不确定度与数据处理doc资料
- 格式:ppt
- 大小:2.11 MB
- 文档页数:45
物理实验技术的数据处理与不确定度分析在物理实验中,数据处理和不确定度分析是非常重要的环节。
通过对实验数据的处理和分析,科学家和研究人员可以得出准确的结论,并对实验结果的可靠性进行评估。
本文将探讨物理实验技术中的数据处理和不确定度分析方法,希望能为读者提供一些思路和技巧。
一、数据处理的基本原则数据处理是物理实验中必不可少的一步,其目的是从实验测量中获得有用的信息。
在进行数据处理时,有一些基本原则需要遵循:1.合理选择数据处理方法。
不同的实验会涉及到不同的数据处理方法,需要根据实验的性质选择合适的方法。
常见的数据处理方法有平均值、标准差、拟合曲线等。
2.检查数据的准确性和一致性。
在进行数据处理之前,需要对实验数据进行检查,确保数据的准确性和一致性。
如果发现数据存在问题,应该找出原因并进行修正。
3.选择合适的数学模型。
在进行拟合曲线处理时,需要选择合适的数学模型,并根据实验数据找到最佳拟合参数。
选择合适的数学模型可以提高数据处理的准确性。
4.评估数据处理结果的可靠性。
在进行数据处理之后,需要评估数据处理结果的可靠性。
通常可以使用标准差、残差分析等方法来评估处理结果的可靠性。
二、不确定度的定义与计算方法不确定度是对物理量测量结果不确定性的度量。
在进行不确定度分析时,有一些基本概念和计算方法需要了解:1.随机误差与系统误差。
随机误差是由于测量仪器、测量方法等造成的,通常呈现随机分布。
系统误差是由于实验条件、测量方法等原因引起的误差,通常具有一定的规律性。
2.不确定度的定义与表示。
不确定度是对测量结果的估计,通常用标准偏差或标准误差表示。
标准偏差表示测量结果的离散程度,而标准误差表示测量结果与真值之间的差异。
3.不确定度的计算方法。
不确定度的计算需要考虑到随机误差和系统误差。
常见的计算方法有多次测量法、标准差传递法、最小二乘法等。
4.不确定度的合成方法。
在实验中,常常会有多种误差来源。
对于多个误差来源,可以使用不确定度合成方法来计算总的不确定度。
测量的不确定度与数据处理1.1测量、测量误差与误差处理1.测量与测量误差1)直接测量与间接测量直接测量:是用能直接读出被测值的仪器进行测量的方法。
间接测量:是先用直接测量的方法测出几个物理量,然后代入公式计算得到所需物理量。
2)等精度测量和不等精度测量等精度测量:对某一物理量进行多次测量时,如果测量条件保持不变(同一的测量者、仪器、方法及相同的外部环境),这样进行的重复测量称为等精度测量。
不等精度测量:如果测量条件中,一个或几个发生了变化,这时所进行的测量称为不等精度测量。
3)测量误差真值:在一定条件下,任何待测物理量都是客观存在的,不依人的意志为转移的确定值。
测量误差:测量结果与真值之间的差值。
它反映了测量结果的准确程度,可用绝对误差表示,也可用相对误差表示:绝对误差=测量结果-被测量的真值()00100⨯=被测量真值绝对误差相对误差E2.误差分类 1)系统误差系统误差总是使测量结果向一个方向偏离,其数值是一定的或以可预知的方式变化的。
它来源于仪器本身的缺陷,或来源于理论公式和测量方法的近似性。
消除和纠正系统误差的方法是对仪器进行校正,修正实验方法,或在计算公式中引入修正项。
2)随机误差由于随机的或不确定的因素所引起的每一次测量值无规律的涨落而造成的误差。
它服从一定的统计分布规律,常见的一般性测量中,基本上属于正态分布,因此可用统计的方法处理随机误差。
3.随机误差的处理方法 1) 随机误差的正态分布 2)残差、偏差和误差残差为单次测量值x i 与有限次测量平均值x 之差。
即x x x i -=∆ (i=1,2, …,n)偏差为单次测量值x i 与总体平均值μ之差。
注意,偏差即为随机误差,系统误差为0时,偏差才是误差。
误差为单次测量值x i 与被测量真值x 0之差。
3)σ,S ,x S(1)总体标准偏差σ()nx i ni n 21limμμ-∑==∞→(2)有限次测量时的单次测量值标准差S()121--∑==n x x S i ni(3)x 的标准偏差x S ()()121--∑===n n xx nS S i ni x1.2 测量的不确定度 1. 不确定度1)不确定度是指由于测量误差的存在而对测量值不能肯定的程度,是表征被测量的真值所处的量值范围的评定。
