全国各省市中考数学试题2017年各地初中学业水平考试数学试卷5套精校Word版含答案
- 格式:doc
- 大小:5.66 MB
- 文档页数:85
XX★ 启用前2017 年中考题数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2( 1) 的结果是()1B、2C、1D、 22、若∠α的余角是30°,则 cosα的值是()A 、213C、2D、3A 、B 、23223、下列运算正确的是()A 、2a a 1 B、a a2a2C、a a a2 D 、( a)2a24、下列图形是轴对称图形,又是中心对称图形的有()A、4 个B、3 个5、如图,在平行四边形∠1=()C、2 个D、1 个ABCD 中,∠ B=80 °, AE平分∠BAD交 BC于点E, CF∥ AE交 AE于点F,则A、 40°B、 50°C、 60°D、80°6、已知二次函数y ax2的图象开口向上,则直线y ax 1 经过的象限是()A 、第一、二、三象限 B、第二、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是(C、第一、二、四象限)D、第一、三、四象限A B C D8、如图,是我市 5 月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A 、 28℃, 29℃B 、 28℃, 29.5℃C、 28℃, 30℃D 、 29℃, 29℃9、已知拋物线 y1 x2 2,当 1 x 5 时, y 的最大值是()2 35 7 A 、 2C 、B 、3D 、3 310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为 1)的一块碎片到玻璃店,配制成形状、 大小与原来一致的镜面, 则这个镜面的半径是 ( )A 、 2B 、 5C 、22D 、311、如图,是反比例函数yk 1x和 yk 2 x( k 1k 2 )在第一象限的图象,直线AB ∥ x轴,并分别交两条曲线于A 、B 两点,若S AOB2 ,则k 2k 1 的值是()A 、 1B 、 2C 、 4D 、 812、一个容器装有1 升水,按照如下要求把水倒出:第1 次倒出1升水,第2 次倒出的水量是1升的1 ,223第 3 次倒出的水量是1 升的314,第4 次倒出的水量是14升的1 ,⋯按照这种倒水的方法,倒了5 10 次后容器内剩余的水量是()A 、10 升11B 、1 升9C 、110升D 、111升二、填空题(本大题共6 小题,每小题3 分,共 18 分 .把答案填在答题卡中的横线上)13、 2011的相反数是 __________14、近似数 0.618 有__________个有效数字.15、分解因式:a 3= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为 __________C 'D 17、如图,等边△ ABC 绕点 B 逆时针旋转30°时,点 C 转到 C ′的位置, 且 BC ′与 AC 交于点 D ,则CD的值为 __________16 题图17 题图18 题图18、如图, AB 是半圆 O 的直径,以 0A 为直径的半圆O ′与弦 AC 交于点 D ,O ′ E ∥ AC ,并交 OC 于点E .则下列四个结论:①点 D 为 AC 的中点;② S O 'OE1S AOC ;③ AC 2AD;④四边形 O'DEO 是菱形.其中正确的结2论是 __________.(把所有正确的结论的序号都填上)三、解答题(本大题共 8 小题,满分共 66 分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤) .19、计算: (1) 1(5) 034 .220、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为 60°,已知风筝线 BC 的长为 10 米,小强的身高 AB 为 1.55 米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到 1 米,参考数据2 ≈ 1.41 , 3≈ 1.73 )21、如图, △ OAB 的底边经过⊙ O 上的点 C ,且 OA=OB ,CA=CB ,⊙O 与 OA 、OB 分别交于 D 、E 两点.( 1)求证: AB 是⊙ O 的切线;( 2)若 D 为 OA 的中点,阴影部分的面积为33,求⊙ O 的半径 r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子 3 个(分别用白 A 、白 B 、白 C 表示),若从中任意摸出一个棋子,是白色棋子的概率为3 .4( 1)求纸盒中黑色棋子的个数;( 2)第一次任意摸出一个棋子(不放回) ,第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了 2000 元,第二批用了 5500 元,第二批购进水果的重量是第一批的 2.5 倍,且进价比第一批每千克多 1 元.( 1)求两批水果共购进了多少千克?( 2)在这两批水果总重量正常损耗 10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于 26%,那么售价至少定为每千克多少元?利润(利润率 =100%)进价AG为边作一个正方形AEFG ,24、如图,点G 是正方形ABCD 对角线 CA 的延长线上任意一点,以线段线段 EB 和 GD 相交于点 H.( 1)求证: EB=GD ;( 2)判断 EB 与 GD 的位置关系,并说明理由;( 3)若AB=2 , AG=2,求EB的长.25、已知抛物线y ax22ax 3a ( a 0) 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点 D 为抛物线的顶点.(1)求 A 、 B 的坐标;(2)过点 D 作 DH 丄 y 轴于点 H,若 DH=HC ,求 a 的值和直线 CD 的解析式;(3)在第( 2)小题的条件下,直线 CD 与 x 轴交于点 E,过线段 OB 的中点 N 作 NF 丄 x 轴,并交直线CD 于点 F,则直线 NF 上是否存在点 M ,使得点 M 到直线 CD 的距离等于点 M 到原点 O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.中考数学试题答案一、选择题题号123456789101112答案B A C C B D B A C B C D二、填空题13. 201114. 315.a(3 a)(3 a)°17.2318.①③④16. 144三、解答题19. 解:原式 =2-1-3+2 ,=0 .故答案为: 0 .20.解:∵一元二次方程 x2-4x+1=0 的两个实数根是 x1、 x2,∴ x1 +x 2=4 , x1?x2=1 ,∴( x1+x 2)2÷()=4 2÷2=4 ÷421.解:在 Rt △ CEB 中,sin60 °=,∴CE=BC?sin60°=10×≈8.65m,∴CD=CE+ED=8.65+1.55=10.≈210m,答:风筝离地面的高度为 10m .22.( 1)证明:连 OC ,如图,∵ OA=OB , CA=CB ,∴OC ⊥AB,∴AB 是⊙ O 的切线;(2)解:∵ D 为 OA 的中点, OD=OC=r ,∴ OA=2OC=2r ,∴∠ A=30°,∠ AOC=60°, AC=r,∴∠ AOB=120°, AB=2r,∴ S 阴影部分 =S △OAB -S 扇形ODE = ?OC?AB-=-,∴?r?2r- r2=-,∴ r=1 ,即⊙ O 的半径 r 为 1 .23. 解:( 1) 3÷-3=1 .答:黑色棋子有 1 个;( 2)共12 种情况,有 6 种情况两次摸到相同颜色棋子,所以概率为.24. 解:( 1)设第一批购进水果x 千克,则第二批购进水果 2.5 千克,依据题意得:,解得 x=200 ,经检验 x=200 是原方程的解,∴x+2.5x=700 ,答:这两批水果功够进 700 千克;( 2)设售价为每千克 a 元,则:,630a≥ 7500× 1.26,∴,∴a≥15,答:售价至少为每千克 15 元.25.( 1 )证明:在△ GAD 和△ EAB 中,∠ GAD=90° +∠ EAD ,∠ EAB=90° +∠ EAD ,∴∠ GAD= ∠ EAB ,又∵ AG=AE , AB=AD ,∴△ GAD ≌△ EAB ,∴EB=GD ;( 2) EB ⊥ GD ,理由如下:连接BD ,由( 1 )得:∠ ADG= ∠ ABE ,则在△ BDH 中,∠DHB=180° - (∠ HDB+ ∠ HBD )=180°-90 °=90°,∴EB⊥GD ;( 3)设BD与AC交于点O,∵ AB=AD=2在 Rt △ABD中, DB=,∴ EB=GD=.26. 解:( 1)由y=0得, ax 2-2ax-3a=0,∵ a≠0,∴ x2 -2x-3=0,解得1=-1,x2=3,∴点 A 的坐标( -1, 0),点 B 的坐标( 3,0);(2)由 y=ax 2 -2ax-3a ,令 x=0 ,得 y=-3a ,∴ C ( 0, -3a ),又∵ y=ax 2 -2ax-3a=a ( x-1 )2-4a ,得 D (1 , -4a ),∴ DH=1 , CH=-4a- ( -3a ) =-a ,∴ -a=1 ,∴ a=-1 ,∴C(0, 3),D(1,4),设直线 CD 的解析式为y=kx+b ,把 C、 D 两点的坐标代入得,,解得,∴直线 CD 的解析式为y=x+3 ;( 3)存在.由( 2)得, E(-3,0),N(-,0)∴F(,),EN= ,作 MQ⊥CD 于 Q,设存在满足条件的点M(,m),则FM=-m ,EF==,MQ=OM=由题意得: Rt △ FQM ∽ Rt △ FNE ,∴=,整理得 4m 2+36m-63=0 ,∴m2+9m=,m 2+9m+=+(m+ )2=m+ =±∴ m1=,m2=-,∴点 M 的坐标为M1(,),M2(,-).”可见,一个人的心胸和眼光,决定了他志向的短浅或高远;一个清代“红顶商人”胡雪岩说:“做生意顶要紧的是眼光,看得到一省,就能做一省的生意;看得到天下,就能做天下的生意;看得到外国,就能做外国的生意。
2017年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。
用2B 铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 5的相反数是( ) A. B.5 C.- D.-52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。
2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×B.0.4×C.4×D.4× 3.已知,则的补角为( )A. B. C. D. 4.如果2是方程的一个根,则常数k 的值为( )A.1B.2C.-1D.-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A.95B.90C.85D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆 7.如题7图,在同一平面直角坐标系中,直线与双曲线 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( ) A.(-1,-2) B.(-2,-1) C.(-1,-1) D.(-2,-2)15159101010910101070A ∠=︒A ∠110︒70︒30︒20︒230x x k -+=11(0)y k x k =≠22(0)k y k x=≠题7图8.下列运算正确的是( )A. B. C. D.9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①;②;③; ④,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是,那么n= . 13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知,则整式的值为 .16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .223a a a +=325·a a a =426()a a =424a a a +=ABF ADF S S =△△4CDF CBF S S =△△2ADF CEF S S =△△2ADF CDF S S =△△720︒ab ÷431a b ÷=863a b ÷-三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:.18.先化简,再求值,其中x =√5 .19.学校团委组织志愿者到图书馆整理一批新进的图书。
重庆市2017年初中毕业生学业水平暨普通高中招生考试数学试题(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答。
2.作答前认真阅读答题卡上的注意事项。
3。
考试结束,由监考人员将试题和答题卡一并收回。
参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为24()24b ac b a a --,,对称轴为2b x a =-。
一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.在实数-3,2,0,-4,最大的数是( B )A 。
-3B .2C 。
0D .-42.下列图形中是轴对称图形的是( C )A B C D3。
计算26x x ÷正确的结果是( C ) A 。
3 B .3x C .4x D 。
8x4.下列调查中,最适合采用全面调查(普查)方式的是( D )A 。
