聚酰亚胺基础知识
- 格式:doc
- 大小:653.50 KB
- 文档页数:81
聚酰亚胺和氟聚酰亚胺第一部分:聚酰亚胺聚酰亚胺原料聚酰亚胺主要由二元酐(酐是酸或碱脱水后生成的氧化物或羧酸的分子间和分子内缩水产生的有机化合物)和二元胺(胺是氨分子中的一个或多个氢原子被烃基取代后的产物)合成制得,二酐、二胺品种繁多,不同的组合就可以获得不同性能的聚酰亚胺。
聚酰亚胺制备工艺方法一:二酐和二胺在极性溶剂(溶剂分子为极性分子的溶剂,由于其分子内正负电荷重心不重合而导致分子产生极性)中先进行低温缩聚,获得可溶的聚酰胺酸,成膜或纺丝后加热至300℃左右脱水成环转变为聚酰亚胺;方法二:向聚酰胺酸中加入乙酐和叔胺类催化剂,进行化学脱水环化,得到聚酰亚胺溶液和粉末;方法三:二胺和二酐在高沸点溶剂,如酚类溶剂中加热缩聚,一步获得聚酰亚胺;方法四:由四元酸的二元酯和二元胺反应获得聚酰亚胺;方法五:由聚酰胺酸先转变为聚异酰亚胺,然后再转化为聚酰亚胺。
两步法和一步法(第一排是原料:二酐和二胺,第二排是两步法,第三排是一步法,PAA是聚丙烯酸溶剂,PI是聚酰亚胺,Ar、Ar’是二酐、二胺的功能单元,决定聚酰亚胺的性质特征)聚酰亚胺薄膜的生产工艺(方法一,两步法)(1)聚酰胺酸的合成;严格控制二酐、二胺两种单体的等摩尔比,否则不能制得合格的高分子量的聚酰胺酸树脂;加料顺序上,先将二酐溶于溶剂中,再加入二胺,让反应在二酐过量的情况下进行,二酐的过量会导致生成物的降解,否则不能制得合格产品;溶解在常温下进行,缩聚在常压、40-60摄氏度下保持2-4小时。
聚酰胺酸溶液是聚酰亚胺薄膜的中间产物,控制的技术指标是粘度。
(2)亚胺化及成膜成膜是在烘箱中,温度控制在150-200摄氏度,温度分布均匀稳定,总加热时间约20分钟,烘箱排气口将挥发的溶剂排出;为保证亚胺化反应的彻底完成,温度可提高到300-350摄氏度。
聚酰亚胺薄膜的生产设备(1)树脂合成釜;不锈钢制,带搅拌和测温,容量随产量而定;(2)流延机;用于流延法制膜,由两部分构成,一是环形不锈钢钢带及动力和传动系统,二是烘箱,包括箱体、电加热装置和排风系统;(3)浸胶机;用于浸胶法制膜,采用立式烘道。
PI (聚酰亚胺)简介 GCPI(聚酰亚胺)简介 热塑性聚酰亚胺树脂(Polyimide),简称PI树脂)是热塑性工程塑料。它属耐高温热塑性塑料,具有较高的玻璃化转变温度(243℃)和熔点(334℃),负载热变型温度高达260℃(30%玻璃纤维或碳纤维增强牌号),可在250℃下长期使用,与其他耐高温塑料如PEEK、PPS、PTFE、PPO等相比,使用温度上限高出近50℃; PI树脂不仅耐热性比其他耐高温塑料优异,而且具有高强度、高模量、高断裂韧性以及优良的尺寸稳定性;PI树脂在高温下能保持较高的强度,它在200℃时的弯曲强度达24MPa左右,在250℃下弯曲强度和压缩强度仍有12~13MPa;PI树脂的刚性较大,尺寸稳定性较好,线胀系数较小,非常接近于金属铝材料; 具有优异的耐化学药品性,在通常的化学药品中,只有浓硫酸能溶解或者破坏它,它的耐腐蚀性与镍钢相近,同时其自身具有阻燃性,在火焰条件下释放烟和有毒气体少,抗辐射能力强;PI树脂的韧性好,对交变应力的优良耐疲劳性是所有塑料中最出众的,可与合金材料媲美; PI树脂具有突出的摩擦学特性,耐滑动磨损和微动磨损性能优异,尤其是能在250℃下保持高的耐磨性和低的摩擦系数;PI树脂易于挤出和注射成型,加工性能优异,成型效率较高。 