04神经网络控制38702
- 格式:ppt
- 大小:5.50 MB
- 文档页数:120
神经网络控制随着先进的计算技术的发展和大量的计算资源的获得,神经网络控制已经成为一种重要的控制方法。
神经网络控制通过建立神经网络模型对系统进行建模和控制,可以适用于不确定性较大、非线性程度较高的系统。
本文将从以下几个方面进行讨论。
1. 神经网络的基本原理神经网络是一个由大量神经元相互连接的关系网络。
神经元是生物神经系统中的基本单位,它接收神经元的输入,对输入进行处理,并将处理结果输出到其他神经元。
神经网络通过对神经元之间的连接强度进行学习,从而实现对输入和输出之间的映射。
神经网络的结构包含输入层、隐层和输出层。
输入层接收外部输入,隐层进行处理,最终的输出由输出层输出。
各层之间的连接权重是从样本学习中学得的。
在训练过程中,神经网络通过误差反向传播算法进行训练,从而得到最小误差的权值。
2. 神经网络控制的研究现状神经网络控制已经成为控制领域的一个热门研究方向。
在国内外均有大量的研究成果和应用案例。
神经网络控制在机器人控制、无人驾驶汽车控制、空间飞行器控制等领域中被广泛应用。
3. 神经网络控制在机器人控制中的应用机器人控制是神经网络控制的一个重要应用领域。
神经网络控制可以解决机器人控制中的多方面问题,如动力学建模、逆运动学、轨迹规划、控制等。
神经网络控制在机器人控制中的应用有:(1)运动控制神经网络控制可以对机器人的运动进行控制。
在机器人运动控制中,神经网络控制可以通过监督学习,对机器人的动力学进行建模,解决运动控制中的逆运动学问题。
同时,神经网络控制可以实现机器人的运动轨迹控制,保证机器人运动的平稳性和精度性。
(2)感知控制神经网络控制可以对机器人的感知进行控制。
机器人的传感器可以观测到周围环境的信息,神经网络控制可以对这些信息进行处理,并通过控制机器人的动作,使机器人具有基本的感知能力,如避障、跟踪等。
(3)智能控制在机器人控制中,神经网络控制可以实现机器人的智能控制。
神经网络控制可以对机器人进行学习和适应性,根据环境的变化,实现机器人的自适应控制,从而使机器人具有较强的智能性和自主性。
神经网络控制系统(一)神经网络控制系统简介神经网络控制系统是一种基于人工神经网络算法的控制系统,它主要通过对数据的学习和分析,不断优化参数,最终实现对系统的有效控制。
神经网络控制系统由多个神经元构成,每个神经元具有一定的输入和输出,它们之间通过权值连接相互联系。
通过不断地输入训练数据,系统能够自我调整,进而快速、精确地完成控制任务。
(二)神经网络控制系统的基本特点1.自适应性神经网络具有非常高的自适应能力,能自动学习和适应复杂的系统结构和变化。
2.非线性神经网络能够处理高度非线性的系统,并且能够自适应地调整变量之间的关系。
3.分布式处理神经网络是由多个节点组成的分布式处理系统,能够实时地响应和处理输入。
4.模式识别神经网络能够对数据进行有效的分类和识别,并在数据发生变化时及时调整模型。
5.容错性神经网络由多个节点组成,如果某个节点发生故障,其他节点仍然可以正常工作,保证系统的稳定性和可靠性。
(三)神经网络控制系统的应用范围1.智能控制神经网络控制系统能够对复杂的系统进行智能控制,如机器人、工业自动化等。
2.数据处理神经网络控制系统能够对海量数据进行处理和分析,为数据挖掘和决策提供支持。
3.医疗诊断神经网络控制系统能够对医疗数据进行分析,辅助医生进行疾病的诊断和治疗。
4.金融风控神经网络控制系统能够对金融领域的数据进行分析,预测市场趋势和风险,并在投资决策方面提供支持。
5.交通运输神经网络控制系统能够对交通流量进行分析和控制,优化交通路线,减少拥堵和事故。
总之,随着人工智能和大数据技术的不断进步,神经网络控制系统将会在更多的领域得到应用,为我们的生活和工作带来更多的便利和效益。
神经网络控制HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】人工神经网络控制摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。
本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。
关键词: 神经网络控制;控制系统;人工神经网络人工神经网络的发展过程神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。
它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。
是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。
它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。
在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。
神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。
神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。
如神经预测控制、神经逆系统控制等。
生物神经元模型神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与 102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。
每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。
图1生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学物质,突触有两种类型,兴奋性突触和抑制性突触。