对重庆市初中学生每天阅读时间的调查B 。
对端午节期间市场上粽子质量情况的调查C 。
对某批次手机的防水功能的调查D .对某校九年级3班学生肺活量情况的调查5。
估计110+的值应在( B )A 。
3和4之间B 。
4和5之间C .5和6之间D .6和7之间6。
若13x =-,4y =,则代数式33-+y x 的值为( B )A 。
-6B 。
0C 。
2D 。
6 7。
要使分式34-x 有意义,x 应满足的条件是( D ) A .3>x B 。
3=x C 。
3<x D 。
3≠x 8.若ABC ∆∽DEF ∆,相似比为3:2,则对应高的比为( A )A 。
3:2B .3:5C 。
9:4D .4:99。
如图,矩形ABCD 的边AB=1,BE 平分∠ABC,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是( B )A 。
2017年安徽省中考数学试卷word版2017年安徽省初中学业水平考试数学(试题卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟。
2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页。
3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的。
4.考试结束后,请将“试题卷”和“答题卷”一并交回。
一、选择题(本大题共10小题,每小题4分,共40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.12的相反数是()A.12;B.12-;C.2;D.-22.计算()23a-的结果是()A.6a;B.6a-;C.5a-;D.5a3.如图,一个放置在水平试验台上的锥形瓶,它的俯视图为()A .280;B .240;C .300;D .260 8一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x ,则x 满足( ) A .()161225x +=;B .()251216x -=;C .()216125x +=;D .()225116x -=9.已知抛物线2y axbx c=++与反比例函数b y x=的图像在第一象限有一个公共点,其横坐标为1,则一次函数y bx ac=+的图像可能是( )10.如图,在矩形ABCD 中,AB=5,AD=3,动点P 满足13PABABCD SS =矩形,则点P 到A ,B 两点距离之和PA+PB 的最小值为( )A .29B .34C .52D .41二、填空题(本大题共4小题,每小题5分,满分20分)11.27的立方根是_____________.12.因式分解:244a b ab b-+=_________________. 13.如图,已知等边ABC的边长为6,以AB为直径的O与边AC,BC分别交于D,E两点,则劣弧DE的长为___________.14.在三角形纸片ABC中,90A∠=︒,30C∠=︒,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),剪去CDE后得到双层BDE(如图2),再沿着过BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为___________cm。
绝密★启用前 试卷类型:A二〇一七年河北省初中学业水平考试数学试题一、选择题:本大题共16个小题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列运算结果为正数的是( ) A .2(3)- B .32-÷C .0(2017)⨯-D .23-2.把0.0813写成10n a ⨯(110a ≤<,n 为整数)的形式,则a 为( ) A .1 B .2- C .0.813 D .8.133.用量角器测量MON ∠的度数,操作正确的是( )4.23222333m n ⨯⨯⨯=+++个个……( ) A .23n m B.23m n C.32m n D.23m n5.图1-1和图1-2中所有的小正方形都全等,将图1-1的正方形放在图1-2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是( )A .①B .②C .③D .④6.图2为张小亮的答卷,他的得分应是( ) A .100分 B .80分 C .60分 D .40分7.若ABC ∆的每条边长增加各自的10%得'''A B C ∆,则'B ∠的度数与其对应角B ∠的度数相比( )A .增加了10%B .减少了10%C .增加了(110%)+D .没有改变图3① ②③④ 图1-1图1-2图4 8.图3是由相同的小正方体木块粘在一起的几何体,它的主视图 是( )9.求证:菱形的两条对角线互相垂直.已知:如图4,四边形ABCD 是菱形,对角线AC ,BD 交于点O . 求证:AC BD ⊥.以下是排乱的证明过程:①又BO DO =, ②∴AO BD ⊥,即AC BD ⊥. ③∵四边形ABCD 是菱形, ④∴AB AD =. 证明步骤正确的顺序是( )A .③→②→①→④B .③→④→①→②C .①→②→④→③D .①→④→③→②10.如图5,码头A 在码头B 的正西方向,甲、乙两船分别从A 、B 同时出发,并以等速驶向某海域,甲的航向是北偏东35︒,为避免行进中甲、乙相撞,则乙的航向不能是( ) A.北偏东55︒ B.北偏西55︒ C.北偏东35︒ D.北偏西35︒11.图6是边长为10cm 的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm )不正确...的( )12.图7是国际数学日当天淇淇和嘉嘉的微信对话,根据对话 内容,下列选项错误..的是( ) A.446+= B .004446++= C.46= D.1446-= 13.若321x x -=-( )11x +-,则( )中的数是( )CB A D611C 9131010图 6B 10 10A 8 15D图3北图5图7嘉嘉,咱俩玩一个数学游戏,好吗?好啊!玩什么游戏?在4 4 4=6等号的左边添加合适的数学运算符号,使等式成立.淇淇淇淇嘉嘉4吨 5吨6吨 7吨60° 乙组12户家庭用水量统计图 A .1- B .2- C .3- D .任意实数14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图8,比较5月份两组家庭用水量的中位数,下列说法正确的是( )A .甲组比乙组大 B.甲、乙两组相同 C .乙组比甲组大 D .无法判断15.如图9,若抛物线23y x =-+与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数ky x=(0x >)的图象是( )16.已知正方形MNOK 和正六边形ABCDEF 边长均为1,把正方形放在正六边形中,使OK边与AB 边重合,如图10所示.按下列步骤操作: 将正方形在正六边形中绕点B 顺时针旋转,使KM 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使MN 边与CD 边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B ,M 间的距离可能是( )A .1.4B .1.1C .0.8D .0.5第Ⅱ卷(共78分) 二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.如图11,A ,B 两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C ,连接CA ,CB ,分别延长到点M ,N ,使AM=AC ,BN=BC ,测得MN=200 m ,则A ,B 间的距离为图9xy· · O11 A(Q) FE D C N M B(K) 图10甲组12户家庭用水量统计图8·m18.如图12,依据尺规作图的痕迹,计算∠a = °19.对于实数p ,q ,我们用符号}{q p , min 表示p ,q 两数中较小的数,如}{12 1min =,. 因此,}{=--3 2min , ; 若}{1 )1(min 22=-x ,x ,则=x .三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB=2,BC=1,如图13所示.设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值; 若以C 为原点,p 又是多少?(2)若原点O 在图13中数轴上点C 的右边,且CO=28,求p .图12ABCD68°α┓┛┏ 图11AB CMN AB C2 1 图1321.(本小题满分9分)编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记.0.分..图14是根据他们各自的累积得分绘制的条形统计图.之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图14增补为这6名学生积分的条形统计图; (2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次.这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.22.(本小题满分9分)发现 任意五个连续整数的平方和是5的倍数. 验证 (1)()2222232101++++-的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数. 延伸 任意三个连续整数的平方和被3除的余数是几呢?请写出理由.图1423.(本小题满分9分)如图15,AB=16,O 为AB 中点,点C 在线段OB 上(不与点O ,B 重合),将OC 绕点O 逆时针旋转270°后得到扇形COD,AP,BQ 分别切优弧CD ⌒ 于点P ,Q ,且点P,Q 在AB 异侧,连接OP.(1)求证:AP=BQ ;(2)当BQ=34时,求Q D ⌒ 的长(结果保留π);(3)若△APO 的外心在扇形COD 的内部,求OC 的取值范围.24.(本小题满分10分)如图16,直角坐标系xOy 中,A(0,5),直线x =-5与x 轴交于点D ,直线83983--=x y 与x 轴及直线x =-5分别交于点C ,E.点B ,E 关于x 轴对称,连接AB. (1)求点C ,E 的坐标及直线AB 的解析式; (2)设面积的和CDE ABDO S S S ∆=+四边形,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将△CDE 沿x 轴翻折到△CDB 的位置,而△CDB 与四边形ABDO 拼接后可看成△AOC ,这样求S 便转化为直接求△AOC 的面积不更快捷吗?”但大家经反复验算,发现S S AOC ≠Δ,请通过计算解释他的想法错在哪里.图16ABCD P PQ图1525.(本小题满分11分)平面内,如图17,在□ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90︒得到线段PQ . (1)当10DPQ ∠=︒时,求APB ∠的大小;(2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号); (3)若点Q 恰好落在□ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π).B APCD Q备用图图17ABCDP Q26.(本小题满分12分)某厂按用户的月需求量x(件)完成一种产品的生产,其中0x>.每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比.经市场调研发现,月需求量x与月份n(n为整数,112n≤≤)符合关系式2=-++(k为常数),且得到了表中的229(3)x n kn k Array数据.(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;(2)求k,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m个月和第(1)m+个月的利润相差最大,求m.。