此外,PI还具有自润滑性好、易加工、绝缘性稳定、耐水解等优异性能,使得其在航空航天、汽车制造、电子电气、医疗和食品加工等领域具有广泛的应用,开发利用前景十分广阔。 PI (聚酰亚胺)主要特性 GCPI(聚酰亚胺)主要特性 热塑性聚酰亚胺树脂(PI)的综合性能,非常优秀,它具有抗腐蚀、抗疲劳、耐高温、耐磨损、耐冲击、密度小、噪音低、使用寿命長等特点, 优良的高低温性能(长期-269℃---280℃不变形); 在极广温度围保持长期的耐蠕变和耐疲劳性; 在 280°C (512°F) 下有足够高的抗拉强度和弯曲模量; 改进的耐压强度; 对化学品、溶剂,润滑油和燃料的超常抗力,密封性好; 固有的阻燃性、无烟尘排放性; 噪音低,自润滑性能好, 可无油自润滑; 热膨胀系数低; 密度小,硬度高; 吸水率低; 良好的电气性; 极好的抗水解性能; 有粉末状或颗粒状两种类型供选 ,另外还有例如板材,棒材和管材等半成品。 在一些用途中,如果产品的数量不是很多,最为经济和灵活的生产方式是模压型材。高性能塑料型材通过热模压而成,具有比注塑件更好的致密性,同时避免注塑件造成的融接线形成的强度降低等缺陷;高性能型材适合小批量、高要求的制件。高性能塑料型材涵盖板材、棒材和管材等。 广成可根据客户的具体应用来设计产品配方,订制产品规格和形状。我们提供玻璃纤维,碳纤维,石墨和 PTFE填充增强级的模压制件,产品的形状有棒材,管材和板材等
聚酰亚胺+定义摘要:I.聚酰亚胺简介- 聚酰亚胺的定义- 聚酰亚胺的特点- 聚酰亚胺的分类II.聚酰亚胺的应用领域- 电子行业- 航空航天领域- 汽车工业- 医疗领域III.聚酰亚胺的发展趋势- 聚酰亚胺研究的进展- 聚酰亚胺市场前景- 聚酰亚胺的可持续发展IV.聚酰亚胺的制备方法- 聚酰亚胺的合成方法- 聚酰亚胺的生产工艺- 聚酰亚胺的改性方法V.聚酰亚胺的性能测试- 聚酰亚胺的物理性能测试- 聚酰亚胺的化学性能测试- 聚酰亚胺的力学性能测试正文:聚酰亚胺(Polyimide,简称PI)是一种具有优异性能的有机高分子材料,其主链上含有酰亚胺基团(-CO-N-CO-)的一类聚合物。
聚酰亚胺具有高强度、高模量、耐高温、耐低温、耐腐蚀、耐辐射、低介电常数、低吸水性、高抗氧化性等优异性能,被广泛应用于各个领域。
一、聚酰亚胺简介1.定义聚酰亚胺是一类具有特殊结构的高分子材料,其主链上含有酰亚胺基团(-CO-N-CO-),是通过酰亚胺化反应合成的。
2.特点聚酰亚胺具有以下特点:高强度、高模量、耐高温、耐低温、耐腐蚀、耐辐射、低介电常数、低吸水性、高抗氧化性等。
3.分类聚酰亚胺可以根据其分子结构、原料类型和应用领域进行分类。
根据分子结构,聚酰亚胺可分为脂肪族聚酰亚胺、芳香族聚酰亚胺和杂环聚酰亚胺等;根据原料类型,聚酰亚胺可分为二元酐型聚酰亚胺、二元酸型聚酰亚胺和混合型聚酰亚胺等;根据应用领域,聚酰亚胺可分为电子聚酰亚胺、航空航天聚酰亚胺、汽车工业聚酰亚胺和医疗聚酰亚胺等。
二、聚酰亚胺的应用领域1.电子行业聚酰亚胺在电子行业中具有广泛的应用,如用于制造柔性电路板、柔性显示器、绝缘材料、封装材料等。
2.航空航天领域聚酰亚胺在航空航天领域中具有重要的应用,如用于制造飞机、火箭、卫星等部件,以及航空发动机、导弹等。
3.汽车工业聚酰亚胺在汽车工业中具有广泛的应用,如用于制造汽车发动机、制动系统、传动系统等部件。
4.医疗领域聚酰亚胺在医疗领域中具有重要的应用,如用于制造医疗器械、人工器官等。
