不均匀电场放电
- 格式:ppt
- 大小:1.10 MB
- 文档页数:31
电子崩阶段电子崩外形好似球头的锥体,空间电荷分布极不均匀,电子崩中的电子数:n=e αx例如,正常大气条件下,若E=30kV/cm,则α≈11cm-1,计算随着电子崩向阳极推进,崩头中的电子数x/cm 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.01993059874 n 9 27 81 245 735663422087空间电荷畸变了外电场大大加强了崩头及崩尾的电场,削弱了崩头内正、负电荷区域之间的电场电子崩头部电场明显增强,电离过程强烈,有利于发生分子和离子的激励现象,当它们回复到正常状态时,发射出光子崩头内部正负电荷区域电场大大削弱,有助于发生复合过程,发射出光子89流注阶段电子崩走完整个间隙后,大密度的头部正离子空间电荷大大加强了后部的电场,并向周围放射出大量光子光子引起空间光电离,其中电子被主电子崩头部的正空间电荷所吸引,在受到畸变而加强了的电场中,造成了新的电子崩,称为二次电子崩光电离、二次崩1:主电子崩2:二次电子崩3:流注正流注的形成(外加电压等于击穿电压时)二次电子崩中的电子进入主电子崩头部的正空间电荷区(电场强度较小),大多形成负离子。
大量的正、负带电质点构成了等离子体,这就是正流注流注通道导电性良好,其头部又是二次电子崩形成的正电荷,因此流注头部前方出现了很强的电场1—主电子崩2—二次电子崩3—流注1011试验测量结果:电子崩在电离室中得到的初始电子崩照片图a和图b的时间间隔为1×10-7秒p=270毫米汞柱,E=10.5千伏/厘米初始电子崩转变为流注瞬间照片p=273毫米汞柱,E=12千伏/厘米电子崩在空气中的发展速度约为1.25×107cm/s14高频脉冲电流尖极为负的电晕1.到一定值时,有规律的重复电流脉冲,平均电流为μA2.升高脉冲幅值基本不变,频率增高,平均电流增大3.再升高,电晕电流为持续电流,平均值继续增大4.继续升高,出现不规则的电流脉冲,幅值大得多---流注型(a) 时间刻度T=125μs(b) 0.7μA电晕电流平均值(c) 2μA电晕电流平均值2839当棒具有负极性时电子崩中电子离开强电场区后,不再引起电离,正离子逐渐向棒极运动,在棒极附近出现了比较集中的正空间电荷,使电场畸变棒极附近的电场得到增强,因而自待放电条件就易于得到满足、易于转入流注而形成电晕放电E ex —外电场E —空间电荷的电场41当棒具有正极性时电子崩进入棒电极,正电荷留在棒尖加强了前方(板极方向)的电场(曲线2)电场的加强对形成流注发展有利。
高电压技术速记版专题1-6专题一:高电压下气体、液体、固体放电原理1、绝缘的概念:将不同电位的导体分开,使之在电气上不相连接。
具有绝缘作用的材料称为电介质或绝缘材料。
2、电介质的分类:按状态分为气体、液体和固体三类。
3、极化的概念:在外电场作用下,电介质的表面出现束缚电荷的现象叫做电介质极化。
4、极化的形式:电子式极化、离子式极化、偶极子式极化;夹层式极化。
(前三种极化均是在单一电介质中发生的。
但在高压设备中,常应用多种介质绝缘,如电缆、变压器、电机等)5、电子式极化:由于电子发生相对位移而发生的极化。
特点:时间短,弹性极化,无能量损耗。
[注]:存在于一切材料中。
6、离子式极化:离子式极化发生于离子结构的电介质中。
固体无机化合物(如云母、陶瓷、玻璃等)多属于离子结构。
特点:时间短,弹性极化,无能量损耗。
[注]:存在于离子结构物质中。
7、偶极子极化:有些电介质具有固有的电矩,这种分子称为极性分子,这种电介质称为极性电介质(如胶木、橡胶、纤维素、蓖麻油、氯化联苯等)。
特点:时间较长,非弹性极化,有能量损耗。
[注]:存在于极性材料中。
8、夹层式极化特点:时间很长,非弹性极化,有能量损耗。
[注]:存在于多种材料的交界面;当绝缘受潮时,由于电导增大,极化完成时间将大大下降;对使用过的大电容设备,应将两电极短接并彻底放电,以免有吸收电荷释放出来危及人身安全。
9、为便于比较,将上述各种极化列为下表:10、介电常数:[注]:用作电容器的绝缘介质时,希望些好。
大些好。
用作其它设备的绝缘介质时,希望小11、电介质电导:电介质内部带点质点在电场作用下形成电流。
