X E Y ≤ (1.7) 这一不等式称为柯西—许瓦兹(Cauchy Schwarz -)不等式证明 对于任意实数t ,令2()[()]g t E X tY =+ 由数学期望的性质,有2222[()](2)E X tY E X tXY t Y +=++ 222()2()()E X tE XY t E Y =++ 因此 222()()2()()g t E X tE XY t E Y =++由于()0g t ≥,上述关于t 的二次函数的判别式小于或等于0.即 2224[()]4()()0E XY E X E Y ∆=-≤140因此 222[()]()()E XY E X E Y ≤例1.18 设随机变量X 和Y 相互独立,且各自的概率密度为33,0,()0,x X e x f x -⎧>=⎨⎩其他, 44,0,()0,y Y e y f y -⎧>=⎨⎩其他, 求()E XY .解 由性质3得()()()E XY E X E Y =()d ()d X Y xf x x yf y y +∞+∞-∞-∞=⨯⎰⎰3403d 4d xyxex ye y +∞+∞--=⨯⎰⎰1113412=⨯=.例1.19 将n 个球随机放入M 个盒子中去,设每个球放入各盒子是等可能的,求有球盒子数X 的期望.解 令随机变量1,1,2,,0,i i X i M i ⎧==⎨⎩ 第个盒子有球,第个盒子无球,显然有 1Mi i X X ==∑.对于第i 个盒子而言,每只球不放入其中的概率为11M ⎛⎫-⎪⎝⎭,n 个球都不放入的概率为11nM ⎛⎫- ⎪⎝⎭,因此1{0}1ni P X M ⎛⎫==- ⎪⎝⎭1{1}11n i P X M ⎛⎫==-- ⎪⎝⎭141由于 1()1{1}0{0}11ni i i E X P X P X M ⎛⎫=⨯=+⨯==-- ⎪⎝⎭由数学期望的性质,可以得到11()()11nMi i E X E X M M =⎛⎫⎛⎫==-- ⎪ ⎪ ⎪⎝⎭⎝⎭∑.§2 方差2.1 方差及其计算公式数学期望体现了随机变量所有可能取值的平均值,是随机变量最重要的数字特征之一.但在许多问题中只知道这一点是不够的,还需要知道与其数学期望之间的偏离程度.在概率论中,这个偏离程度通常用2{[()]}E X E X -来表示,我们有下面关于方差的定义. 定义2.1 设X 为一随机变量,如果随机变量2[()]X E X -的数学期望存在,则称之为X 的方差,记为()D X ,即2{[()]}D X E X E X =-() (2.1)称X 的标准差或均方差,记作()X σ .由定义2.1可知,随机变量X 的方差反应了X 与其数学期望()E X 的偏离程度,如果X 取值集中在()E X 附近,则方差()D X 较小;如果X 取值比较分散,方差()D X 较大.不难看出,方差()D X 实质上是随机变量X 函数2[()]X E X -的数学期望.如果X 是离散型随机变量,其概率分布律为 {}k k P X x p ==, 1,2,k = ,142则有 221{[()]}[()].kk k D X E X E X xE X p ∞==-=-∑()如果X 连续型随机变量,其概率密度为()f x ,则有22{[()]}[()]()d .D X E X E X x E X f x x +∞-∞=-=-⎰()根据数学期望的性质,可得2{[()]}D X E X E X ()=-22{2()[()]}E X X E X E X =-?22()2()()[()]E X E X E X E X =-?22()[()]E X E X =- .即 22()()[()]D X E X E X =- (2.2) 这是计算随机变量方差常用的公式例2.1 设离散型随机变量X 的分布律为求D X ().解 因为(1)0.100.310.420.20.7E X =-⨯+⨯+⨯+⨯=(), 22222()(1)0.100.310.420.2 1.3E X =-⨯+⨯+⨯+⨯=,222()[()] 1.30.70.81D X E X E X =-=-=().例2.2 设(,)X B n p ,求D X ().解 ()E X np =,令1q p =-,143220()C nk k n kn k E X k p q-==å1![(1)]!()!nk n kk n k k k p qk n k -==-+-å22(2)(2)1(1)(2)!(1)(1)!()!nk n k k n n n k p pqk n k ----=--=---å1!(1)!()!nkn kk n p qk n k -=+--å22(2)(2)2(2)!(1)()(2)!()!nk n k k n n n ppqE X k n k ----=-=-+--å2(1)n n p np =-+,所以 22222()[()](1)D X E X E X n n p np n p npq ()=-=-+-=.