不确定度与数据处理一、 误差与不确定度1.误差与不确定度的关系(1)误差:测量结果与客观真值之差 ∆x =x -A其中A 称为真值,一般不可能准确知道,常用约定真值代替:⎪⎩⎪⎨⎧理论公式计算结果—理论值更高精度仪器测量结果—标准值如物理常数等—公认值对一个测量过程,真值A 的最佳估计值是平均值x 。
在上述误差公式中,由于A 不可知,显然∆x 也不可知,对误差的最佳估计值是不确定度u (x )。
(2)不确定度:对误差情况的定量估计,反映对被测量值不能肯定的程度。
通常所说“误差”一般均为“不确定度”含义。
不确定度分为A 、B 两个分量,其中A 类分量是可用统计方法估计的分量,它的主要成分是随机误差。
2.随机误差: 多数随机误差服从正态分布。
定量描述随机误差的物理量叫标准差。
(1)标准差与标准偏差标准差 kA x i k ∑-=∞→2)(l i mσ∵真值A 不可知,且测量次数k 为有限次 ∴ σ 实际上也不可知,于是:用标准偏差S 代替标准差σ : 1)()(2--=∑k x x x S i ——单次测量的标准偏差结果表述: x i ± S (x ) (置信概率~68.3%)真值的估计值 单次测量标准差最佳估计值S (x )的物理意义:在有限次测量中,每个测量值平均所具有的标准偏差。
(并不是只做一次测量)通常不严格区分标准差与标准偏差,统称为标准差。
(2)平均值的标准差真值的最佳估计值是平均值,故结果应表述为: x ± S (x ) (置信概率~68.3%)真值的最佳估计值其中 )1()()(2--=∑k k x x x S i ——平均值的标准偏差例1:某观察量的n 次独立测量的结果是X 1, X 2, , X n 。
试用方差合成公式证明平均值的标准偏差是样本标准偏差的n1,即nX S X S )()(=。
解: nX X i∑=由题知X i 相互独立,则根据方差合成公式有 nX u X u X u n )()()(212++=利用样本标准偏差的定义,可知 u (X i )=S (X ) i =1,2, ,n 故 nX S nX nS nX S X S X S X u )()()()()()(222==++==3.系统误差与仪器误差(限)(1)系统误差:在同一被测量的多次测量过程中,保持恒定或以可以预知方式变化的那一部分误差称为系统误差。
测量管理体系内审员培训技术基础教程一、数据处理二、统计技术与测量误差三、测量不确定度评定与表示第一部分 数据处理一、 数据判别与剔除粗大误差——明显超出规定条件下预期的误差(也称疏失误差)。
(一)粗大误差产生的原因因检测人员主观因素,造成的读错、记错、写错、算错等产生的误差即为粗大误差。
含有粗大误差的测量结果视为离群值,应予剔除。
(二)消除粗大误差的方法物理判别法——用直观分析方法确认粗大误差的判别方法。
统计判别法——采用统计分析方法进行判别的方法。
(三)判别粗大误差的原则判别消除粗大误差的方法有许多,仅介绍莱依达准则和最常用的格拉布斯准则。
1.莱依达准则——即3s 准则:该准则认为,残差的绝对值超过测量列实验标准偏差3倍(即3s )者,即概率很小,属异常,是不可能事件。
该方法在10≤n 时,很难剔除坏值。
2.格拉布斯准则在重复条件下,对某被测量x 进行n 次重复测量,测得值分别为:n x x x Λ,,21,计算其残差和实验标准偏差,得:x x i i -=ν 则:统计量为:s G i n /max ,ν=若),(n g G n α≥,则认为i ν所对应的i x 为离群值,应剔除。
(),(n g α查格拉布斯检验法临界值表得到。
二、数据修约(一)概念1.正确数——不带测量误差的数均为正确数。
2.近似数——接近但不等于某一数的数,称为该数的近似数。
3.有效数字——若测量接归经修约后的数值,其修约误差绝对值≤0.5(末位),则该数值称为有效数字。
即从左起第一个非零的数字到最末一位数字止的所有数字都是有效数字。
4.有效位数——从左起第一个非零的数字算起所有有效数字的个数,即为有效数字的位数,简称有效位数。
5.修约间隔——即是拟修约数在确定实施修约的那一位上的最小单位值(或用其数字)。
根据数字特征,修约间隔分1间隔、2间隔和5间隔三种,若用k表示,则某位上的最小单位值为:n表示正、负整数。