超级工程塑料中的“黄金”----聚酰亚胺(Polyimide)聚酰亚胺(PI)由含有酰亚胺基链节(─C─N─C─)构建的芳杂环高分子化合物,具备高强度高韧性、耐磨耗、耐高温、防腐蚀等特殊性能,是一种耐热性工程塑料。
聚酰亚胺可分为均苯型PI,可溶性PI,聚酰胺-酰亚胺(PAI)和聚醚亚胺(PEI)四类。
由于其性能与合成综合特点,作为结构材料或是功能材料均具有巨大前景,被称为是'解决问题的能手'(protion solver),并认为'没有聚酰亚胺就不会有今天的微电子技术'。
聚酰亚胺(PI)作为一种特种工程材料,广泛应用于航空、航天、电气电子、半导体工程、微电子及集成电路、纳米材料、液晶显示器、LED 封装、分离膜、激光、机车、汽车、精密机械和自动办公机械等领域。
01聚酰亚胺性能特点作为优秀的特种工程材料,聚酰亚胺的性能可以通吃所有材料品质中的高端性能。
1、适用温度范围广:高温部分:全芳香聚酰亚胺,分解温度500℃左右。
长期使用温度-200~300 ℃,无明显熔点。
低温部分:-269℃的液态氦中不会脆裂。
2、机械性能强:未填充的塑料的抗张强度都在100Mpa以上;均苯型聚酰亚胺的薄膜(Kapton)为170Mpa以上,而联苯型聚酰亚胺(UpilexS)达到400Mpa。
3、绝缘性能好:良好的介电性能,介电常数为3.4左右,引入氟,或将空气纳米尺寸分散在聚酰亚胺中,介电常数可以降到2.5左右。
4、耐辐射:聚酰亚胺具有很高的耐辐照性能,其薄膜在5×109rad快电子辐照后强度保持率为90%。
5、自熄性:聚酰亚胺是自熄性聚合物,发烟率低。
聚酰亚胺在极高的真空下放气量很少。
6、稳定性:一些聚酰亚胺品种不溶于有机溶剂,对稀酸稳定,一般的品种不大耐水解。
7、无毒:聚酰亚胺无毒,并经得起数千次消毒。
可用来制造餐具和医用器具,有一些聚酰亚胺还具有很好的生物相容性,例如,在血液相容性实验为非溶血性,体外细胞毒性实验为无毒。
聚酰亚胺和聚醚酰亚胺聚酰亚胺和聚醚酰亚胺是两种重要的高分子材料,它们在工业和科研领域中有着广泛的应用。
本文将从聚酰亚胺和聚醚酰亚胺的结构、性质、制备方法和应用等方面进行介绍。
一、聚酰亚胺聚酰亚胺是一种高性能的工程塑料,具有优异的耐热性、耐化学腐蚀性、机械强度和电绝缘性等特点。
聚酰亚胺的分子结构中含有酰亚胺基,这种基团的存在使得聚酰亚胺具有较高的热稳定性和化学稳定性。
聚酰亚胺的分子链中还含有芳香环,这种结构使得聚酰亚胺具有较高的机械强度和刚性。
聚酰亚胺的制备方法主要有两种:一种是通过聚合反应制备,另一种是通过缩合反应制备。
聚合反应是指将酰亚胺单体在催化剂的作用下进行聚合反应,得到聚酰亚胺高分子。
缩合反应是指将含有酰亚胺基的二元或多元化合物在高温下进行缩合反应,得到聚酰亚胺高分子。
聚酰亚胺的应用非常广泛,主要用于制备高温、高压、耐腐蚀的机械零件、电子元器件、航空航天器材、化工设备等。
聚酰亚胺还可以用于制备高性能纤维、薄膜、涂料等。
二、聚醚酰亚胺聚醚酰亚胺是一种高分子材料,具有优异的耐热性、耐化学腐蚀性、机械强度和电绝缘性等特点。
聚醚酰亚胺的分子结构中含有醚基和酰亚胺基,这种结构使得聚醚酰亚胺具有较高的热稳定性和化学稳定性。
聚醚酰亚胺的分子链中还含有芳香环,这种结构使得聚醚酰亚胺具有较高的机械强度和刚性。
聚醚酰亚胺的制备方法主要有两种:一种是通过聚合反应制备,另一种是通过缩合反应制备。
聚合反应是指将醚基和酰亚胺单体在催化剂的作用下进行聚合反应,得到聚醚酰亚胺高分子。