例2.3 设()X P λ ,求D X ().解 ()E X l =2201ee()[(1)1]!(1)!k k k k E X kk k k lll l --ゥ====-+-邋2221ee(2)!(1)!k kk k k k lllll-ゥ--==×=? --邋2l l =+所以 22().D X ()l l ll =+-=例2.4 设随机变量X 服从几何分布()X G p ,即 1{},1,2,k P X k pqk -===144其中01,1p q p <<=-,求(),().E X D X解 1111()k k k k E X kpqp kq∞∞--====∑∑由于1,011k k q q q∞==<<-∑,对此级数逐项求导,得1001d dd d k kk k k k q qkqq q ∞∞∞-===⎛⎫==⎪⎝⎭∑∑∑,因此121d 11d 1(1)k k kqq q q ∞-=⎛⎫== ⎪--⎝⎭∑, 从而211()(1)E X p q p=⋅=-。
习题一:1.1 写出下列随机试验的样本空间:(1)某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数;解:连续5 次都命中,至少要投5次以上,故;(2)掷一颗匀称的骰子两次, 观察前后两次出现的点数之和;解:;(3)观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以;(4)从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品;解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:(5)检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则;(6)观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2);解:用表示最低气温, 表示最高气温;考虑到这是一个二维的样本空间,故:;(7)在单位圆内任取两点, 观察这两点的距离;解:;(8)在长为的线段上任取一点, 该点将线段分成两段, 观察两线段的长度.解:;1.2(1)A 与B 都发生, 但C 不发生; ;(2)A 发生, 且B 与C 至少有一个发生;;(3)A,B,C 中至少有一个发生; ;(4)A,B,C 中恰有一个发生;;(5)A,B,C 中至少有两个发生; ;(6) A,B,C 中至多有一个发生;;(7) A;B;C 中至多有两个发生;(8) A,B,C 中恰有两个发生. ;注意:此类题目答案一般不唯一,有不同的表示方式。
1.3 设样本空间, 事件=,具体写出下列各事件:(1); (2) ; (3) ; (4)(1);(2) =;(3) =;(4) =1.6 按从小到大次序排列, 并说明理由.解:由于故,而由加法公式,有:1.7解:(1) 昆虫出现残翅或退化性眼睛对应事件概率为:(2)由于事件可以分解为互斥事件,昆虫出现残翅, 但没有退化性眼睛对应事件概率为:(3) 昆虫未出现残翅, 也无退化性眼睛的概率为:.1.8解:(1) 由于,故显然当时P(AB) 取到最大值。
概率论与数理统计统计课后习题答案-总主编-邹庭荣-主编- 程述汉-舒兴明-第四章第四章习题解答11 •设随机变量X〜B (30,-),则E (X)=( D ).6A.-;D.5.1E (X) = np = 30 562 •已知随机变量X和Y相互独立,且它们分别在区间[-1 , 3]和[2, 4]上服从均匀分布,则E(XY)=( A ).A. 3;B. 6;C. 10;D. 12.E(X) =1 E(Y) =3因为随机变量X和Y相互独立所以E(XY) = E(X)E(Y) = 33.设X表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,贝U X2的数学期望E(X 2) = 1&4 .X LI B(10,0.4) E(X) =4 D(X) =2.42 2E(X ) =(E(X)) D(X) =18.44.某射手有3发子弹,射一次命中的概率为-,如果命中了就停止射击,3否则一直射到子弹用尽.设表示X耗用的子弹数.求E (X).解:X123P2/32/91/92 2 1 13E(X)=—十—:2 +3 9 9 95 .设X的概率密度函数为x, 0ExE1f (x) - x, 1 :: x 乞2[0, 其它求 E(X) , E(X2).解: E(X) = J xf(x)dx = J x2dx + J x(2-x)dx =1,0 ' 11 32 27f (x)dx x dx 亠 i x (2「x)dx .- -bo -E(X 2)「;x 2求 E(X) , E(Y),E(XY).