k n,10(二)数字修约规则1.按函授教材上给出的方法(略)2.按以下方法(不分修约间隔是几):——确定修约后的有效位数和最末位的最小单位数值(即为几间隔的);——按确定的修约间隔写出上下相临的两个可能修约数,两个可能修约数中与拟修约数最接近的数即为修约数;——当两个可能修约数中与拟修约数同样接近时,则两个可能修约数中是修约间隔偶数倍的数即为修约数。
【word】对牛顿环实验的数据处理及不确定度评定对牛顿环实验的数据处理及不确定度评定第33卷第2期延边大学(自然科学版)2007年6月JournalofYanbianUniversity(NaturalScience)Vo1.33No.2June2007文章编号:1004—4353(2007)02—0105—04对牛顿环实验的数据处理及不确定度评定金逢锡,索建彪(延边大学理学院物理系,吉林延吉133002)摘要:介绍了在牛顿环实验的数据处理过程中,对等精度和不等精度的测量进行不确定度的计算方法.通过等精度测量的数据处理及不确定度的评定后,加权取平均法即可以解决非线性的不等精度的数据处理问题及进行不确定度的评定.关键词:等精度;不确定度;牛顿环;不等精度;干涉条纹中图分类号:04—33文献标识码:A牛顿环实验测量球面曲率半径是普通物理实验中最常见的实验之一.在实验中,人们讨论了多种数据处理的方法,如逐差法,最小二乘法,等精度测量的数据处理法,加权取平均法等等.除此之外,通过等精度测量的数据处理及不确定度的评定后加权取平均法亦是一种切实可行的数据处理方法.以下我们用此方法讨论牛顿环实验的数据处理及不确定度的评定.1实验原理牛顿环装置是由一块曲率半径较大的平凸玻璃透镜,以其凸面放在一块光学玻璃平板(平晶)上构成的,如图1所示.平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单色光垂直照射到牛顿环上,则经空气层上,下表面反射的两光束存在光程差,它们在平凸透镜的凸面相遇后,将发生干涉.从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环(如图2所示),称为牛顿环llj.牛顿环第级暗环的半}\}llilj尺tl\\\<,r///,….1一d‘…_f图1牛顿环装置图2牛顿环径为厂2=R,可知,如果单色光源的波长已知,测出第级的暗环半径厂,即可得出平凸透镜的曲率半径R;反之,如果R已知,测出r后,就可计算出入射单色光波的波长.但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触,接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑,或者空气间隙层中有了尘埃,附加了光程差,干涉环中心为一亮(或暗)斑,这些均无法确定环的几何中心.实际收稿日期:2006—10—17作者简介:金逢锡(1963一),男(朝鲜族),吉林延吉人,副教授,研究方向为光信息106延边大学(自然科学版)第33卷测量时,我们可以通过测量距中心较远的两个暗环的半径r和的平方差来计算曲率半径R.因为r2=mR2,r2=nR2,两式相减可得r一r2=R(m一),所以R=或R=.由上式可知,只要测出.与.(分别为第与第条暗环的直径)的值,就能算出R或.2等精度的测量及数据处理测量干涉条纹的暗环直径采取等精度的测量,即测第k环和k+m环的直径,要求k取16,17,18,19,20,m取1O.在测这1O个环的直径时,至少要重复测量5次以上,测量数据见表1.所测数据分别代入公式:,:1,2,3,4,5,可分别算出5组等精度测量的透镜的平均曲率半径,计算结果见表2.表1各牛顿环直径的原始测量数据mm次数m+k左右D+k左右DkD…一D2130.29.10021.0178.0832028.40021.7086.69220.52223029.10121.0128.0892028.40321.7116.69220.64933029.10221.0158.0872028.40221.7126.69020.64343029.10221.0148.0892028.40221.7156.68720.71653029.10321.0198.0812028.40121.7136.68820.57312929.03821.0757.9631928.31721.7886.52920.78222929.03721.0807.9571