(2020年整理)机械臂控制系统的设计.pptx
- 格式:pptx
- 大小:408.42 KB
- 文档页数:16
机械手控制系统设计摘要在工业生产和其他领域内,由于工作的需要,人们经常受到高温、腐蚀及有毒气体等因素的危害,增加了工人的劳动强度,甚至于危及生命。
自从机械手问世以来,相应的各种难题迎刃而解。
本次设计根据课题的控制要求,确定了搬运机械手的控制方案,设计控制系统的电气原理图,对控制系统进行硬件和软件选型,完成PLC(可编程控制器)用户程序的设计。
设计中使用了德国西门子公司生产的S7-200系列的CPU 226。
该系列PLC 具有功能强大,编程方便,故障率低,性价比高等多种优点。
机械手的开关量信号直接输入PLC,使用CPU 226来完成全部的控制功能,包括:手动/自动控制切换,循环次数设定,状态指示,手动完全操控等功能。
机械手完成下降、伸出、加紧工件、上升、右旋、再下降、放松工件、缩回、放松、左旋十个动作。
通过模拟调试,有序的控制物料从生产流水线上安全搬离,提高搬运工作的准确性、安全性,实现一套完整的柔性生产线,使制造过程变的更有效率。
通过本次毕业设计,对PLC控制系统的设计建立基本的思想:能提出自己的应用心得;可巩固、深化前续所学的大部分基础理论和专业知识,进一步培养和训练分析问题和解决问题的能力,进一步提高自己的设计、绘图、查阅手册、应用软件以及实际操作的能力,从而最终得到相关岗位和岗位群中关键能力和基本能力的训练。
关键词:机械手;PLC(可编程控制器);CPU;梯形图The Design of Manipulator Control SystemABSTRACTIn industrial manufacturing and other fields, due to the demand of work, many workers are compelled to expose in harmful circumstance like high temperature, corrosion, toxic gases harm and so on, that increased labor intensity, even imperial their lives. However, since the manipulator came out, many knotty problems are smoothly solved.The design requirements under the control of the subject to determine the handling robot control program, designed control system electrical schematic diagram, the control system hardware and software selection, complete the design of the user program in the PLC (programmable controller). Design used in the German company Siemens S7-200 series CPU 226. The series PLC with powerful, easy programming and low failure rate, and cost advantages. Robot switch signal input to the PLC, the CPU 226 to complete all the control functions, including: manual / automatic control switch, set the number of cycles, status indicator, manual complete control and other functions. the production line on the safe move out, so that the manufacturing process becomes more efficient.The graduation project, the design of PLC control system to establish the basic idea: to make their own application experience; can strengthen and deepen the most of the former continued the basic theory and professional knowledge, further training and training to analyze and solve problems the ability to further improve their design, drafting, inspection