【关键字】数学2017年安徽省初中学业水平考试数学(试题卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分)1.的相反数是A.B.C.D.【答案】B【考查目的】考查实数概念——相反数.简单题.2.计算的结果是A.B.C.D.【答案】A【考查目的】考查指数运算,简单题.3.如图,一个放置在水平实验台的锥形瓶,它的俯视图是【答案】B.【考查目的】考查三视图,简单题.4.截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元.其中1600亿用科学记数法表示为A.B.C.D.【答案】C【考查目的】考查科学记数法,简单题.5.不等式的解集在数轴上表示为()【答案】C.【考查目的】考查在数轴上表示不等式的解集,简单题.6.直角三角板和直尺如图放置,若,则的度数为A.B.C.D.【答案】C【考查目的】考查三角形内角和,平行线性质,简单题.7.为了解某校学生今年五一期间参加社团活动情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是A.B.C.D.【答案】A.【考查目的】考查统计知识,频数分布直方图识别和应用,简单题.8.一种药品原价每盒元,经过两次降价后每盒元.设两次降价的百分率都为,则满足A.B.C.D.【答案】D.【考查目的】考查增长率,二次函数的应用,简单题.9.已知抛物线与反比例函数的图象在第一象限有一个公共点,其横坐标为.则一次函数的图象可能是【答案】B.公共点在第一象限,横坐标为1,则,排除C,D,又得,故,从而选B.1文档收集于互联网,如有不妥请联系删除.2文档收集于互联网,如有不妥请联系删除.【考查目的】考查初等函数性质及图象,中等题. 10.如图,矩形中,.动点满足.则点到两点距离之和 的最小值为( )A .B .C .D .【答案】D ,在与平行且到距离为2直线上,即在此线上找一点到两点距离之和的最小值. 【考查目的】考查对称性质,转化思想,中等题.二、填空题(本大题共4小题,每小题5分,满分20分) 11.的立方根是____________ . 【答案】3【考查目的】考查立方根运算,简单题.12.因式分解:244a b ab b -+=____________ . 【答案】2(2)b a -【考查目的】考查因式分解,简单题.13.如图,已知等边ABC △的边长为6,以AB 为直径的⊙O 与边AC BC ,分别交于D E ,两点,则劣弧的DE 的长为____________ . 【答案】2π【考查目的】考查圆的性质,三角形中位线,弧长计算,中等题.14.在三角形纸片ABC 中,903030cm A C AC ∠=︒∠=︒=,,,将该纸片沿过点E 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE △后得到双层BDE △(如图2),再沿着过某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为____________cm .【答案】40cm 或.(沿如图的虚线剪.)【考查目的】考查对称,解直角三角形,空间想象,较难题.三、(本大题共2小题,每小题8分,共16分) 15.计算:11|2|cos60()3--⨯︒-.【考查目的】考查幂运算、立方根、特殊角的三角函数值,简单题.【解答】原式=12322⨯-=-16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四。
2017 年安徽省初中学业水平考试数学(试题卷)一、选择题(本题共 10 个小题 , 每小题 4 分,满分 40 分)每小题都给出 A 、 B 、 C 、 D 四个选项,其中只有一个是正确的.1.1的相反数是()21 1A .C. 2D . -22B .22. 计算 ( a 2 )2的结果是()A . a 6B . a 6C . a 5D . a 53. 如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A. B. C. D .4. 截至 2016 年底,国家开发银行对“一带一路”沿线国家累积发放贷款超过 1600 亿美元 . 其中 1600 亿用科学计数法表示为( )A. 16 1010 B. 1.6 1010C.1.6 1011D . 0.16 10125. 不等式 3 2x0 的解集在数轴上表示为()A .B . C. D .6. 直角三角板和直尺如图放置. 若 1 20 ,则 2 的度数为()A. 60B.50 C.40 D.307. 为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100 名学生进行统计,并绘成如图所示的频数直方图. 已知该校共有1000 名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A. 280B.240C.300D.2608. 一种药品原价每盒25 元,经过两次降价后每盒16 元. 设两次降价的百分率都为x ,则 x 满足()A.16(12x) 25B.25(12x) 16 C.16(1 x) 225D.25(1x)2169. 已知抛物线y ax 2bx c 与反比例函数y b的图象在第一象限有一个公共点,其横坐标为 1. 则一次x函数 y bx ac 的图象可能是()A.B. C.D.10. 如图,在矩形ABCD 中, AB 5 , AD 3.动点 P 满足S PAB 1 S矩形ABCD.则点P到A,B两点距3离之和 PA PB 的最小值为()A.29B.34 C. 5 2D.41二、填空题(本大题共 4 小题,每小题 5 分,满分 20 分)11.27 的立方根是.12. 因式分解:a2b 4ab 4b =.13.如图,已知等边 ABC 的边长为6,以 AB 为直径的⊙ O 与边 AC , BC 分别交于 D , E 两点,则劣弧DE 的长为.14. 在三角形纸片ABC 中, A 90 , C 30 , AC 30cm.将该纸片沿过点 B 的直线折叠,使点A 落在斜边 BC 上的一点 E 处,折痕记为BD (如图1),剪去CDE 后得到双层BDE (如图2),再沿着边BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形.则所得平行四边形的周长为cm.三、(本大题共 2 小题,每小题 8 分,满分 16 分)1115. 计算:| 2 | cos60( ).16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四 . 问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出 8 元,还盈余 3 元;每人出 7 元,则还差 4 元 . 问共有多少人?这个物品的价格是多少?请解答上述问题 .四、(本大题共 2 小题,每小题 8 分,满分 16 分)17. 如图,游客在点 A 处坐缆车出发,沿 A B D 的路线可至山顶 D 处.假设 AB 和 BD 都是直线段,且AB BD 600m ,75 ,45 ,求DE的长.(参考数据:sin750.97 , cos75 0.26 ,2 1.41 )18.如图,在边长为 1 个单位长度的小正方形组成的网格中,给出了格点ABC 和DEF (顶点为网格线的交点),以及过格点的直线l .( 1)将ABC 向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形;( 2)画出DEF 关于直线 l 对称的三角形;( 3)填空:C E.五、(本大题共 2 小题,每小题 10 分,满分 20 分)19.【理解】我知道, 123n n( n1),那么 122232n2果等于多少呢?2在 1 所示三角形数中,第 1 行圈中的数1,即12;第 2 行两个圈中数的和 2 2 ,即 22;⋯⋯;第 n 行 n 个圈中数的和n n n ,即n2.,三角形数中共有n(n 1)个圈,所有圈中n个n2数的和 122232n2.【律探究】将桑拿教学数两次旋可得如所示的三角形数,察三个三角形数各行同一位置圈中的数(如第 n1行的第一个圈中的数分n 1 ,2,n),每个位置上三个圈中数的和均.由此可得,三个三角形数所有圈中数的和:3(122232n2 ).因此,122232n2=.【解决】根据以上,算12223220172的果.123201720. 如图,在四边形ABCD 中, AD BC ,B D , AD 不平行于 BC ,过点 C 作 CE / / AD 交ABC 的外接圆 O 于点 E ,连接 AE .(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分BCE .六、(本题满分 12 分)21.甲、乙、丙三位运动员在相同条件下各射靶10 次,每次射靶的成绩如下:甲: 9, 10, 8, 5,7, 8, 10, 8, 8,7;乙: 5, 7,8, 7, 8, 9, 7, 9, 10, 10;丙: 7, 6,8, 5, 4, 7, 6, 3, 9, 5.( 1)根据以上数据完成下表:平均数中位数方差甲88乙88 2.2丙63(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定. 求甲、乙相邻出场的概率 .七、(本题满分 12 分)22. 某超市销售一种商品,成本每千克40 元,规定每千克售价不低于成本,且不高于80 元 . 经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:售价 x (元/千克)506070销售量 y (千克)1008060( 1)求y与x之间的函数表达式;( 2)设商品每天的总利润为W (元),求 W 与x之间的函数表达式(利润=收入 - 成本);(3)试说明( 2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分 14 分)23.已知正方形 ABCD ,点 M 为边 AB 的中点.( 1)如图 1,点G为线段CM上的一点,且AGB90 ,延长 AG , BG 分别与边 BC ,CD 交于点 E ,F.①求证: BE CF ;②求证: BE 2BC CE .( 2)如图 2,在边BC上取一点E,满足BE2BC CE ,连接AE交CM于点G,连接BG延长交CD 于点 F ,求 tan CBF 的值.2017 年中考数学参考答案一、 1-5: BABCD 6-10: CADBD14、 40或80 3二、 11、 312、 b (a - 2) 13、 p23三、 15、解:原式1 3 = -2 .= 2?216、解:设共有 x 人,根据题意,得 8x - 3 = 7x + 4 ,解得 x = 7 ,所以物品价格为 8? 7 3 = 53 (元 ).答:共有7 人,物品的价格为 53 元 .四、 17、解:在 Rt △BDF 中,由 sin b =DF得,BDDF = BD ?sin b2 300 2 ≈ 423 (m).600? sin 45° 600 ?2在 Rt △ ABC 中,由 cos a =BC可得,ABBC = AB ?cosa 600? cos75° 600? 0.26 156(m).所以 DE = DF + EF = DF + BC = 423+156 = 579 (m). 18、 (1)如图所示; (2)如图所示; (3)45五、 19、2n +1(2 n +1)?n (n +1)1n (n +1)( 2n +1)134526 20、 (1)证明:∵ ∠B =∠ D , ∠B = ∠E ,∴ ∠D = ∠E ,∵ CE ∥ AD , ∴∠ E +∠DAE = 180°.∴ ∠D +∠ DAE = 180°,∴ AE ∥ CD . ∴四边形 AECD 是平行四边形 .(2) 证明:过点 O 作 OM ^ EC , ON ^ BC ,垂足分别为 M 、 N .∵四边形 AECD 是平行四边形,∴AD = EC .又 AD = BC ,∴ EC = BC ,∴ OM = ON ,∴ CO 平分 ∠BCE .六、 21、解: (1)平均数中位数 方差甲 2乙丙6(2) 因为 2 < 2.2 < 3 ,所以 s 甲2 < s 乙2 < s 丙2 ,这说明甲运动员的成绩最稳定.(3) 三人的出场顺序有 (甲乙丙 ), ( 甲丙乙 ), (乙甲丙 ) ,(乙丙甲 ), (丙甲乙 ) , (丙乙甲 )共 6 种,且每一种结果 出现的可能性相等,其中,甲、乙相邻出场的结果有(甲乙丙 ),(乙甲丙 ),( 丙甲乙 ), (丙乙甲 )共 4 种,所以 甲、乙相邻出场的概率 P = 4 = 2 .6 3ììy = - 2x + 200 .七、 22.解: (1) 设 y = kx + b ,由题意,得 í,解得 í,∴所求函数表达式为?60k + b = 80?b = 200(2) W = (x - 40)(- 2 x + 200) = - 2 x 2+ 280 x - 8000 .2(3) W = - 2x 2 + 280x - 8000 = - 2( x - 70)+1800 ,其中 40 #x80 ,∵ - 2 < 0,∴当 40 ? x70 时, W 随 x 的增大而增大,当70 < x ? 80 时, W 随 x 的增大而减小,当售价为 70 元时,获得最大利润,这时最大利润为 1800 元.八、 23、 (1)①证明:∵四边形ABCD 为正方形,∴AB = BC ,,∠ABC = ∠BCF = 90°又,∴,又,∴ ∠BAE =∠CBF ,∠AGB = 90° ∠BAE +∠ABG = 90°∠ABG +∠CBF = 90°∴ △ ABE ≌△ BCF (ASA) ,∴ BE = CF .②证明:∵ ,点 M 为 AB 中点,∴ MG = MA = MB ,∴ ∠GAM = ∠AGM ,∠AGB = 90°又∵ ∠CGE = ∠AGM ,从而 ∠CGE = ∠CGB ,又 ∠ECG = ∠GCB ,∴ △CGE ∽△ CBG , ∴CE = CG,即 CG 2 = BC ?CE ,由 ∠CFG = ∠GBM = ∠CGF ,得 CF = CG . CG CB由①知, BE = CF ,∴ BE = CG ,∴ BE 2 = BC ?CE . (2) 解: ( 方法一 )延长 AE , DC 交于点 N ( 如图 1) ,由于四边形ABCD 是正方形,所以 AB ∥ CD ,∴ ∠N = ∠EAB ,又 ∠CEN = ∠BEA ,∴ △CEN ∽△ BEA , 故 CE =CN,即 BE ?CN AB?CE , BE BA∵ AB = BC , BE 2 = BC ?CE ,∴ CN = BE ,由 AB ∥ DN 知, CN = CG =CF,AM GM MB又 AM = MB ,∴ FC = CN = BE ,不妨假设正方形边长为1,设 BE = x ,则由 BE 2= BC ?CE ,得 x 2 =1?(1 x ),解得 x 1 =5 - 1, x 2 =-5 - 1( 舍去 ) ,∴ BE=5 - 1 ,22 BC2FCBE 5 - 1于是 tan ∠CBF ===,BCBC2( 方法二 )不妨假设正方形边长为 1,设 BE = x ,则由 BE 2= BC ?CE ,得 x 2= 1?(1 x ),解得 x 1 =5 - 1, x 2 =-5 - 1( 舍去 ) ,即 BE = 5 - 1 ,222作 GN ∥ BC 交 AB 于 N ( 如图 2) ,则 △ MNG ∽△ MBC ,∴MN=MB= 1,NGBC 25 y ,∵GN =AN,即2 y y +1设 MN = y ,则 GN = 2 y , GM =2 ,=BE AB 5 - 1 12解得 y =1 ,∴ GM = 1,从而 GM = MA = MB ,此时点 G 在以 AB 为直径的圆上, 2 5 2∴ △ AGB 是直角三角形,且 ,∠AGB = 90° 由 (1) 知 BE = CF ,于是 tan ∠CBF =FC = BE= 5 - 1 .BC BC 2。