928.31821.7916.52720.71232929.04021.0777.9631928.31321.7896.52420.84742929.04221.0817.9611928.32121.7856.53620.65852929.03921.0827.9571928.32021.7926.52820.69912828.97221.1407.8321828.23821.8646.37420.71222828.97921.1377.8421828.24221.8696.37320.88232828.97821.1467.8321828.23921.8736.36620.814.42828.97921.1527.8271828.24121.8716.37020.68552828.97021.1477.8291828.24021.8736.36720.75512728.90821.2127.6961728.15321.9506.20320.75122728.90921.2157.6941728.15121.9596.19220.85732728.91021.2177.6921728.16121.9566.20320.69042728.97221.2187.6951728.16221.9596.20220.74852728.90621.2197.6871728.15921.9616.20120.63812628.84121.2787.5631628.06122.0396.02220.93422628.83721.2797.5581628.06922.0426.02720.79932628.84221.2807.5621628.07222.0436.02920.83542628.84521.2857.5601628.07322.0496.02420.86552628.83921.2847.5551628.07222.0466.02620.7653等精度测量的不确定度的评定3.1标准A类不确定度的评定第2期金逢锡,等:对牛顿环实验的数据处理及不确定度评定107根据被测量的平均值的标准偏差,可得所测每一干涉暗环的A类标准不确定度的评定:S(D)=或S(D+)=A(D)=t0.683S(D)或A(D+)=t0.683S(D+).t0.683为与测量的次数有关的比例系数[](当7z=5时,t0.683=1.114),计算结果见表3.3.2标准B类不确定度的评定一般情况下,物理实验中的B类不确定度采用均匀分布,即B=?/?3,?为移测显微镜的极限误差,由此可得本实验所测的每一环直径的B类不确定度:B(D16):B(D17):…:B(D3.):会::0.00289mm.’?jj3.3合成标准不确定度根据所估算出的A类和B类标准的不确定度,可合成所测每一干涉条纹直径的标准不确定度:c(D):?(D)+(D)或c(D+)=?(D+)+?(D+),计算结果见表3.由于各干涉条纹直径是相互独立的,所以可分别得到各组平均曲率半径的不确定度c(R1)=R1『2D16,,].『2D26,r,,].『尘1:In,一n,Ckg16I十In,一n,”c\L126I【.J(R2/I2D,7]2+[D27)]+其中DD+卅,D+一D;均采用平均值.此时所测5组透镜的平均曲率半径可分别表示为1?ttC(1),…,一R5?ttC(5),P=0.683,它们分别为等精度测量的结果,数据记录见表2所示.表2各个环的半径及不确定度的计算结果mm表3各个环的直径及不确定度的计算结果mm108延边大学(自然科学版)第33卷4,非等精度测量的数据处理及不确定度的评定从牛顿环实验的干涉条纹第k级暗环半径公式=?kRA可知,除零级暗环外,各环的直径D的关系为D】:D2:D3_..?=1:?2:?3_..?.随着干涉条纹级数k的增大,干涉条纹变密,因此该测量是非线性的不等精度测量,直接用逐差法处理数据解决不了不等精度测量问题,也就不能进行不确定度的评定l2J.若通过等精度测量的数据处理及不确定度的评定后加权取平均法,即可以解决非线性的不等精度测量数据处理及进行不确定度的评定.由于R1,R2,R3,R4,R5为非等精度测量的结果,假设其权分别为P1,P2,P3,P4,P5且一R与P成反比[,则有P=,其中i=1,2,…,5,N为比例常数,所测透镜的平均曲U-cL55厂了———?_率半径__P?i=1880?086mm,不确定度)_1/?