manuals, application software, as well as the actual ability to operate, and ultimately related jobs and job base in key skills and basic skills training.Key Words: Manipulator;PLC;CPU;Ladder-diagram目录1 绪论 (1)1.1 机械手的背景与现实意义 (1)1.2 国内外机械手研究概况 (1)1.3 机械手控制存在的问题及最新发展 (3)1.3.1利用单片机实现对机械手的控制 (3)1.3.2利用传统继电器实现对机械手的控制 (3)1.3.3 P LC实现对机械手的控制 (3)1.4 本文主要工作 (5)2 机械手控制系统工艺流程与总体方案设计 (6)2.1 机械手控制系统的流程设计 (6)2.2 机械手的工艺过程 (6)2.3 机械手总体控制方案的设计思路 (7)3 机械手硬件系统设计 (9)3.1电气原理设计 (9)3.1.1机械手电源电路设计 (9)3.1.2机械手控制电路 (9)3.1.3工作状态指示灯电路 (10)3.1.4 LED段码指示电路 (11)3.2 PLC的选型及参数 (11)3.3电器元器件的选型 (13)3.3.1接触器 (13)3.3.2行程开关 (13)3.3.3熔断器 (14)3.3.4低压断路器 (14)3.3.5控制按钮 (14)3.3.6直流减速电机 (14)4 机械手软件系统设计 (15)4.1设计任务和控制要求 (15)4.2高级指令说明 (15)4.2.1定时器指令 (15)4.2.2顺控继电器(SCR)指令 (17)4.2.3传送指令 (17)4.2.4计数器指令 (18)4.2.5标准转换指令 (20)4.2.6段码指令 (20)4.3 PLC的I/O接口功能设计与分配 (20)4.3.1 P CL的I/O接口功能设计 (20)4.3.2 I/O接线图 (23)4.4设计系统工作流程 (24)5 机械手控制系统调试 (25)5.1 西门子S7-200系列PLC编程软件 (25)5.2 程序说明 (26)5.3 故障及其解决方案 (31)6 总结 (33)参考文献 (34)谢辞 (35)附录程序清单 (36)1 绪论1.1 机械手的背景与现实意义机械手是工业自动化领域中经常遇到的一种控制对象。
机械臂控制系统设计工业机械臂是近代自动控制领域中一项新的技术,发展由于积极的作用被人们重视,机械臂是机器人的重要组成部分,机械臂主标签:机械臂;控制;系统;设计一、设计选型分析1.关节结构的设计分析机械臂按照运动形式可以分为直角坐标型、圆柱坐标型、关节型、极坐标型,直角坐标型的臂部由三个相互正交的移动副组成,带动腕部分别沿着X、Y、Z 三个坐标轴的方向作直线移动,而且结构十分的简单,运动位置精确度很高,但是占得空间很大,工作范围很小,圆柱坐标型的臂部由一个转动副和两个移动副组成,占的空间很小,工作范围大,可以在狭窄空间内绕过各种障碍物,二极坐标型的臂部是由两个转动副和一个移动副组成,产生沿手臂轴X的直线移动,绕基座轴Y的转动和绕关节轴Z的摆动,手臂可作绕Z轴的俯仰运动,并且抓住地面的物体,采用关节型的基础上,局部结合三种进行设计。
对于臂部的设计应该满足承载能力足、刚度高、导向性能好、定位精度高、重量轻、转动惯量小、与腕部和机身的连接部位设计合理。
由于手臂是支承手腕的部件,设计时应该考虑抓取物体的重量或者是携带工具的重量,还有就是考虑运动时的动载荷及转动惯性,为了可以有效的防止臂部在运动的时候产生变形,手臂的截面形状应进行合理的选择,对于工字型截面的弯曲刚度会比圆截面大,空心管的弯曲刚度和扭转刚度比实心轴大,为了可以有效的防止手臂直线运动的时候,沿着运动轴线发生相对转动,应该设置导向装置,还可以采用一些缓冲措施,为了提高其运动的速度,可以减少臂部运动部分的重量,减少手臂对回转轴的转动惯量,还有就是臂部安装的形式和位置关系到其强度、刚度和承载能力,直接影响其外观。
2.驱动控制系统的设计分析对于驱动控制系统可以分为开环控制和闭环控制,为了可以实现实时控制和精确定位等要求,使用带有反馈的闭环控制系统,也叫做伺服系统,伺服系统可以分为液压伺服系统和电动伺服系统,所以应该考虑到机械臂的重量、体积、使用方便,应该使用精度高、信号处理灵活、结构紧凑、质量小的电动伺服系统,实现同步型交流伺服电机。
机械臂的控制系统设计摘要:在工业生产过程中,机械臂通常也被叫做工业机器人,是能够帮助很多工厂实现现代化道路的重要设备之一。
为了工业的发展跟祖国的繁荣富强,对工业机器人的研究和投入使用具有很高的价值和现实意义。
关键词:机械臂;控制;设计;1 机械臂的功能分析机械臂的功能就是代替正常人完成一些动作,进行零部件安装,以及检测工人在安装零部件的时候是否安装不全,如果零件安装不全,这时候系统就需要发出警报,然后工人就会去安装缺失的那部分零件。
在工人工作的时候,同时也要保证机械臂的正常运行,在设计机械臂的大致过程中,要保证机械臂具备以下的功能:(1)正常旋转功能。