金属导体:温度升高,电阻增大,电导减小。
绝缘介质:温度升高,电阻减小,电导增大。
12、绝缘电阻:在直流电压作用下,经过一定时间,当极化过程结束后,流过介质的电流为稳定电流称为泄漏电流,与其对应的电阻称为绝缘电阻。
(1)介质绝缘电阻的大小决定了介质中泄漏电流的大小。
考点1:电介质的电气特性及放电理论(一)气体电介质的击穿过程气体放电可以分非自持放电和自持放电两种。
20世纪Townsend在均匀电场,低气压,短间隙的条件下进行了放电试验,提出了比较系统的理论和计算公式,解释了整个间隙的放电过程和击穿条件。
1、汤逊放电理论的适用范围:汤逊理论的核心是:(1)电离的主要因素是电子的空间碰撞电离和正离子碰撞阴极产生表面电离;(2)自持放电是气体间隙击穿的必要条件。
汤逊理论是在低气压、Pd值较小的条件下进行的放电实验的基础上建立起来的,这一放电理论能较好的解释低气压短间隙中的放电现象。
因此,汤逊理论的适用范围是低气压短间隙(Pd<26 66kPa.cm)。
在高气压、长气隙中的放电现象无法用汤逊理论加以解释,两者间的主要差异表现在以下几方面:(1) 放电外形根据汤逊理论,气体放电应在整个间隙中均匀连续地发展。
低气压下气体放电发光区确实占据了整个间隙空间,如辉光放电。
但在大气压下气体击穿时出现的却是带有分支的明亮细通道。
(2) 放电时间根据汤逊理论,闻隙完成击穿,需要好几次循环:形成电子崩,正离子到达阴极产生二次电子,又形成更多的电子崩。
完成击穿需要一定的时间。
但实测到的在大气压下气体的放电时间要短得多。
(3) 击穿电压当Pd值较小时,根据汤逊自持放电条件计算的击穿电压与实测值比较一致;但当Pd值很大时,击穿电压计算值与实测值有很大出入。
(4) 阴极材料的影响根据汤逊理论,阴极材料的性质在击穿过程中应起一定作用。
实验表明,低气压下阴极材料对击穿电压有一定影响,但大气压下空气中实测到的击穿电压却与阴极材料无关。
由此可见汤逊理论只适用于一定的Pd范围,当Pd>26 66kPa. cm后,击穿过程就将发生改变,不能用汤逊理论来解释了。
2、流注理论利用流注理论可以很好地解释高气压、长间隙情况下出现的一系列放电现象。
(1) 放电外形 流注通道电流密度很大,电导很大,故其中电场强度很小。
高电压技术部分1流注理论考虑空间电荷对原有电场的影响和空间光电离的作用。
(流注理论和汤逊理论的差别是考察的重点)。
2 汤逊理论适用于低气压、短气隙的条件,而流注理论适用于高气压、长气隙的条件。
3巴申定律表明高气压和低气压都能使气体击穿电压增大。
4 电晕放电是不均匀电场放电,是自持放电。
5 输电线路上传播的过电压波将因电晕而衰减其幅值和降低其波前陡度,电晕放电还在静电除尘器、静电喷涂装置中获得广泛的应用。
6气体内的各种粒子因高温而动能增加,发生相互碰撞而产生游离的形式称为碰撞游离. 7进行外绝缘的冲击高电压试验时,往往施加正极性冲击电压,因为此时的电气强度较低。
(在极不均匀电场中,正极性击穿电压比负极性击穿电压低)8钢化玻璃型绝缘子具有损坏后“自爆”的特性9以下哪个不是发生污闪最危险的气象条件?A.大雾B.毛毛雨C.凝露D.大雨10 以下哪种材料具有憎水性?A. 硅橡胶B.电瓷C. 玻璃D金属11 工程实际中,常用棒-板或棒-棒电极结构研究极不均匀电场下的击穿特性。
12 伏秒特性曲线波头击穿时取瞬时值,波尾击穿时取峰值。
冲击系数是50%放电电压与静态放电电压之比。
雷电流具有冲击波形的特点:迅速上升,平缓下降。
雷电冲击波电压波形包括视在波前时间和视在半峰值时间,标准雷击波为1.2/50us,在防雷设计中采用2.6/40us。
13保护设备的伏秒特性应始终低于被保护设备的伏秒特性。
这样,当有一过电压作用于两设备时,总是保护设备先击穿,进而限制了过电压幅值,保护了被保护设备14 SF6气体具有较高绝缘强度的主要原因之一是______。
(SF6的理化特性是考察的重点,每次招聘必考)A.无色无味性B.不燃性C.无腐蚀性D.电负性在所用的杂质中影响最大的是水。
15影响液体电介质击穿电压的因素有水分和其他杂质油温电场均匀度电压作用时间油压的影响(考试列出以上选项,从其中选出无关的,尤其注意与电压的频率无关)影响固体电介质击穿电压的因素有电压作用时间电场均匀程度温度受潮累积效应。