志316mm,测量结果为R?Uc(R)=880.086?1.316mm(P=0.683),若用Uc表示扩展不确定度,则Uc=kuc(R)=2.632mm(k=2时,P=0.95)l5J.5结束语采用此方法处理数据及进行不确定度的评定,解决了非线性的不等精度测量问题,所以它更具合理性和适用性,它既可适用于牛顿环测量透镜的曲率半径的实验,也可适用于牛顿环测液体折射率的实验,但目前用此方法处理数据的缺点是测量数据多且计算比较繁琐.如果能利用计算软件,将实验数据处理得到简化,那么就会节省整个实验时间,提高工作效率.参考文献:[1]任隆良,谷晋骐.物理实验[M].天津:天津大学出版社,2003:3-6.[2]虞仲博,屠全良.牛顿环实验等精度测量及其不确定度的评定与表示[J].物理实验,2000,20(5):17.19[3]刘才明大学物理实验中测量不确定度的评定与表示[J].大学物理,1997,16(8):21.23.[4]杨述武.普通物理实验(电磁学部分)[M].北京:高等教育出版社,2000:2.5.[5]刘智敏.不确定度与分布合成[J].物理实验,1999,19(5):58.6O.DataProcessingandEvaluationofUncertaintyDegreeintheExperimen tofNewton’SRingsJINFeng—xi,SUOJian—biao(DepartmentofPhysics,CollegeofScience,YanbianUniversity,YanjiJilin13 3002,China)Abstract:Computingmethodofuncertaintydegreeforthedataofequalprecisio nmeasurementintheexperi—mentofNewton’Sringsisintroduced.Andthe problemofunequalprecisiondata anduncertaintydegreeevaluationissolvedbythemethodthroughweightedmean.Keywords:equalprecision;degreeofuncertainty;Newton’Srings;unequalpr ecision;interferencefringe。
测量误差、不确定度与数据处理第2章测量误差、不确定度和数据处理2.1 测量误差与不确定度2.1.1 测量在科学实验中,⼀切物理量都是通过测量得到的。
所谓测量就是将待测物理量与规定作为标准单位的同类物理量(或称为标准量)通过⼀定⽅法进⾏⽐较。
测量中的⽐较倍数即为待测物理量的测量值。
测量可分为两类,⼀类是⽤已知的标准单位与待测量直接进⾏⽐较,或者从已⽤标准量校准的仪器仪表上直接读出测量值(例如,⽤⽶尺量得物体的长度为0.7300m ,⽤停表测得单摆周期为1.05s ,⽤毫安表读出电流值为12.0mA 等),这类测量称直接测量(或简单测量);另⼀类测量,它不能直接把待测量的⼤⼩测出来,⽽是依据该待测量和⼀个或⼏个直接测得量的函数关系求出该待测量(例如,测量铜(圆柱体)的密度时,我们⾸先⽤游标卡尺或千分尺测出它的⾼h 和直径d ,⽤天平称出它的质量M ,然后再通过函数关系式h d M 2/4πρ=计算出铜的密度ρ),我们把这类测量称为间接测量(或称复合测量)。
⼀般说,⼤多数测量都是间接测量、但随着科学技术的发展,很多原来只能以间接测量⽅式来获得的物理量,现在也可以直接测量了。
例如电功率的测量,现在可⽤功率表直接测量,⼜如速度也可⽤速率表来直接测量等。
测得的数据(即测量值)不同于数学中的⼀个数值,数据是由数值和单位两部分组成的。
⼀个数值有了单位,便具有了⼀种特定的物理意义,这时,它才可以称为⼀个物理量。
因此,在实验中经测量所得的值(数据)应包括数值和单位,即以上⼆者缺⼀不可。
2.1.2 误差任何物质都有⾃⾝的特性,反映这些特性的物理量所具有的客观真实数值称为这些物理量的真值。
测量的⽬的就是要⼒求得到真值。
但测量总是依据⼀定的理论和⽅法,使⽤⼀定的仪器,在⼀定的环境中,由⼀定的⼈进⾏的。
在实验测量过程中,由于受到测量仪器、测量⽅法、测量条件和测量⼈员的⽔平以及种种因素的限制,使测量结果与客观存在的真值不可能完全相同,导致所测得的只能是该物理量的近似值。