2017年省市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣7的倒数是()A.7 B.﹣7 C.D.﹣2.下列运算正确的是()A.a6÷a3=a2 B.2a3+3a3=5a6C.(﹣a3)2=a6D.(a+b)2=a2+b23.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.抛物线y=﹣(x+)2﹣3的顶点坐标是()A.(,﹣3)B.(﹣,﹣3)C.(,3)D.(﹣,3)5.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C. D.6.方程=的解为()A.x=3 B.x=4 C.x=5 D.x=﹣57.如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A.43° B.35° C.34° D.44°8.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.B.C.D.9.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A. =B. =C. =D. =10.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是60m/minC.小涛从报亭返回家中的平均速度是80m/minD.小涛在报亭看报用了15min二、填空题(本大题共10小题,每小题3分,共30分)11.将57600000用科学记数法表示为.12.函数y=中,自变量x的取值围是.13.把多项式4ax2﹣9ay2分解因式的结果是.14.计算﹣6的结果是.15.已知反比例函数y=的图象经过点(1,2),则k的值为.16.不等式组的解集是.17.一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为.18.已知扇形的弧长为4π,半径为8,则此扇形的圆心角为.19.四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E 在AC上,若OE=,则CE的长为.20.如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.三、解答题(本大题共60分)21.先化简,再求代数式÷﹣的值,其中x=4sin60°﹣2.22.如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan ∠EAB=,连接CD,请直接写出线段CD的长.23.随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校围随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.24.已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.25.威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B 两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?26.已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB于点D.(1)如图1,求证:AD=BD;(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO=,求的值.27.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点.(1)求抛物线的解析式;(2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE⊥x轴于点E,PE交CD于点F,交BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值围);(3)在(2)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.2017年省市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.﹣7的倒数是()A.7 B.﹣7 C.D.﹣【考点】17:倒数.【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣7的倒数是﹣,故选:D.2.下列运算正确的是()A.a6÷a3=a2 B.2a3+3a3=5a6C.(﹣a3)2=a6D.(a+b)2=a2+b2【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a3,不符合题意;B、原式=5a3,不符合题意;C、原式=a6,符合题意;D、原式=a2+2ab+b2,不符合题意,故选C3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,不是中心对称图形,不合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,符合题意.故选:D.4.抛物线y=﹣(x+)2﹣3的顶点坐标是()A.(,﹣3)B.(﹣,﹣3)C.(,3)D.(﹣,3)【考点】H3:二次函数的性质.【分析】已知抛物线解析式为顶点式,可直接写出顶点坐标.【解答】解:y=﹣(x+)2﹣3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(﹣,﹣3).故选B.5.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C. D.【考点】U2:简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边是一个小正方形,故选:C.6.方程=的解为()A.x=3 B.x=4 C.x=5 D.x=﹣5【考点】B3:解分式方程.【分析】根据分式方程的解法即可求出答案.【解答】解:2(x﹣1)=x+3,2x﹣2=x+3,x=5,令x=5代入(x+3)(x﹣1)≠0,故选(C)7.如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A.43° B.35° C.34° D.44°【考点】M5:圆周角定理.【分析】由同弧所对的圆周角相等求得∠A=∠D=42°,然后根据三角形外角的性质即可得到结论.【解答】解:∵∠D=∠A=42°,∴∠B=∠APD﹣∠D=35°,故选B.8.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.B.C.D.【考点】T1:锐角三角函数的定义.【分析】利用锐角三角函数定义求出cosB的值即可.【解答】解:∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC==,则cosB==,故选A9.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A. =B. =C. =D. =【考点】S9:相似三角形的判定与性质.【分析】根据相似三角形的判定与性质即可求出答案.【解答】解:(A)∵DE∥BC,∴△ADE∽△ABC,∴,故A错误;(B)∵DE∥BC,∴,故B错误;(C)∵DE∥BC,,故C正确;(D))∵DE∥BC,∴△AGE∽△AFC,∴=,故D错误;故选(C)10.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是60m/minC.小涛从报亭返回家中的平均速度是80m/minD.小涛在报亭看报用了15min【考点】E6:函数的图象.【分析】根据特殊点的实际意义即可求出答案.【解答】解:A、由纵坐标看出小涛家离报亭的距离是1200m,故A不符合题意;B、由纵坐标看出小涛家离报亭的距离是1200m,由横坐标看出小涛去报亭用了15分钟,小涛从家去报亭的平均速度是80m/min,故B不符合题意;C、返回时的解析式为y=﹣60x+3000,当y=1200时,x=30,由横坐标看出返回时的时间是50﹣30=20min,返回时的速度是1200÷20=60m/min,故C不符合题意;D、由横坐标看出小涛在报亭看报用了30﹣15=15min,故D符合题意;故选:D.二、填空题(本大题共10小题,每小题3分,共30分)11.将57600000用科学记数法表示为 5.67×107.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:57600000用科学记数法表示为5.67×107,故答案为:5.67×107.12.函数y=中,自变量x的取值围是x≠2 .【考点】E4:函数自变量的取值围.【分析】根据分式有意义的条件:分母不为0进行解答即可.【解答】解:由x﹣2≠0得,x≠2,故答案为x≠2.13.把多项式4ax2﹣9ay2分解因式的结果是a(2x+3y)(2x﹣3y).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=a(4x2﹣9y2)=a(2x+3y)(2x﹣3y),故答案为:a(2x+3y)(2x﹣3y)14.计算﹣6的结果是.【考点】78:二次根式的加减法.【分析】先将二次根式化简即可求出答案.【解答】解:原式=3﹣6×=3﹣2=故答案为:15.已知反比例函数y=的图象经过点(1,2),则k的值为 1 .【考点】G6:反比例函数图象上点的坐标特征.【分析】直接把点(1,2)代入反比例函数y=,求出k的值即可.【解答】解:∵反比例函数y=的图象经过点(1,2),∴2=3k﹣1,解得k=1.故答案为:1.16.不等式组的解集是2≤x<3 .【考点】CB:解一元一次不等式组.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,由①得:x≥2,由②得:x<3,则不等式组的解集为2≤x<3.故答案为2≤x<3.17.一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为.【考点】X4:概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵不透明的袋子中装有17个小球,其中6个红球、11个绿球,∴摸出的小球是红球的概率为;故答案为:.18.已知扇形的弧长为4π,半径为8,则此扇形的圆心角为90°.【考点】MN:弧长的计算.【分析】利用扇形的弧长公式计算即可.【解答】解:设扇形的圆心角为n°,则=4π,解得,n=90,故答案为:90°.19.四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E 在AC上,若OE=,则CE的长为4或2.【考点】L8:菱形的性质.【分析】由菱形的性质证出△ABD是等边三角形,得出BD=AB=6,OB=BD=3,由勾股定理得出OC=OA==3,即可得出答案.【解答】解:∵四边形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=6,∴OC=OA==3,∴AC=2OA=6,∵点E在AC上,OE=,∴CE=OC+或CE=OC﹣,∴CE=4或CE=2;故答案为:4或2.20.如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.【考点】LB:矩形的性质;KD:全等三角形的判定与性质.【分析】由AAS证明△ABM≌△DEA,得出AM=AD,证出BC=AD=3EM,连接DM,由HL证明Rt△DEM≌Rt△DCM,得出EM=CM,因此BC=3CM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得出方程,解方程即可.【解答】解:∵四边形ABCD是矩形,∴AB=DC=1,∠B=∠C=90°,AD∥BC,AD=BC,∵DE=DC,∴AB=DE,∵DE⊥AM,∴∠DEA=∠DEM=90°,在△ABM和△DEA中,,∴△ABM≌△DEA(AAS),∴AM=AD,∵AE=2EM,∴BC=AD=3EM,连接DM,如图所示:在Rt△DEM和Rt△DCM中,,∴Rt△DEM≌Rt△DCM(HL),∴EM=CM,∴BC=3CM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得:12+(2x)2=(3x)2,解得:x=,∴BM=;故答案为:.三、解答题(本大题共60分)21.先化简,再求代数式÷﹣的值,其中x=4sin60°﹣2.【考点】6D:分式的化简求值;T5:特殊角的三角函数值.【分析】根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:÷﹣===,当x=4sin60°﹣2=4×=﹣2时,原式=.22.如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan ∠EAB=,连接CD,请直接写出线段CD的长.【考点】N4:作图—应用与设计作图;KQ:勾股定理;L6:平行四边形的判定;T7:解直角三角形.