电晕放电:导线或电极表面的电场强度超过碰撞游离阈值时发生的气体局部自持放电现象。
因在黑暗中形同月晕而得名。
电晕放电电晕放电 (corona discharge)气体介质在不均匀电场中的局部自持放电。
最常见的一种气体放电形式。
在曲率半径很小的尖端电极附近,由于局部电场强度超过气体的电离场强,使气体发生电离和激励,因而出现电晕放电引。
发生电晕时在电极周围可以看到光亮,并伴有咝咝声。
电晕放电可以是相对稳定的放电形式,也可以是不均匀电场间隙击穿过程中的早期发展阶段。
目录形成机制电晕放电电场强度影响形成机制电晕放电的形成机制因尖端电极的极性不同而有区别,这主要是由于电晕放电时空间电荷的积累和分布状况不同所造成的。
在直流电压作用下,负极性电晕或正极性电晕均在尖端电极附近聚集起空间电荷。
在负极性电晕中,当电子引起碰撞电离后,电子被驱往远离尖端电极的空间,并形成负离子,在靠近电极表面则聚集起正离子。
电场继续加强时,正离子被吸进电极,此时出现一脉冲电晕电流,负离子则扩散到间隙空间。
此后又重复开始下一个电离及带电粒子运动过程。
如此循环,以致出现许多脉冲形式的电晕电流。
电晕电流这一现象是 G.W. 特里切尔于1938年发现的,称为特里切尔脉冲。
若电压继续升高,电晕电流的脉冲频率增加、幅值增大,转变为负辉光放电。
电压再升高,出现负流注放电,因其形状又称羽状放电或称刷状放电。
当负流注放电得以继续发展到对面电极时,即导致火花放电,使整个间隙击穿。
正极性电晕在尖端电极附近也分布着正离子,但不断被推斥向间隙空间,而电子则被吸进电极,同样形成重复脉冲式电晕电流。
电压继续升高时,出现流注放电,并可导致间隙击穿。
电晕放电工频交流电晕在正、负半周内其放电过程与直流正、负电晕基本相同。
工频电晕电流与电压同相,反映出电晕功率损耗。
工程应用中还常以外施电压与电晕电荷量的关系表示电晕特性,称为电晕的伏库特性。
编辑本段电晕放电电场强度架空输电线路导线电晕起始电场强度E s可由皮克公式计算:(千伏/厘米)式中δ为空气相对密度,m为绞线系数,R为导线半径(厘米)。
普通高等教育“十二五”国家规划教材电气工程及其自动化专业系列教材高电压技术第一篇电介质的电气强度绪论●高电压技术主要研讨高电压(强电场)下的各种电气物理问题。
●高电压技术的发展始终与大功率远距离输电的需求密切相关。
●对于电力类专业的学生来说,学习本课程的主要目的是学会正确处理电力系统中过电压与绝缘这一对矛盾。
●为了说明电力系统与高电压技术的密切关系,以高压架空输电线路的设计为例,在图0-1中列出了种种与高电压技术直接相关的工程问题。
●除了电力工业、电工制造业外,高电压技术目前还广泛应用于大功率脉冲技术、激光技术、核物理、等离子体物理、生态与环境保护、生物学、医学、高压静电工业应用等领域。
第一篇电介质的电气强度第一章气体放电的基本物理过程第一节带电粒子的产生和消失第二节电子崩第三节自持放电条件第四节起始电压与气压的关系第五节气体放电的流注理论第六节不均匀电场中的放电过程第七节放电时间和冲击电压下的气隙击穿第八节沿面放电和污闪事故一、稍不均匀电场和极不均匀电场的放电特征电场的划分:电场不均匀系数:f=Emax Eavf=1为均匀电场;f<2为稍不均匀电场;f>4为极不均匀电场a v U dE=第六节不均匀电场中的放电过程二、电晕放电在220kV以上的超高压输电线路上,特别是在坏天气条件下,其导线表面会呈现一种淡紫色的辉光,并伴有咝咝作响的噪声和臭氧的气味。
这种现象就是电晕放电或简称电晕。
电晕是局部放电的一种,其特点在于它一定触及一个电极或两个电极,而一般所称的局部放电可以发生在电极表面,也可以存在于两极之间的某一空间而不触及任一电极。
电晕放电可以是极不均匀电场气隙击穿过程的第一阶段,也可以是长期存在的稳定放电形式。
存在稳定电晕放电是极不均匀电场中气体放电的一大特点,因为在均匀或稍不均匀电场中,一旦某处出现电晕,它将迅速导致整个气隙的击穿,而不可能长期稳定地存在电晕放电现象。
虽然也可从理论上求得,但由于它的开始出现电晕放电时的电晕起始电压Uc影响因素很多,这种推算相当繁复和不精确。