缩合反应是指将含有醚基和酰亚胺基的二元或多元化合物在高温下进行缩合反应,得到聚醚酰亚胺高分子。
聚醚酰亚胺的应用也非常广泛,主要用于制备高温、高压、耐腐蚀的机械零件、电子元器件、航空航天器材、化工设备等。
聚醚酰亚胺还可以用于制备高性能纤维、薄膜、涂料等。
聚酰亚胺和聚醚酰亚胺都是高性能的工程塑料,它们具有很多相似的特点,如耐热性、耐化学腐蚀性、机械强度和电绝缘性等。
聚酰亚胺:高分子材料金字塔的顶端聚酰亚胺(PI)是分子结构含有酰亚胺基链节的芳杂环高分子化合物,是目前工程塑料中耐热性最好的品种之一,广泛应用在航空、航天、微电子、纳米、液晶、激光等领域。
近来,各国都在将PI的研究、开发及利用列入21世纪化工新材料的发展重点之一。
聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,都有着巨大的应用前景。
聚酰亚胺被誉为高分子材料金字塔的顶端材料,也被称为'解决问题的能手',甚至有业内人士认为“没有聚酰亚胺就不会有今天的微电子技术。
高分子材料金字塔聚酰亚胺由于性能优异,可应用于多种领域,也可分为多种类型,包括工程塑料、纤维、光敏性聚酰亚胺、泡沫材料、涂料、胶粘剂、薄膜、气凝胶、复合材料等。
聚酰亚胺用途广泛在众多的聚合物中,聚酰亚胺是唯一具有广泛应用领域并且在每一个应用领域都显示出突出性能的聚合物。
下面,小编就带您了解一下聚酰亚胺各个品种的主要用途。
1.工程塑料聚酰亚胺工程塑料可分为既有热固性也有热塑性,可分为聚均苯四甲酰亚胺 (PMMI) 、聚醚酰亚胺 (PEI) 、聚酰胺一酰亚胺 (PAI)等,在不同领域有着各自的用途。
PMMI在1.8MPa的负荷下热变形温度达360℃,电性能优良,可用于特种条件下的精密零件,耐高温自润滑轴承、密封圈、鼓风机叶轮等,还可用于与液氨接触的阀门零件,喷气发动机燃料供应系统零件。
PEI具有优良的机械性能、电绝缘性能、耐辐照性能、耐高温和耐磨性能,熔融流动性好,成型收缩率为0.5%~0.7%,可用注射和挤出成型,后处理较容易,还可用焊接法与其他材料结合,在电子电器、航空、汽车、医疗器械等产业得到广泛应用。
PAI的强度是当前非增强塑料中最高的,拉伸强度为190MPa,弯曲强度为 250MPa,在1.8MPa负荷下热变形温度高达274℃。
PAI具有良好的耐烧蚀性和高温、高频下的电磁性,对金属和其他材料有很好的粘接性能,主要用于齿轮、轴承和复印机分离爪等,还可用于飞行器的烧蚀材料、透磁材料和结构材料。
聚酰亚胺聚合物
聚酰亚胺是一种综合性能最佳的有机高分子材料之一,也是特种工程材料。
它属于聚合物材料,主链上含有酰亚胺环(-CO-NR-CO-)。
根据重复单元的化学结构,聚酰亚胺可以分为脂肪族、半芳香族和芳香族聚酰亚胺三种。
在某些应用中,聚酰亚胺可以取代玻璃、金属甚至钢等材料,并以其非常高的热稳定性(>500°C)而闻名,具有出色的介电性能和固有的低热膨胀系数。
它广泛用于电子、航空航天和汽车领域,满足了对在高温等恶劣条件下表现良好的材料的日益增长的需求。
此外,聚酰亚胺由于其高温稳定性、机械性能和优异的耐化学性而成为一类重要的逐步增长聚合物。
它的机械性能、热性能和电性能等都得到了广泛的应用。
需要注意的是,尽管聚酰亚胺具有许多优良的性能,但它的成本相对较高,并且在加工过程中存在一些困难。
因此,在选择使用聚酰亚胺时,需要根据实际应用场景和需求进行综合考虑。
第一编基础编第1章聚酰亚胺合成法1.前言正象主链含酰胺结构的聚合物被称为聚酰胺那样,主链含亚胺结构的聚合物统称为聚酰亚胺。