【分析】(1)因为AB为底、面积为12的等腰△ABC,所以高为4,点C在线段AB的垂直平分线上,由此即可画出图形;(2)扇形根据tan∠EAB=的值确定点E的位置,由此即可解决问题,利用勾股定理计算CD的长;【解答】解:(1)△ABC如图所示;(2)平行四边形ABDE如图所示,CD==.23.随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校围随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据条形统计图与扇形统计图求出总人数即可;(2)根据题意作出图形即可;(3)根据题意列出算式,计算即可得到结果.【解答】解:(1)10÷20%=50(名),答:本次调查共抽取了50名学生;(2)50﹣10﹣20﹣12=8(名),补全条形统计图如图所示,(3)1350×=540(名),答:估计最喜欢太阳岛风景区的学生有540名.24.已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)根据全等三角形的性质即可求证△ACE≌△BCD,从而可知AE=BD;(2)根据条件即可判断图中的全等直角三角形;【解答】解:(1)∵△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,在△ACE与△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,(2)∵AC=DC,∴AC=CD=EC=CB,△ACB≌△DCE(SAS);由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC∴∠DOM=90°,∵∠AEC=∠CAE=∠CBD,∴△EMC≌△BCN(ASA),∴CM=CN,∴DM=AN,△AON≌△DOM(AAS),∵DE=AB,AO=DO,∴△AOB≌△DOE(HL)25.威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B 两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y 元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解就可以了.【解答】解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,得,解得:答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.26.已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB于点D.(1)如图1,求证:AD=BD;(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO=,求的值.【考点】MR:圆的综合题.【分析】(1)如图1,连接OA,利用垂径定理和圆周角定理可得结论;(2)如图2,延长BO交⊙O于点T,连接PT,由圆周角定理可得∠BPT=90°,易得∠APT=∠APB﹣∠BPT=∠APB﹣90°,利用切线的性质定理和垂径定理可得∠ABO=∠OMB,等量代换可得∠ABO=∠APT,易得结论;(3)如图3,连接MA,利用垂直平分线的性质可得MA=MB,易得∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,易得△APM≌△BNM,由全等三角形的性质可得AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,易得四边形APBK是平行四边形,由平行四边形的性质和平行线的性质可得∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,易得∠NBP=∠KBP,可得△PBN≌△PBK,PN=2PH,利用三角函数的定义可得sin ∠PMH=,sin∠ABO=,设DP=3a,则PM=5a,可得结果.【解答】(1)证明:如图1,连接OA,∵C是的中点,∴,∴∠AOC=∠BOC,∵OA=OB,∴OD⊥AB,AD=BD;(2)证明:如图2,延长BO交⊙O于点T,连接PT ∵BT是⊙O的直径∴∠BPT=90°,∴∠APT=∠APB﹣∠BPT=∠APB﹣90°,∵BM是⊙O的切线,∴OB⊥BM,又∠OBA+∠MBA=90°,∴∠ABO=∠OMB又∠ABO=∠APT∴∠APB﹣90°=∠OMB,∴∠APB﹣∠OMB=90°;(3)解:如图3,连接MA,∵MO垂直平分AB,∴MA=MB,∴∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,则∠AMP=∠BMN,∴△APM≌△BNM,∴AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,∴四边形APBK是平行四边形;AP∥BK,∴∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,∴∠APB+∠MBA=180°∴∠PBK=∠MBA,∴∠MBP=∠ABK=∠PAB,∴∠MAP=∠PBA=∠MBN,∴∠NBP=∠KBP,∵PB=PB,∴△PBN≌△PBK,∴PN=PK=2PD,过点M作MH⊥PN于点H,∴PN=2PH,∴PH=DP,∠PMH=∠ABO,∵sin∠PMH=,sin∠ABO=,∴,∴,设DP=3a,则PM=5a,∴MQ=6DP=18a,∴.27.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点.(1)求抛物线的解析式;(2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE⊥x轴于点E,PE交CD于点F,交BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值围);(3)在(2)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.【考点】HF:二次函数综合题.【分析】(1)首先求出点B、C的坐标,然后利用待定系数法求出抛物线的解析式;(2)根据S△ABC=S△AMC+S△AMB,由三角形面积公式可求y与m之间的函数关系式;(3)如图2,由抛物线对称性可得D(2,﹣3),过点B作BK⊥CD交直线CD 于点K,可得四边形OCKB为正方形,过点O作OH⊥PC交PC延长线于点H,OR ⊥BQ交BQ于点I交BK于点R,可得四边形OHQI为矩形,可证△OBQ≌△OCH,△OSR≌△OGR,得到tan∠QCT=tan∠TBK,设ST=TD=m,可得SK=2m+1,CS=2﹣2m,TK=m+1=BR,SR=3﹣m,RK=2﹣m,在Rt△SKR中,根据勾股定理求得m,可得tan∠PCD=,过点P作PE′⊥x轴于E′交CD于点F′,得到P(t,﹣ t ﹣3),可得﹣t﹣3=t2﹣2t﹣3,求得t,再根据MN=d求解即可.【解答】解:(1)∵直线y=x﹣3经过B、C两点,∴B(3,0),C(0,﹣3),∵y=x2+bx+c经过B、C两点,∴,解得,故抛物线的解析式为y=x2﹣2x﹣3;(2)如图1,y=x2﹣2x﹣3,y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),∴OA=1,OB=OC=3,∴∠ABC=45°,AC=,AB=4,∵PE⊥x轴,∴∠EMB=∠EBM=45°,∵点P的横坐标为1,∴EM=EB=3﹣t,连结AM,∵S△ABC=S△AMC+S△AMB,∴AB•OC=AC•MN+AB•EM,∴×4×3=×d+×4(3﹣t),∴d=t;(3)如图2,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴对称轴为x=1,∴由抛物线对称性可得D(2,﹣3),∴CD=2,过点B作BK⊥CD交直线CD于点K,∴四边形OCKB为正方形,∴∠OBK=90°,CK=OB=BK=3,∴DK=1,∵BQ⊥CP,∴∠CQB=90°,过点O作OH⊥PC交PC延长线于点H,OR⊥BQ交BQ于点I交BK于点R,∴∠OHC=∠OIQ=∠OIB=90°,∴四边形OHQI为矩形,∵∠OCQ+∠OBQ=180°,∴∠OBQ=∠OCH,∴△OBQ≌△OCH,∴QG=OS,∠GOB=∠SOC,∴∠SOG=90°,∴∠ROG=45°,∵OR=OR,∴△OSR≌△OGR,∴SR=GR,∴SR=CS+BR,∵∠BOR+∠OBI=90°,∠IBO+∠TBK=90°,∴∠BOR=∠TBK,∴tan∠BOR=tan∠TBK,∴=,∴BR=TK,∵∠CTQ=∠BTK,∴∠QCT=∠TBK,∴tan∠QCT=tan∠TBK,设ST=TD=m,∴SK=2m+1,CS=2﹣2m,TK=m+1=BR,SR=3﹣m,RK=2﹣m,在Rt△SKR中,∵SK2+RK2=SR2,∴(2m+1)2+(2﹣m)2=(3﹣m)2,解得m1=﹣2(舍去),m2=;∴ST=TD=,TK=,∴tan∠TBK==÷3=,∴tan∠PCD=,过点P作PE′⊥x轴于E′交CD于点F′,∵CF′=OE′=t,∴PF′=t,∴PE′=t+3,∴P(t,﹣ t﹣3),∴﹣t﹣3=t2﹣2t﹣3,解得t1=0(舍去),t2=.∴MN=d=t=×=.2017年7月5日。
2017年云南省中考数学试卷一、填空题〔本大题共6个小题,每题3分,共18分〕1.2的相反数是.2.已知关于x的方程2x+a+5=0的解是x=1,则a的值为.3.如图,在△ABC中,D、E分别为AB、AC上的点,假设DE∥BC,=,则=.4.使有意义的x的取值范围为.5.如图,边长为4的正方形ABCD外切于⊙O,切点分别为E、F、G、H.则图中阴影部分的面积为.6.已知点A〔a,b〕在双曲线y=上,假设a、b都是正整数,则图象经过B〔a,0〕、C〔0,b〕两点的一次函数的解析式〔也称关系式〕为.二、选择题〔本大题共8个小题,每题只有一个正确答案,每题4分,共32分〕7.作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为〔〕A.6.7×105B.6.7×106C.0.67×107D.67×1088.下面长方体的主视图〔主视图也称正视图〕是〔〕A.B.C.D.9.以下计算正确的选项是〔〕A.2a×3a=5a B.〔﹣2a〕3=﹣6a3C.6a÷2a=3a D.〔﹣a3〕2=a610.已知一个多边形的内角和是900°,则这个多边形是〔〕A.五边形B.六边形C.七边形D.八边形11.sin60°的值为〔〕A.B.C.D.12.以下说法正确的选项是〔〕A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,假设他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D.某次抽奖活动中,中奖的概率为表示每抽奖50次就有一次中奖13.正如我们小学学过的圆锥体积公式V=πr2h〔π表示圆周率,r表示圆锥的地面半径,h表示圆锥的高〕一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究说明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹〔小竹棍或小竹片〕进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,假设该圆锥的体积等于9π,则这个圆锥的高等于〔〕A.B.C.D.14.如图,B、C是⊙A上的两点,AB的垂直平分线与⊙A交于E、F两点,与线段AC交于D点.假设∠BFC=20°,则∠DBC=〔〕A.30°B.29°C.28°D.20°三、解答题〔共9个小题,总分值70分〕15.如图,点E、C在线段BF上,BE=CF,AB=DE,AC=DF.求证:∠ABC=∠DEF.16.观察以下各个等式的规律:第一个等式:=1,第二个等式:=2,第三个等式:=3…请用上述等式反映出的规律解决以下问题:〔1〕直接写出第四个等式;〔2〕猜想第n个等式〔用n的代数式表示〕,并证明你猜想的等式是正确的.17.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.〔1〕请补全条形统计图;〔2〕假设该校共有志愿者600人,则该校九年级大约有多少志愿者?18.某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.〔1〕该商店第一次购进水果多少千克?〔2〕假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.假设两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.19.在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.〔1〕用列表法或树状图法〔树状图也称树形图〕中的一种方法,写出所有可能出现的结果;〔2〕求两次取出的小球上的数字相同的概率P.20.如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F 分别是AB、AC的中点.〔1〕求证:四边形AEDF是菱形;〔2〕如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF 的面积S.21.已知二次函数y=﹣2x2+bx+c图象的顶点坐标为〔3,8〕,该二次函数图象的对称轴与x轴的交点为A,M是这个二次函数图象上的点,O是原点.〔1〕不等式b+2c+8≥0是否成立?请说明理由;〔2〕设S是△AMO的面积,求满足S=9的所有点M的坐标.22.在学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程,建设美丽中国的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具.