解:X-12P 0.650.35E(X)二「0.65 0.35 2 =0.05 .Y-112P0.40.250.35E(Y) = -0.4 0.25 1 0.35 2 =0.55E(XY)=(-1) (-1) 0.25 (-1) 1 0.1 (-1) 2 0.32 (-1) 0.15 2 1 0.15 2 2 0.05 =-0.257 •设二维随机向量(X, Y)的联合概率密度为求(1)E(X Y); (2) E(XY).E(XY) = _;.;(xy)f(x,y)dxdy=讥(广(xy)「dy)dx = 38.设随机变量X与Y相互独立,且D(X)=1, D(Y)=2 , J则D(X-Y)= 3 .D(X _Y) = D(X) D(Y) =39.设正方形的边长在区间]0, 2]服从均匀分布,则正方形面积A=X2的f(x,y)二e0,1°,0 :x y其它解: y) dxdy( x x y )e y d y dx 3方差为64/45 _________ .4 1E(X)=1, D(X) ,12 3X的密度函数f(x)= 102,0乞x乞26 •设随机向量(X, Y)的联合分布律为:E(X Y)=二y)求 D(X ),D(Y ),D(X-Y ).解:由本章习题5知E(X)=1 , E(X 2)=7,于是有62 21D(X)二 E(X )-(E(X)).6221 4E (XTE (X)「D (X)n 〒.4"be 42E(X )= x f(x)dx = 01 4 16x dx =2 5D(X 2) =E(X 4)—[E(X 2)]210•设随机变量X 的分布律为X -1 0 1 2P1/5 1/2 1/5 1/10求 D(X).解:D(X) = E(X 2) -(E(X))2, E(X2 21 2 1 2E(X ) =(-1) -01- 2 551 19 224D(X)=E (X 2)-(E(X))2=5 25 2511•设随机变量X 的概率密度函数为f(x)亠1,求 D(X ).::1I解:E(X) xf (x) dxxe*dx=0, 2E(X 2)x 2f(x)dx=2 x 2e^dx = 2 ,0 212•设随机变量X , Y 相互独立,其概率密度函数分别为x,f x (x)二 2 -x,0 _x _1 1 :: x _ 2y_ 0其它16 564 45由Y LI E(1)知 E(X) =D(X) =1.由于随机变量X , Y 相互独立,所以D(X -Y)二 D(X) D(Y) =7.613•设 D(X)=1,D(Y)=4,相关系数 P XY =0.5,则 cov(X,Y)=_1 __________ covX,Y)= » D(X)D(Y) =114•设二维随机变量(X, Y )的联合密度函数为求 cov(X,Y ), ?XY •DJI nI 22。
1 概率论与数理统计作业 班级 姓名 学号 任课教师 第四章 随机变量的数字特征 教学要求: 一、理解随机变量数学期望和方差的概念,掌握数学期望和方差的性质与计算方法; 二、了解0-1分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的数学期望及方差; 三、了解矩、协方差、相关系数的概念及性质,并会计算. 重点:数学期望与方差的概念和性质.
难点:相关系数.
练习一 一维随机变量的数字特征 1. 填空题 (1)将三个球随机地放到5个盒子中去,则有球的盒子数的数学期望为 61/25 .
(2)若随机变量X的分布律)2,1,0(!kkBAkXPk且aXE)(,则aeA,
aB. (3)设随机变量),(~pnBX,且45.0)(,5.0)(XDXE,则5n,1.0p .
(4)已知连续型随机变量X的概率密度为)(,1)(122xexfxx, 则)(XE 1 ,)(XD 1/ 2 . (5)设随机变量X表示10次重复独立射击命中目标的次数,且每次射击命中目标的概率为0.4,则)(2XE4.62XEXD. (6)设随机变量X服从参数为)0(的泊松分布,且已知1)]2)(1[(XXE,则 1 . 2.在射击比赛中,每人射击4次,每次一发子弹,规定4弹全都不中得0分,只中一弹得15分,中2弹得30分,中3弹得55分,中4弹得100分.某人每次射击的命中率为0.6.求他期望得多少分? 解:设X表示射击4次得的分数,则X的所有可能取值为.1005530150;;;;且
0256.06.016.004004CXP, 1536.06.016.0153114CXP,
3456.06.016.0302224CXP, 3456.06.016.0551334CXP, 2
1296.06.016.01000444CXP,
所以 64.441296.01003456.0553456.0301536.0150256.00XE
3.设随机变量X的概率密度为.1,0,1,112xxxxf求)(),(XDXE.