1)其中亚胺骨架在主链结构上的聚合物,也就是直链型聚酰亚胺不仅合成困难也无实用性。
相反具有环状结构的聚酰亚胺,特别是五元环状聚酰亚胺已知的品种很多,实用性很强。
因此,一般所说的聚酰亚胺都是指后面这种环状聚酰亚胺。
环状聚酰亚胺与聚苯并咪唑等同是含氮的杂环聚合物的一种。
示1聚酰亚胺进一步还可分为由芳香族四羧酸和二胺为原料通过缩聚反应得到的缩聚型聚酰亚胺和双马酰亚胺经加聚反应(或缩加聚)得到的加聚型聚酰亚胺。
其中前面的缩聚型聚酰亚胺是大家最熟悉也是应用最广的,一般所称的聚酰亚胺都是指这种缩聚型聚酰亚胺。
本书也是以这种缩聚型聚酰亚胺为主。
而后者为加聚型聚酰亚胺实际属耐热性热固型树脂的热固型聚酰亚胺(参考应用编第2章)。
具有代表性的聚酰亚胺就是由美国杜邦公司1960年开发成功,1965年商品化的二苯醚型聚酰亚胺。
也就是大家所熟悉的称为[Kapton]聚酰亚胺,经过40多年后至今仍然在高耐热性塑料中保持领先地位的一种优异的材料。
关于这种聚酰亚胺开发的经过Sroog (Dupont公司)有过详细的介绍。
2)图示2 这种聚酰亚胺由于具有刚直的主链且不溶于有机溶剂,而且还不熔融,所以是用特殊的两步合成法合成制造的。
即是用均苯四甲酸酐PMDA和二苯醚二胺ODA为原料,合成可溶性聚酰胺酸,在这个聚酰胺酸阶段进行成型加工后,通过加热(当然发生化学反应)脱水环化(亚胺化)得到Kapton薄膜等一系列聚酰亚胺制品(反应式1)。
3,4)(1)从这种聚酰亚胺开始,一系列芳香族聚酰亚胺作为高耐热性塑料虽然在广泛产业界起到了重要的作用,但由于大多数芳香族聚酰亚胺都是不溶不熔的,所以都通过(1)式所示的两步法来合成和制备。
由芳香族四甲酸酐和芳香族二胺为原料通过两步法合成聚酰亚胺的一般反应式如(2)式所示。
2)这种通过聚酰胺酸的两步合成法是从60年代开始采用的一种古典且具代表性的合成方法。
这种方法虽然存在聚酰亚胺的前驱体聚酰胺酸在溶液状态的贮存稳定性不好等问题,但其重要性至今仍保持不变。
在本章中作为聚酰亚胺合成方法,首先叙述这种通过聚酰胺酸的两步合成,之后再对不经过聚酰胺酸这种复杂过程的合成方法进行介绍。
也就是把一步法合成聚酰亚胺和经过聚酰胺酸衍生物的合成方法作叙述。
作为参考列出了聚酰亚胺合成的有关文献。
5)~16)2.经由聚酰胺酸的两步合成法2.1聚酰亚胺的形成过程(3)在介绍聚酰胺酸和聚酰亚胺合成、制备之前,先看一下由芳香族(4)四羧酸二酐和芳香族二胺通过两步法合成聚酰亚胺的过程。
聚酰亚胺的形成过程可分成由(3)式到(7)式的五个基本反应。
5)6)7)其中,(3)式的由环状酸酐和胺的开环反应形成酰胺酸和(4)式的由酰胺酸脱水形成环状酰亚胺是主反应。
(5)式到(7)式是经过环状酰亚胺互变异构化的环状异构酰亚胺(环状酰亚胺的异构体)的形成和由它的异构化形成环状酰亚胺的过程。
另外(3)式的酰胺酸的形成反应是一个平衡反应,为便于参考把这个逆反应也考虑在内,则如(8)式所示:8)现在把(3)式的形成酰胺酸的反应再详述一下。
酸酐在羧酸衍生物中反应活性是仅次于酰氯的17),18),环状酸酐1和二胺2在适当的溶剂中,在室温下会很快发生放热反应,得到开环的酰胺酸4(3式)。
这个反应是属于二胺与环状酸酐的开环加成反应,从反应机理来讲是二胺2的氮与酸酐的羧基碳之间的亲核加成,形成环状四面体的中间体3(不稳定),接着是从四面体中间体进行羧酸分子内异构形成酰胺酸结构的开环加成物4,即由亲核加成-异构两步形成的亲核酰基置换反应。