下表是租车公司提供应学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.〔1〕设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式〔也称关系式〕,请直接写出x的取值范围;〔2〕假设要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?23.已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M 是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM 上的点连线距离的最小值为f.〔1〕求证:PC是⊙O的切线;〔2〕设OP=AC,求∠CPO的正弦值;〔3〕设AC=9,AB=15,求d+f的取值范围.2017年云南省中考数学试卷参考答案与试题解析一、填空题〔本大题共6个小题,每题3分,共18分〕1.2的相反数是﹣2.【考点】14:相反数.【分析】根据相反数的定义可知.【解答】解:﹣2的相反数是2.2.已知关于x的方程2x+a+5=0的解是x=1,则a的值为﹣7.【考点】85:一元一次方程的解.【分析】把x=1代入方程计算即可求出a的值.【解答】解:把x=1代入方程得:2+a+5=0,解得:a=﹣7,故答案为:﹣7.3.如图,在△ABC中,D、E分别为AB、AC上的点,假设DE∥BC,=,则=.【考点】S9:相似三角形的判定与性质.【分析】直接利用相似三角形的判定方法得出△ADE∽△ABC,再利用相似三角形的周长比等于相似比进而得出答案.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴==.故答案为:.4.使有意义的x 的取值范围为 x ≤9 .【考点】72:二次根式有意义的条件.【分析】二次根式的被开方数是非负数,即9﹣x ≥0.【解答】解:依题意得:9﹣x ≥0.解得x ≤9.故答案是:x ≤9.5.如图,边长为4的正方形ABCD 外切于⊙O ,切点分别为E 、F 、G 、H .则图中阴影部分的面积为 2π+4 .【考点】MC :切线的性质;LE :正方形的性质;MO :扇形面积的计算.【分析】连接HO ,延长HO 交CD 于点P ,证四边形AHPD 为矩形知HF 为⊙O 的直径,同理得EG 为⊙O 的直径,再证四边形BGOH 、四边形OGCF 、四边形OFDE 、四边形OEAH 均为正方形得出圆的半径及△HGF 为等腰直角三角形,根据阴影部分面积=S ⊙O +S △HGF 可得答案.【解答】解:如图,连接HO ,延长HO 交CD 于点P ,∵正方形ABCD 外切于⊙O ,∴∠A=∠D=∠AHP=90°,∴四边形AHPD 为矩形,∴∠OPD=90°,又∠OFD=90°,∴点P 于点F 重合,则HF 为⊙O 的直径,同理EG 为⊙O 的直径,由∠B=∠OGB=∠OHB=90°且OH=OG 知,四边形BGOH 为正方形, 同理四边形OGCF 、四边形OFDE 、四边形OEAH 均为正方形,∴BH=BG=GC=CF=2,∠HGO=∠FGO=45°,∴∠HGF=90°,GH=GF==2则阴影部分面积=S ⊙O +S △HGF =•π•22+×2×2 =2π+4,故答案为:2π+4.6.已知点A 〔a ,b 〕在双曲线y=上,假设a 、b 都是正整数,则图象经过B 〔a ,0〕、C 〔0,b 〕两点的一次函数的解析式〔也称关系式〕为 y=﹣5x +5或y=﹣x +1 .【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据反比例函数图象上点的坐标特征得出ab=5,由a 、b 都是正整数,得到a=1,b=5或a=5,b=1.再分两种情况进行讨论:当a=1,b=5;②a=5,b=1,利用待定系数法即可求解.【解答】解:∵点A 〔a ,b 〕在双曲线y=上,∴ab=5,∵a 、b 都是正整数,∴a=1,b=5或a=5,b=1.设经过B 〔a ,0〕、C 〔0,b 〕两点的一次函数的解析式为y=mx +n .①当a=1,b=5时,由题意,得,解得,∴y=﹣5x+5;②当a=5,b=1时,由题意,得,解得,∴y=﹣x+1.则所求解析式为y=﹣5x+5或y=﹣x+1.故答案为y=﹣5x+5或y=﹣x+1.二、选择题〔本大题共8个小题,每题只有一个正确答案,每题4分,共32分〕7.作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为〔〕A.6.7×105B.6.7×106C.0.67×107D.67×108【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:6700000=6.7×106.故选:B.8.下面长方体的主视图〔主视图也称正视图〕是〔〕A.B.C.D.【分析】根据正视图是从物体正面看到的平面图形,据此选择正确答案.【解答】解:长方体的主视图〔主视图也称正视图〕是故选C.9.以下计算正确的选项是〔〕A.2a×3a=5a B.〔﹣2a〕3=﹣6a3C.6a÷2a=3a D.〔﹣a3〕2=a6【考点】4I:整式的混合运算.【分析】根据整式的混合运算即可求出答案.【解答】解:〔A〕原式=6a2,故A错误;〔B〕原式=﹣8a3,故B错误;〔C〕原式=3,故C错误;故选〔D〕10.已知一个多边形的内角和是900°,则这个多边形是〔〕A.五边形B.六边形C.七边形D.八边形【考点】L3:多边形内角与外角.【分析】设这个多边形是n边形,内角和是〔n﹣2〕•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,则〔n﹣2〕•180°=900°,解得:n=7,即这个多边形为七边形.故此题选C.11.sin60°的值为〔〕A.B.C.D.【分析】直接根据特殊角的三角函数值进行计算即可.【解答】解:sin60°=.故选B.12.以下说法正确的选项是〔〕A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,假设他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D.某次抽奖活动中,中奖的概率为表示每抽奖50次就有一次中奖【考点】X3:概率的意义;V2:全面调查与抽样调查;W1:算术平均数;W4:中位数;W7:方差.【分析】分别根据全面调查与抽样调查的意义、中位数的定义、方差的定义及概率的意义对各选项进行逐一判断即可.【解答】解:A、∵要了解灯泡的使用寿命破坏性极大,∴只能采用抽样调查的方法,故本选项正确;B、∵4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为102.5,故本选项错误;C、甲乙两人各自跳远10次,假设他们跳远成绩的平均数相同,甲乙跳远成绩的方差不能确定,故本选项错误;D、某次抽奖活动中,中奖的概率为表示每抽奖50次可能有一次中奖,故本选项错误.故选A.13.正如我们小学学过的圆锥体积公式V=πr2h〔π表示圆周率,r表示圆锥的地面半径,h表示圆锥的高〕一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究说明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹〔小竹棍或小竹片〕进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,假设该圆锥的体积等于9π,则这个圆锥的高等于〔〕A.B.C.D.【考点】MP:圆锥的计算.【分析】设母线长为R,底面圆半径为r,根据弧长公式、扇形面积公式以及圆锥体积公式即可求出圆锥的高【解答】解:设母线长为R,底面圆半径为r,圆锥的高为h,由于圆锥的侧面展开图是个半圆∴侧面展开图的弧长为:=πR,∵底面圆的周长为:2πr,∴πR=2πr,∴R=2r,∴由勾股定理可知:h=r,∵圆锥的体积等于9π∴9π=πr2h,∴r=3,∴h=3故选〔D〕14.如图,B、C是⊙A上的两点,AB的垂直平分线与⊙A交于E、F两点,与线段AC交于D点.假设∠BFC=20°,则∠DBC=〔〕A.30°B.29°C.28°D.20°【考点】M5:圆周角定理;KG:线段垂直平分线的性质.【分析】利用圆周角定理得到∠BAC=40°,根据线段垂直平分线的性质推知AD=BD,然后结合等腰三角形的性质来求∠ABD、∠ABC的度数,从而得到∠DBC.【解答】解:∵∠BFC=20°,∴∠BAC=2∠BFC=40°,∵AB=AC,∴∠ABC=∠ACB==70°.又EF是线段AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故选:A.三、解答题〔共9个小题,总分值70分〕15.如图,点E、C在线段BF上,BE=CF,AB=DE,AC=DF.求证:∠ABC=∠DEF.【考点】KD:全等三角形的判定与性质.【分析】先证明△ABC≌△DEF,然后利用全等三角形的性质即可求出∠ABC=∠DEF.【解答】解:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC与△DEF中,∴△ABC≌△DEF〔SSS〕∴∠ABC=∠DEF16.观察以下各个等式的规律:第一个等式:=1,第二个等式:=2,第三个等式:=3…请用上述等式反映出的规律解决以下问题:〔1〕直接写出第四个等式;〔2〕猜想第n个等式〔用n的代数式表示〕,并证明你猜想的等式是正确的.【考点】37:规律型:数字的变化类.【分析】〔1〕根据题目中的式子的变化规律可以写出第四个等式;〔2〕根据题目中的式子的变化规律可以猜想出第n等式并加以证明.【解答】解:〔1〕由题目中式子的变化规律可得,第四个等式是:;〔2〕第n个等式是:,证明:∵====n,∴第n个等式是:.17.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.〔1〕请补全条形统计图;〔2〕假设该校共有志愿者600人,则该校九年级大约有多少志愿者?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】〔1〕根据百分比=计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;〔2〕用样本估计总体的思想,即可解决问题;【解答】解:〔1〕由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人九年级被抽到的志愿者:50×20%=10人,条形图如下图:〔2〕该校共有志愿者600人,则该校九年级大约有600×20%=120人,答:该校九年级大约有120名志愿者18.某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.〔1〕该商店第一次购进水果多少千克?〔2〕假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.假设两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】〔1〕首先根据题意,设该商店第一次购进水果x千克,则第二次购进水果2x千克,然后根据:〔 +2〕×第二次购进的水果的重量=2400,列出方程,求出该商店第一次购进水果多少千克即可.〔2〕首先根据题意,设每千克水果的标价是x元,然后根据:〔两次购进的水果的重量﹣20〕×x+20×0.5x≥两次购进水果需要的钱数+950,列出不等式,求出每千克水果的标价是多少即可.【解答】解:〔1〕设该商店第一次购进水果x千克,则第二次购进水果2x千克,〔+2〕×2x=2400整理,可得:2000+4x=2400解得x=100经检验,x=100是原方程的解答:该商店第一次购进水果100千克.〔2〕设每千克水果的标价是x元,则×x+20×0.5x≥1000+2400+950整理,可得:290x≥4350解得x≥15∴每千克水果的标价至少是15元.答:每千克水果的标价至少是15元.19.在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.〔1〕用列表法或树状图法〔树状图也称树形图〕中的一种方法,写出所有可能出现的结果;〔2〕求两次取出的小球上的数字相同的概率P.【考点】X6:列表法与树状图法.【分析】〔1〕根据题意先画出树状图,得出所有可能出现的结果数;〔2〕根据〔1〕可得共有9种情况,两次取出小球上的数字相同有3种:〔6,6〕、〔﹣2,﹣2〕、〔7,7〕,再根据概率公式即可得出答案.【解答】解:〔1〕根据题意画图如下:所有可能出现的结果共有9种;〔2〕∵共有9种情况,两次取出小球上的数字相同的有3种情况,∴两次取出小球上的数字相同的概率为=.20.如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F 分别是AB、AC的中点.〔1〕求证:四边形AEDF是菱形;〔2〕如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF 的面积S.【考点】LA:菱形的判定与性质;KH:等腰三角形的性质.【分析】〔1〕先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;〔2〕设EF=x,AD=y,则x+y=7,进而得到x2+2xy+y2=49,再根据Rt△AOE中,AO2+EO2=AE2,得到x2+y2=36,据此可得xy=,进而得到菱形AEDF的面积S.