解: 0111112112xdxxxdxxxfXE 由于
dxxxxdxxxdxxfxXE1021021122221212
1
21420 则 2
122
XEXEXD
4.已知随机变量X的概率分布律为:
53)(),(),(22XEXDXEXE及求.
解: 2.03.023.004.021iiipxXE; 8.23.023.004.02222122iiipxXE;
76.222XEXEXD;
4.1358.23535322XEXE.
5.设随机变量X的概率密度为;0,0,0,xxexfx求(1)2YX的期望;(2)xeY2的期望.
X -2 0 2 P 0.4 0.3 0.3 3
解:(1) 212200xedxxedxxfxgYExx (2) 31310302xxxedxeedxxfxgYE 6.对球的直径做近似测量,设其值均匀分布在区间),(ba内,求球的体积的均值. 解:设球的直径为X,球的体积为V,则316VX,且
其它;,0,1bxa
abxf
于是 322111()624baEVxdxababba
练习二 二维随机变量的数字特征 1.填空题
(1)设随机变量YX,相互独立,方差分别为6和3,则)2(YXD 27 .
(2)设随机变量YX,相互独立,0)()(YEXE,1)()(YDXD,则])[(2YXE 2 . (3)设随机变量YX,相互独立,且)1,0(~),2,1(~NYNX, 则随机变量32YXZ
的概率密度)(zfZ=22325321xe. (4)设随机变量X与Y相互独立,且]2,0[~UX,Y服从参数为3的指数分布,则)(XYE3
1.
(5)设二维随机变量YX,的相关系数为5.0XY,X与Y的方差分别为4)(XD,9)(YD,则)32(YXD 61 .
2.设随机变量),(YX的概率密度为其它;,0,10,12,2xyyyxf 求),(),(YEXE 4
)(),(),(XYEYDXD和)(22YXE. 解: 104100254412dxxdyyxdxXEx; 100104253312xdxxdyyydxYE
752251645
4
1210521002222dxxdyyxdxXEXEXD
x
2512595125
3
1251021002222dxxdyyydxYEYEYD
x
;
105021021312dxxdyyxydxXYE
x
;
1545232
2222YEXEYXE。
3.设随机变量YX,相互独立,概率密度分别为
其它;,0,10,2xx
xfX
;5,0,5,)(5yye
yf
y
Y
求)(XYE. 解:由于随机变量YX,相互独立, 则 dyyedxxdyyyfdxxxfYEXEXYEyYX105522
463213255yey.
4. 随机变量nXXX,,,21相互独立,并服从同一分布,数学期望为,方差为2, 求这些随机变量的算术平均值niiXnX11的数学期望及方差. 解:由于随机变量nXXX,,,21相互独立,且
iXE, 2XD,,3,2,1i…, 5
于是由性质得 nnXEnXnEXE
niin
ii11111,
nnnXDnXnDXDniinii222121111
.
5.设连续型随机变量YX,相互独立,且均服从),21,0(N求)(YXE. 解:设YXZ,由于YX,相互独立,且均服从),21,0(N则Z也服从正态分布,且 ,0YEXEYXEZE ,12121YDXDZD
即Z~1,0N,于是
2222221
02022
222
zzzedzzedzezZEYXE.
综合练习题 1.甲乙两台机床生产同一种零件,在一天生产中的次品数分别记为YX,,已知YX,的概率分布分别下表所示.如果两台机床的产量相同,问哪台机床较好? Y 0 1 2 3 P 0.3 0.5 0.2 0
解:由于 11.032.023.014.00XE,
9.0032.025.013.00YE
则甲机床生产中的次品数的均值大于乙机床生产中的次品数,所以乙机床较好。
2.已知随机变量X的概率密度为)(,21)(xexfx,求)(XE及 )(XD.
解: dxxedxexdxexdxxxfXExxx00212121 0212112112100xexexx,
X 0 1 2 3 P 0.4 0.3 0.2 0.1