即在机械臂检测零件的过程中,必须保证机械臂是可以旋转的,这样才可以将照相机移到相应的零件位置,从而进行检测该位置是否安装了零件,并完成拍摄工作,这样就可以很清楚的知道。
工作速度分两个,一个速度是机械臂在自动运行时候用的,而另一个速度是用来示教时候用的。
(2)示教功能。
当工人拿着触摸屏的时候,按一次按钮就可以控制机械臂运动一次,从而完成三个点的检测。
(3)再现功能。
工人只要按一下触摸屏上面的自动运行按钮,机械臂就会一次性完成三个点的零件检测工作,并进行拍照。
(4)检测功能。
当机械臂运动到相应零件位置的时候,这时候就可以进行检测了,与此同时安装在机械臂前段的照相机就得负责拍照并送回照片信息。
(5)报警功能。
当系统检测到零件安装位置未装有零件,这时候系统就应该发出警报信息。
如果安装了零件,则不发出警报,并继续下一个零件位置的检测。
2 机械臂的总体方案的确定2.1 机械系统方案的确定在设计机械臂的时候,采用的是步进驱动器跟步进电机,4自由度机械臂也就是需要4个步进电机跟4个步进驱动器。
4个自由度分为3个旋转自由度跟1个移动自由度。
2.2 电气控制系统的设计用可编程控制输出脉冲从而控制4个步进电机的运动,触摸屏与可编程控制器相连接,通过触摸屏来实现机械臂的运动控制。
基于PLC的机械臂控制系统设计简介本文档旨在介绍基于PLC(可编程逻辑控制器)的机械臂控制系统设计。
机械臂控制系统是一种自动化系统,用于控制机械臂的运动和操作。
系统设计1. 系统架构机械臂控制系统由以下几个主要模块组成:- PLC控制器:用于执行各种控制逻辑和算法。
- 电机驱动器:通过驱动机械臂的电机实现运动控制。
- 传感器:用于感知和获取机械臂当前的位置和状态信息。
- 人机界面(HMI):提供用户与系统交互的界面,用于监控和控制机械臂。
2. 系统功能机械臂控制系统的主要功能包括但不限于:- 运动控制:通过控制电机实现机械臂的准确运动和定位。
- 位置检测:利用传感器获取机械臂当前的位置信息。
- 动作规划:根据用户输入或预设规则,规划机械臂的动作序列。
- 任务执行:根据规划好的动作序列,控制机械臂执行特定任务。
- 故障诊断和报警:监测系统状态,检测故障并及时报警。
3. 系统优势基于PLC的机械臂控制系统设计具有以下优势:- 稳定可靠:PLC控制器具有高度可靠性和稳定性,适用于工业环境。
- 可编程性:PLC支持各种编程语言,可以根据实际需求进行自定义编程。
- 灵活性:可以根据不同的应用需求进行系统配置和定制化开发。
- 扩展性:系统可支持并行控制多个机械臂,以实现更复杂的任务。
- 易于维护:模块化设计和标准化接口使系统维护更加简单和方便。
总结基于PLC的机械臂控制系统设计是一种稳定可靠、灵活可编程的自动化系统。
通过合理的系统架构和功能设计,可以实现机械臂的高效、准确的运动控制和任务执行。
该系统设计具有广泛的应用前景,在工业自动化领域有着重要的地位和作用。
以上为本文档的概要内容,请参考详细内容进行具体系统设计。
机械臂控制系统的设计与实现机械臂是一种能够适应各种情况的机电装置,由于其优异的灵活性、高效性和精准性,被广泛应用于工业生产和物流行业中。
而机械臂的自主控制成为了实现自动化生产流程的重要手段之一。
本文将从机械臂控制系统的设计和实现两个方面展开探讨。
机械臂控制系统的设计机械臂控制系统是由硬件和软件两个部分组成。
硬件部分主要包括机械臂的驱动器、传感器和控制器。
机械臂的驱动器包括电机、减速器和传动装置,控制器则是负责控制机械臂运动的主控板。
传感器则用于获取机械臂的位置和运动状态信息,从而实现精准控制。
而软件部分则是由控制程序和驱动程序组成,控制程序通常采用C或C++等高级语言进行编写,而驱动程序则是将控制程序的指令翻译为机械臂能够识别的语言。
机械臂控制系统的设计需要先明确所需实现的功能。
不同的应用场景会有不同的需求,例如螺丝拧紧机械臂需要具备拧紧力度的控制能力,而用于物流搬运的机械臂需要具备精准的目标定位和位置控制能力。
因此在设计时需要对机械臂和其控制系统的功能需求进行明确和分析,从而确定所需硬件和软件组件。
其次,需要针对不同的需求选择合适的硬件和软件组件。
硬件部分需要根据机械臂的参数确定驱动器类型和传感器类型,并选择适合的控制器。
软件部分则需要根据机械臂参数和控制系统的功能需求,选择合适的编程语言和相应的编程工具。
例如,在编写控制程序时可以采用ROS(机器人操作系统)等现有的机器人操作平台,自主开发控制程序也是一种选择。
最后,机械臂控制系统的设计需要进行系统集成和优化。
在系统集成时需要考虑机械臂控制系统与其他相关设备的联动,例如与传送带、分拣机器人等设备的协调与交互。
在系统优化方面则需要针对具体应用场景不断调整和优化控制算法,以提升机械臂的精度和速度。
机械臂控制系统的实现实现机械臂控制系统需要进行软件编程和硬件调试两个过程。
在编写控制程序时需要先了解机械臂的控制方式和硬件结构,然后根据机械臂的运动学模型和控制算法进行控制程序的开发。