【解答】解:〔1〕∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=AB=AE,Rt△ACD中,DF=AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF是菱形;〔2〕如图,∵菱形AEDF的周长为12,∴AE=3,设EF=x,AD=y,则x+y=7,∴x2+2xy+y2=49,①∵AD⊥EF于O,∴Rt△AOE中,AO2+EO2=AE2,∴〔y〕2+〔x〕2=32,即x2+y2=36,②把②代入①,可得2xy=13,∴xy=,∴菱形AEDF的面积S=xy=.21.已知二次函数y=﹣2x2+bx+c图象的顶点坐标为〔3,8〕,该二次函数图象的对称轴与x轴的交点为A,M是这个二次函数图象上的点,O是原点.〔1〕不等式b+2c+8≥0是否成立?请说明理由;〔2〕设S是△AMO的面积,求满足S=9的所有点M的坐标.【考点】HA:抛物线与x轴的交点;H4:二次函数图象与系数的关系.【分析】〔1〕由题意可知抛物线的解析式为y=﹣2〔x﹣3〕2+8,由此求出b、c 即可解决问题.〔2〕设M〔m,n〕,由题意•3•|n|=9,可得n=±6,分两种情形列出方程求出m的值即可;【解答】解:〔1〕由题意抛物线的顶点坐标〔3,8〕,∴抛物线的解析式为y=﹣2〔x﹣3〕2+8=﹣2x2+12x﹣10,∴b=12,c=﹣10,∴b+2c+8=12﹣20+8=0,∴不等式b+2c+8≥0成立.〔2〕设M〔m,n〕,由题意•3•|n|=9,∴n=±6,①当n=6时,6=﹣2m2+12m﹣10,解得m=2或4,②当n=﹣6时,﹣6=﹣2m2+12m﹣10,解得m=3±,∴满足条件的点M的坐标为〔2,6〕或〔4,6〕或〔3+,﹣6〕或〔3﹣,﹣6〕.22.在学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程,建设美丽中国的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具.下表是租车公司提供应学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.〔1〕设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式〔也称关系式〕,请直接写出x的取值范围;〔2〕假设要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?【考点】FH:一次函数的应用;C9:一元一次不等式的应用.【分析】〔1〕根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;〔2〕列出不等式,求出自变量x的取值范围,利用函数的性质即可解决问题;【解答】解:〔1〕由题意:y=380x+280〔62﹣x〕=100x+17360.∵30x+20〔62﹣x〕≥1441,∴x≥20.1,∴21≤x≤62.〔2〕由题意100x+17360≤21940,∴x≤45.8,∴21≤x≤45,∴共有25种租车方案,x=21时,y有最小值=175700元.23.已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M 是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM 上的点连线距离的最小值为f.〔1〕求证:PC是⊙O的切线;〔2〕设OP=AC,求∠CPO的正弦值;〔3〕设AC=9,AB=15,求d+f的取值范围.【考点】MR:圆的综合题.【分析】〔1〕连接OC,根据等腰三角形的性质得到∠A=∠OCA,由平行线的性质得到∠A=∠BOP,∠ACO=∠COP,等量代换得到∠COP=∠BOP,由切线的性质得到∠OBP=90°,根据全等三角形的性质即可得到结论;〔2〕过O作OD⊥AC于D,根据相似三角形的性质得到CD•OP=OC2,根据已知条件得到=,由三角函数的定义即可得到结论;〔3〕连接BC,根据勾股定理得到BC==12,当M与A重合时,得到d+f=12,当M与B重合时,得到d+f=9,于是得到结论.【解答】解:〔1〕连接OC,∵OA=OC,∴∠A=∠OCA,∵AC∥OP,∴∠A=∠BOP,∠ACO=∠COP,∴∠COP=∠BOP,∵PB是⊙O的切线,AB是⊙O的直径,∴∠OBP=90°,在△POC与△POB中,,∴△COP≌△BOP,∴∠OCP=∠OBP=90°,∴PC是⊙O的切线;〔2〕过O作OD⊥AC于D,∴∠ODC=∠OCP=90°,CD=AC,∵∠DCO=∠COP,∴△ODC∽△PCO,∴,∴CD•OP=OC2,∵OP=AC,∴AC=OP,∴CD=OP,∴OP•OP=OC2∴=,∴sin∠CPO==;〔3〕连接BC,∵AB是⊙O的直径,∴AC⊥BC,∵AC=9,AB=15,∴BC==12,当M与A重合时,d=0,f=BC=12,∴d+f=12,当M与B重合时,d=9,f=0,∴d+f=9,∴d+f的取值范围是:9≤d+f≤12.。
全国各地市中考数学试题汇编WORD精校试卷 (5套)目录2017年北京市中考数学试题······························2017年北京市中考数学试题参考答案······················2017年上海市中考数学试题······························2017年上海市中考数学试题参考答案······················2017年天津市中考数学试题······························2017年天津市中考数学试题参考答案······················2017年重庆市中考数学试题A卷··························2017年重庆市中考数学试题A卷参考答案··················2017年重庆市中考数学试题B卷··························2017年重庆市中考数学试题B卷参考答案··················绝密★启用前 试卷类型:A二〇一七年北京市初中学业水平考试数学试题一、选择题(本题共30分,每小题3分)1.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B . 线段PB 的长度C .线段PC 的长度D .线段PD 的长度 2.若代数式4xx -有意义,则实数x 的取值范围是( ) A .0x = B .4x = C .0x ≠ D .4x ≠ 3. 右图是某个几何题的展开图,该几何体是( )A . 三棱柱B . 圆锥C .四棱柱D . 圆柱4. 实数,,,a b c d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .4a >-B .0bd > C. a b > D .0b c +> 5.下列图形中,是轴对称图形但不是中心对称图形的是( )A .B .C. D .6.若正多边形的一个内角是150°,则该正多边形的边数是( ) A . 6 B . 12 C. 16 D .187. 如果2210a a +-=,那么代数式242a a a a ⎛⎫- ⎪-⎝⎭的值是( )A . -3B . -1 C. 1 D .38.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况. 2011-2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》) 根据统计图提供的信息,下列推理不合理的是( )A .与2015年相比,2016年我国与东欧地区的贸易额有所增长B .2011-2016年,我国与东南亚地区的贸易额逐年增长C. 2011-2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多9.小苏和小林在右图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如下图所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C. 小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次10. 下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③ 若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620. 其中合理的是( )A .①B .② C. ①② D .①③二、填空题(本题共18分,每题3分)11. 写出一个比3大且比4小的无理数:______________.12. 某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________.13.如图,在ABC ∆中,M N 、分别为,AC BC 的中点.若1CMN S ∆=,则ABNM S =四边形 .14.如图,AB 为O 的直径,C D 、为O 上的点,AD CD =.若040CAB ∠=,则CAD ∠= .15.如图,在平面直角坐标系xOy 中,AOB ∆可以看作是OCD ∆经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由OCD ∆得到AOB ∆的过程: .16.下图是“作已知直角三角形的外接圆”的尺规作图过程 已知:0,90Rt ABC C ∆∠=,求作Rt ABC ∆的外接圆.作法:如图.(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于,P Q 两点; (2)作直线PQ ,交AB 于点O ; (3)以O 为圆心,OA 为半径作O .O 即为所求作的圆.请回答:该尺规作图的依据是 .三、解答题 (本题共72分,第17题-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、证明过程或演算步骤.17.计算:(04cos3012+-.18. 解不等式组:()21571023x x x x ⎧+>-⎪⎨+>⎪⎩19.如图,在ABC ∆中,0,36AB AC A =∠=,BD 平分ABC ∠交AC 于点D . 求证:AD BC =.20. 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.21.关于x 的一元二次方程()23220x k x k -+++=.(1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k 的取值范围.22. 如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长. 23. 如图,在平面直角坐标系xOy 中,函数()0ky x x=>的图象与直线2y x =-交于点()3,A m . (1)求k m 、的值;(2)已知点()(),0P n n n >,过点P 作平行于x 轴的直线,交直线2y x =-于点M ,过点P 作平行于y 轴的直线,交函数()0ky x x=>的图象于点N . ①当1n =时,判断线段PM 与PN 的数量关系,并说明理由; ②若PN PM ≥,结合函数的图象,直接写出n 的取值范围.24.如图,AB 是O 的一条弦,E 是AB 的中点,过点E 作EC OA ⊥于点C ,过点B 作O 的切线交CE 的延长线于点D .(1)求证:DB DE =;(2)若12,5AB BD ==,求O 的半径.25.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整. 收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下: 甲 78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77 乙 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40 整理、描述数据按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格) 分析数据两组样本数据的平均数、中位数、众数如下表所示:得出结论:a.估计乙部门生产技能优秀的员工人数为____________;b.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)⊥交AB于点M,连接MB,过点P作26.如图,P是AB所对弦AB上一动点,过点P作PM AB、两点间的距离为xcm,P N=,设A P、两点间的距离为ycm.(当AB cmPN MB⊥于点N.已知6点P与点A或点B重合时,y的值为0)小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.∆为等腰三角形时,AP的长度约为____________cm. (3)结合画出的函数图象,解决问题:当PAN27.在平面直角坐标系xOy 中,抛物线243y x x =-+与x 轴交于点A B 、(点A 在点B 的左侧),与y 轴交于点C .(1)求直线BC 的表达式;(2)垂直于y 轴的直线l 与抛物线交于点()()1122,,,P x y Q x y ,与直线BC 交于点()33,N x y ,若123x x x <<,结合函数的图象,求123x x x ++的取值范围.28.在等腰直角ABC ∆中,090ACB ∠=,P 是线段BC 上一动点(与点B C 、不重合),连接AP ,延长BC 至点Q ,使得CQ CP =,过点Q 作QH AP ⊥于点H ,交AB 于点M .(1)若PAC α∠=,求AMQ ∠的大小(用含α的式子表示).(2)用等式表示线段MB 与PQ 之间的数量关系,并证明.29.在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 上存在一点Q ,使得P Q 、两点间的距离小于或等于1,则称P 为图形M 的关联点.