18,19)接着通过(4)式,酰胺酸结构的开环加成物4(环状酰亚胺的前驱体)的酰胺基的氮对分子内的羧酸的羰基碳进行亲核进攻形成环状四面体中间体5,接着从5经脱水反应形成环状酰亚胺6。
这个脱水环化(环状亚胺化)反应也是由亲核加成-异构两步机理的亲核酰基置换反应18,19)。
下面的(5)式,是酰胺酸的羰-醇互变异构。
酰胺酸在一般情况取热力学稳定的酮型4,但有时也会取醇型7(不稳定),如(5)式所示。
这里由(5)式的互变异构酰胺酸的醇形7的羟基的氧,对分子内的羧酸的羰基碳进行亲核攻击后,按(6)式形成环状四面体中间体8(不稳定),接着由8脱水后形成环状异构酰亚胺9。
一般情况下酰亚胺是热力学稳定的生成物,与其相比相当于它的异构体的异构酰亚胺则是动力学的生成物,在热力学上是不稳定的结构。
因此,异构酰亚胺通过加热很容易发生异构化(chapman型分子内旋转)形成热力学稳定的酰亚胺。
实际上环状异构酰亚胺9(不稳定结构)也会因加热按7式很容易异构化为环状酰亚胺6。
前面形成酰胺酸结构的开环加成体4的(3)式反应是个平衡反应,为更准确把逆反应也考虑进去,则如(8)式所示。
这个(8)式中酰胺酸4的羧酸基在分子内是具有亲核-亲电子催化作用的双官能团催化剂的功能20),会由它使环状酸酐1与二胺2生成更容易。
这个反应过程与前面同样,酰胺酸4的酰胺羰基与分子内的羧酸羟基的氧通过亲核加成(经过环状四面体10),此后形成环状酸酐和二胺2的脱离。
也就是说,(3)式正反应四面体中间体3与逆反应(8)式的四面体10实质上是同一种物质。
从上面可看到,与环状酸酐及其衍生物的相关反应,?全都是环状酸酐的羰基碳是反应点,因此通过这个羰基碳的亲核取代反应,都是由亲核加成-脱离两步构成的亲核酰基取代反应18),19)。
这个反应过程是以后叙述的所有环状酸酐衍生物的相关反应有共同之处。
2.2聚酰胺酸的形成一般的聚酰亚胺如前面的(2)式所示,由芳香族四酸二酐和芳香族二胺通过两步合成法很容易合成制备。
首先第一步把芳香族二胺溶解在二甲基乙酰胺DMAc或者N-甲基吡咯烷酮NMP这种极性酰胺类溶剂中。
然后再把芳香族四酸二酐以固体状态(粉末)加入,在室温下进行搅拌,固体四酸二酐溶解的同时,与二胺发生放热的开环加成反应,可以看到聚合溶液粘度急速增加,并在较短的时间内形成高分子量的聚酰胺酸。
而第二步由聚酰胺酸脱水环化(环化亚胺化)反应生成聚酰亚胺,只要加热聚酰胺酸就很容易完成4,21,22)。
因此,只要手头有了芳香族四酸二酐和芳香族二胺,不论谁在任何时候,就能简便地合成聚酰胺酸或聚酰亚胺,这是两步合成法的最大特点。
不过(2)式的开环加成反应是个平衡反应((3)式)。
例如(1)式的均苯四甲酸二酐PMDA与二苯醚二胺ODA反应的情况,在40℃的DMAc溶液这种极性酰胺类溶剂中,其平衡常数K为105L/mol以上,非常大,在(3)式所示的反应体系中与反应物(左侧)相比之下,很大程度上偏向生成物(右侧),这使平衡聚合度P达到300以上(P大约等于K的平方根),分子量大约在10万左右,表明很容易形成高分子量的聚酰胺酸23)。
聚酰胺酸生成的难易取决于芳香族四酸二酐和芳香族二胺的反应活性。
这两类成分的反应活性从反应论角度可从(3)式进行预测。
芳香族四酸二酐的反应活性(亲电子性),从(3)式看酸酐1的羧基碳的电子密度愈低活性愈高。
即芳香环上带有吸电子取代基芳香族四酸二酐反应活性就高,具有给电子取代基的反应活性就低。