(1)当O 的半径为2时,①在点123115,0,,,,02222P P P ⎛⎛⎫⎛⎫ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭中,O 的关联点是_______________. ②点P 在直线y x =-上,若P 为O 的关联点,求点P 的横坐标的取值范围.(2)C 的圆心在x 轴上,半径为2,直线1y x =-+与x 轴、y 轴交于点A B 、.若线段AB 上的所有点都是C 的关联点,直接写出圆心C 的横坐标的取值范围.绝密★启用前试卷类型:A 二〇一七年上海市初中学业水平考试中考数学试题一、选择题(本大题共6小题,每小题4分,共24分)1.下列实数中,无理数是()A.0 B C.﹣2 D.2 72.下列方程中,没有实数根的是()A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1=0 D.x2﹣2x+2=03.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<04.数据2、5、6、0、6、1、8的中位数和众数分别是()A.0和6 B.0和8 C.5和6 D.5和85.下列图形中,既是轴对称又是中心对称图形的是()A.菱形 B.等边三角形C.平行四边形D.等腰梯形6.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB二、填空题(本大题共12小题,每小题4分,共48分)7.计算:2a﹒a2= .8.不等式组2620xx>⎧⎨->⎩的解集是.9=1的解是.10.如果反比例函数y=kx(k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y的值随x的值增大而.(填“增大”或“减小”)11.某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是微克/立方米.12.不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是.13.已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是 . 14.某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是 万元.15.如图,已知AB ∥CD ,CD=2AB ,AD 、BC 相交于点E ,设A E a = ,BE b = ,那么向量CD 用向量a 、b表示为 .16.一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA 与边FE 叠合,顶点B 、C 、D 在一条直线上).将三角尺DEF 绕着点F 按顺时针方向旋转n°后(0<n <180 ),如果EF ∥AB ,那么n 的值是 .17.如图,已知Rt △ABC ,∠C=90°,AC=3,BC=4.分别以点A 、B 为圆心画圆.如果点C 在⊙A 内,点B 在⊙A 外,且⊙B 与⊙A 内切,那么⊙B 的半径长r 的取值范围是 .18.我们规定:一个正n 边形(n 为整数,n ≥4)的最短对角线与最长对角线长度的比值叫做这个正n 边形的“特征值”,记为λn ,那么λ6= .三、解答题(本大题共7小题,共78分)19﹣1)2﹣129 +(12)﹣1.20.解方程:231133x x x -=--.21.如图,一座钢结构桥梁的框架是△ABC ,水平横梁BC 长18米,中柱AD 高6米,其中D 是BC 的中点,且AD ⊥BC . (1)求sinB 的值;(2)现需要加装支架DE 、EF ,其中点E 在AB 上,BE =2AE ,且EF ⊥BC ,垂足为点F ,求支架DE 的长.22.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.23.已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.24.已知在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B.(1)求这条抛物线的表达式和点B的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.25.如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.(1)求证:△OAD∽△ABD;(2)当△OCD是直角三角形时,求B、C两点的距离;(3)记△AOB、△AOD、△COD 的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长.2017年上海市中考数学试卷参考答案与标准答案一、选择题(本大题共6小题,每小题4分,共24分)1-5.BDBCA 6.C二、填空题(本大题共12小题,每小题4分,共48分)7.2a38.x>39.x=210.减小11.40.512.13.y=2x2﹣114.12015.+216.4517.8<r<10.18.三、解答题(本大题共7小题,共78分)19.(10分)解:原式=3+2﹣2+1﹣3+2=+2.20.(10分)解:两边乘x(x﹣3)得到3﹣x=x2﹣3x,∴x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,∴x=3或﹣1,经检验x=3是原方程的增根,∴原方程的解为x=﹣1.21.(10分)解:(1)在Rt△ABD中,∵BD=DC=9,AD=6,∴AB===3,∴sinB===.(2)∵EF∥AD,BE=2AE,∴===,∴==,∴EF=4,BF=6,∴DF=3,在Rt△DEF中,DE===5.22.(10分)解:(1)设y=kx+b,则有,解得,∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.23.(12分)证明:(1)在△ADE与△CDE中,,∴△ADE≌△CDE,∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四边形ABCD为平行四边形,∵AD=CD,∴四边形ABCD是菱形;(2)∵BE=BC∴∠BCE=∠BEC,∵∠CBE:∠BCE=2:3,∴∠CBE=180×=45°,∵四边形ABCD是菱形,∴∠ABE=45°,∴∠ABC=90°,∴四边形ABCD是正方形.24.(12分)解:(1)∵抛物线的对称轴为x=1,∴x=﹣=1,即=1,解得b=2.∴y=﹣x2+2x+c.将A(2,2)代入得:﹣4+4+c=2,解得:c=2.∴抛物线的解析式为y=﹣x2+2x+2.配方得:y=﹣(x﹣1)2+3.∴抛物线的顶点坐标为(1,3).(2)如图所示:过点A作AC⊥BM,垂足为C,则AC=1,C(1,2).∵M(1,m),C(1,2),∴MC=m﹣2.∴cot∠AMB==m﹣2.(3)∵抛物线的顶点坐标为(1,3),平移后抛物线的顶点坐标在x轴上,∴抛物线向下平移了3个单位.∴平移后抛物线的解析式为y=﹣x2+2x﹣1,PQ=3.∵OP=OQ,∴点O在PQ的垂直平分线上.又∵QP∥y轴,∴点Q与点P关于x轴对称.∴点Q的纵坐标为﹣.将y=﹣代入y=﹣x2+2x﹣1得:﹣x2+2x﹣1=﹣,解得:x=或x=.∴点Q的坐标为(,﹣)或(,﹣).25.(14分)(1)证明:如图1中,在△AOB和△AOC中,,∴△AOB≌△AOC,∴∠C=∠B,∵OA=OC,∴∠OAC=∠C=∠B,∵∠ADO=∠ADB,∴△OAD∽△ABD.(2)如图2中,∵BD⊥AC,OA=OC,∴AD=DC,∴BA=BC=AC,∴△ABC是等边三角形,在Rt△OAD中,∵OA=1,∠OAD=30°,∴OD=OA=,∴AD==,∴BC=AC=2AD=.(3)如图3中,作OH⊥AC于H,设OD=x.∵△DAO∽△DBA,∴==,∴==,∴AD=,AB=,∵S2是S1和S3的比例中项,∴S22=S1•S3,∵S2=AD•OH,S1=S△OAC=•AC•OH,S3=•CD•OH,∴(AD•OH)2=•AC•OH••CD•OH,∴AD2=AC•CD,∵AC=AB.CD=AC﹣AD=﹣,∴()2=•(﹣),整理得x2+x﹣1=0,解得x=或,经检验:x=是分式方程的根,且符合题意,∴OD=.绝密★启用前 试卷类型:A二〇一七年天津市初中学业水平考试数学试题一、选择题:1.计算5)3(+-的结果等于( )A .2B .2-C .8D .8- 2.060cos 的值等于( ) A 3 B .1 C .22D .213.在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为( )A .8101263.0⨯ B .710263.1⨯ C .61063.12⨯ D .5103.126⨯ 5.右图是一个由4个相同的正方体组成的立体图形,它的主视图是( )6.估计38的值在( )A .4和5之间B .5和6之间 C. 6和7之间 D .7和8之间 7.计算111+++a a a 的结果为( )A .1B .a C. 1+a D .11+a 8.方程组⎩⎨⎧=+=1532y x xy 的解是( )A .⎩⎨⎧==32y x B .⎩⎨⎧==34y x C. ⎩⎨⎧==84y x D .⎩⎨⎧==63y x 9.如图,将ABC ∆绕点B 顺时针旋转060得DBE ∆,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .E ABD ∠=∠B .C CBE ∠=∠ C. BC AD // D .BC AD = 10.若点),1(1y A -,),1(2y B ,),3(3y C 在反比例函数xy 3-=的图象上,则321,,y y y 的大小关系是( )A .321y y y <<B .132y y y << C. 123y y y << D .312y y y <<11.如图,在ABC ∆中,AC AB =,CE AD ,是ABC ∆的两条中线,P 是AD 上一个动点,则下列线段的长度等于EP BP +最小值的是( )A .BCB .CE C. AD D .AC12.已知抛物线342+-=x x y 与x 轴相交于点B A ,(点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点'M 落在x 轴上,点B 平移后的对应点'B 落在y 轴上,则平移后的抛物线解析式为( )A .122++=x x y B .122-+=x x y C. 122+-=x x y D .122--=x x y二、填空题13.计算47x x ÷的结果等于 .14.计算)74)(74(-+的结果等于 .15.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .16.若正比例函数kx y =(k 是常数,0≠k )的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点G F ,分别在边CD BC ,上,P 为AE 的中点,连接PG ,则PG 的长为 .18.如图,在每个小正方形的边长为1的网格中,点C B A ,,均在格点上. (1)AB 的长等于 ;(2)在ABC ∆的内部有一点P ,满足2:1:::=∆∆∆PCA PBC PAB S S S ,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题19.解不等式组⎩⎨⎧+≤≥+34521x x x①②请结合题意填空,完成本题的解答. (1)解不等式①,得 ; (2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .20.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为 ,图①中m 的值为 ; (2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.21.已知AB 是⊙O 的直径,AT 是⊙O 的切线,050=∠ABT ,BT 交⊙O 于点C ,E 是AB 上一点,延长CE 交⊙O 于点D .(1)如图①,求T ∠和CDB ∠的大小;(2)如图②,当BC BE =时,求CDO ∠的大小.22.如图,一艘海轮位于灯塔P 的北偏东064方向,距离灯塔120海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东045方向上的B 处,求BP 和BA 的长(结果取整数). 参考数据:05.264tan ,44.064cos ,90.064sin 000≈≈≈,2取414.1.23.用4A 纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元. 设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)根据题意,填写下表:(2)设在甲复印店复印收费1y 元,在乙复印店复印收费2y 元,分别写出21y y ,关于x 的函数关系式; (3)当70>x 时,顾客在哪家复印店复印花费少?请说明理由.24.将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A .(1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标; (2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).25.已知抛物线32-+=bx x y (b 是常数)经过点)0,1(-A .(1)求该抛物线的解析式和顶点坐标;(2))1,(m P 为抛物线上的一个动点,P 关于原点的对称点为'P . ①当点'P 落在该抛物线上时,求m 的值;②当点'P 落在第二象限内,2'A P 取得最小值时,求m 的值.2017年天津市中考数学试卷参考答案与评分标准一、选择题(本大题共12小题,每小题3分,共36分。