具体是均苯四甲酸酐>砜二酞酸酐>酮二酞酸酐>六氟异丙叉二酞酸酐>联苯四羧酸二酐>二苯醚二酸酐,按顺序反应性降低。
(这些化学式参照实用材料篇第一章。
)另一方面芳香族二胺的反应活性(亲核性)是(3)式的胺2的氮电子密度愈高反应活性愈高。
即芳香环上带给电子的取代基胺反应活性高,相反有吸电子取代基则反应活性低。
比较具有连结基X的芳香族二胺H2N-(P-C6H4)-X-(P-C6H4)-NH2的反应活性时,是按X为-O->-CH2->->-(C=O)->-SO2-的顺序反应活性降低。
不过在实际合成聚酰胺酸的时候,与芳香族四酸二酐相比是芳香族二胺的种类不同对酰胺酸生成的难易影响更大。
关于聚酰胺酸的合成方法,向芳香族二胺溶液中直接加入芳香族四酸二酐固体(粉末)进行开环加成反应的做法,不仅实验采用,生产现场也广泛采用。
实际上,对这个反应混合物溶液进行搅拌时,固体芳香族四酸二酐并不是一下全溶,而是在固体酸酐表面溶解的同时就与接触它的芳香族二胺之间进行反应,这一现象可以观察到。
既可看到在固体四酸二酐的附近,溶解下来的芳香族四酸二酐与芳香族二胺呈当场浓缩状态,呈现红黄色(形成电荷转移络合物)并随反应的进行,这种颜色变淡,同时反应体系溶液粘度增大4,21)。
这是所有四酸二酐溶解消耗了,从反应体系整体看两反应成份在化学当量上达到均衡反应已经完成以前的情况,也就是两种反应物当场立即反应生成部分高分子量的聚酰胺酸。
不过严格来讲溶液粘度与重均分子量M W 相对应,而对数均分子量M n并不敏感,因此,当场是聚酰胺酸的重均分子量急激增大24)。
当然就局部而论,两种反应物的化学当量失调的地方也存在,这时就会生成低分子量(重均分子量小)的聚酰胺酸,这样一来生成了分子量分布宽的聚酰胺酸(M W/M n>2),这个反应体系不是均一的溶液反应,与开环加成反应速度相比,反而是固体芳香族四酸二酐的溶解速度要慢。
它具有固体溶解扩散速度起决定作用的固-液界面非均一反应的特征25)。
这样一来刚反应生成的聚酰胺酸溶液的粘度会随时间的延长而下降,这一点很早大家都承认21),22),26),关于这一现象(聚酰胺酸的不稳定性)将在下面的2.3项讨论。
生成高分子量的聚酰胺酸的关键是反应所用的芳香族四酸二酐和芳香族二胺必须保证高纯度,聚合溶剂也要高纯度,同时不仅反应容器就是装两种反应物和溶剂的容器都要完全干燥(无水状态)且无氧氛围(芳香族二胺很易氧化)。
芳香族四酸二酐和芳香族二胺的精制(高纯化)与其用重结晶方法,不如用升华方法更有效。
关于聚合溶剂,例如DMAc或NMP这类极性酰胺溶剂可用加入P2O5后真空蒸馏来得到无水溶剂,同时也可除去溶剂中存在的胺等不纯物。
之所以要非常重视反应体系中的水分,是因为反应体中具有高反应性的芳香族四酸二酐会与水发生分解反应生成如(9)式所示的邻苯二甲酸,由于它的反应活性低,在室温附近不能与芳香族二胺反应,将使部分芳香族四酸二酐失去反应活性,从而丧失了形成高分子量聚酰胺酸的必要条件,即不能保持芳香族四酸二酐和芳香族二胺1:1的化学当量。
9)这里再考虑一下芳香族四酸二酐和芳香族二胺加料的顺序和形成的聚酰胺酸的分子量的关系。
为了得到高分子量的聚酰胺酸,很早就采用向芳香族二胺溶液中直接加入固体(粉末)芳香族四酸二酐进行反应4),21),22)。
这种情况下如果假定反应体系中存在微量水分时,芳香族四酸二酐就不仅会和二胺反应也有与水反应的可能性,但由于二胺的亲核反应活性远大于水,则它将优先与二胺反应仍能得到高分子量的聚酰胺酸。