新高中人教B版数学必修三同步练习:模块综合检测(B)(含答案解析)
- 格式:doc
- 大小:355.50 KB
- 文档页数:11
模块综合测评(一)(时间:120分钟 满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知角α的终边过点P (-4m,3m )(m ≠0),则2sin α+cos α的值是( ) A .1或-1 B .25或-25C .1或-25D .-1或25B [当m >0时,2sin α+cos α=2×35+⎝⎛⎭⎫-45=25; 当m <0时,2sin α+cos α=2×⎝⎛⎭⎫-35+45=-25.] 2.已知向量a =(cos 75°,sin 75°),b =(cos 15°,sin 15°),则|a -b |的值为( ) A .12B .1C .2D .3B [如图,将向量a ,b 的起点都移到原点,即a =OA →,b =OB →,则|a -b |=|BA →|且∠xOA =75°,∠xOB =15°,于是∠AOB =60°,又因|a |=|b |=1,则△AOB 为正三角形,从而|BA →|=|a -b |=1.]3.函数f (x )=sin(2x +φ)(0<φ<π)的图像如图所示,为了得到g (x )=sin 2x 的图像,可将f (x )的图像( )A .向右平移π6个单位B .向右平移π12个单位C .向左平移π12个单位D .向左平移π6个单位A [因为f (x )=sin(2x +φ)(0<φ<π),函数图像过点⎝⎛⎭⎫7π12,-1,所以-1=sin ⎝⎛⎭⎫7π6+φ⇒φ=π3, 因此函数f (x )=sin ⎝⎛⎭⎫2x +π3的图像向右平移π6个单位得到函数g (x )=sin 2x 的图像,故选A .] 4.已知函数f (x )=(1+cos 2x )sin 2x ,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π2 的奇函数C .最小正周期为π的偶函数D .最小正周期为π2的偶函数D [f (x )=(1+cos 2x )1-cos 2x 2=12(1-cos 22x )=12-12×1+cos 4x 2=14-14cos 4x ,所以T =2π4=π2,f (-x )=f (x ),故选D .]5.如图所示是曾经在召开的国际数学家大会的会标,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是125,则sin 2θ-cos 2θ的值等于( )A .1B .-2425C .725D .-725D [依题意可知拼图中的每个直角三角形的长直角边长cos θ,短直角边为sin θ,小正方形的边长为cos θ-sin θ,因小正方形的面积是125,即(cos θ-sin θ)2=125,得cos θ=45,sin θ=35.即sin 2θ-cos 2θ=-725.]6.已知|p |=22,|q |=3,p ,q 的夹角为π4,如图,若AB →=5p +2q ,AC →=p -3q ,D 为BC的中点,则|AD →|为( )A .152B .152C .7D .18A [因为AD →=12(AC →+AB →)=12(6p -q ),所以|AD →|=|AD →|2=12(6p -q )2=1236p 2-12p·q +q 2=1236×(22)2-12×22×3×cos π4+32=152.]7.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)的最小正周期为π,则该函数的图像( ) A .关于点⎝⎛⎭⎫π12,0对称 B .关于点⎝⎛⎭⎫π6,0对称 C .关于直线x =π12对称D .关于直线x =π3对称C [因为T =2πω=π,所以ω=2,于是f (x )=sin ⎝⎛⎭⎫2x +π3,因为f (x )在对称轴上取到最值, 所以f ⎝⎛⎭⎫π12=sin ⎝⎛⎭⎫2×π12+π3=1≠0,A 不对; f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫2×π6+π3≠0,B 不对;又因为f ⎝⎛⎭⎫π12=sin ⎝⎛⎭⎫2×π12+π3=1,C 符合题意;f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫2×π3+π3≠±1,D 不对.] 8.如图所示,半圆的直径AB =4,O 为圆心,C 是半圆上不同于A ,B 的任意一点,若P 为半径OC 上的动点,则(P A →+PB →)·PC →的最小值是( )A .2B .0C .-1D .-2D [由平行四边形法则得P A →+PB →=2PO →,故(P A →+PB →)·PC →=2PO →·PC →,又|PC →|=2-|PO →|,且PO →,PC →反向,设|PO →|=t (0≤t ≤2), 则(P A →+PB →)·PC →=2PO →·PC →=-2t (2-t )=2(t 2-2t )=2[(t -1)2-1]. 因为0≤t ≤2,所以当t =1时,(P A →+PB →)·PC →有最小值,最小值为-2.]二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得5分,选对但不全的得3分,有选错的得0分)9.已知|a |=1,|b |=2,a =λb ,λ∈R ,则|a -b |可以为( ) A .0 B .1 C .2D .3BD [由a =λb 可知:a ∥b ,即a 与b 夹角为0或π,|a -b |2=a 2+b 2-2|a |·|b |·cos 0=|a |2+|b |2-2|a |·|b |=1+4-4=1或|a -b |2=a 2+b 2-2|a |·|b |cos π=|a |2+|b |2+2|a |·|b |=1+4+4=9,所以|a -b |=1或3.]10.下列选项中,值为14的是( )A .cos 72°cos 36°B .sinπ12sin 5π12C .1sin 50°+3cos 50°D .13-23cos 215°AB [对于A ,cos 36°cos 72°=2sin 36°cos 36°cos 72°2sin 36°=2sin 72°cos 72°4sin 36°=sin 144°4sin 36°=14,故A 正确;对于B ,sinπ12sin 5π12=sin π12cos π12=12·2sin π12cos π12=12sin π6=14,故B 正确; 对于C ,原式=cos 50°+3sin 50°sin 50°cos 50°=2⎝⎛⎭⎫32sin 50°+12cos 50°12sin 100°=2sin 80°12sin 100°=2sin 80°12sin 80°=4,故C 错误;对于D ,13-23cos 215°=-13(2cos 215°-1)=-13cos 30°=-36,故D 错误.]11.△ABC 中,AB →=c ,BC →=a ,CA →=b ,在下列命题中,是真命题的有( ) A .若a ·b >0,则△ABC 为锐角三角形 B .若a ·b =0,则△ABC 为直角三角形 C .若a ·b =c ·b ,则△ABC 为等腰三角形 D .若c ·a +c 2=0,则△ABC 为直角三角形 BCD [如图所示△ABC 中,AB →=c ,BC →=a ,CA →=b ,①若a ·b >0,则∠BCA 是钝角,△ABC 是钝角三角形,A 错误; ②若a ·b =0,则BC →⊥CA →,△ABC 为直角三角形,B 正确; ③若a ·b =c ·b ,b ·(a -c )=0,CA →·(BC →-AB →)=0,CA →·(BC →+BA →)=0,取AC 中点D ,则CA →·2BD →=0,所以BA =BC ,即△ABC 为等腰三角形,C 正确;④因为c ·a +c 2=AB →·BC →+AB →2=AB →·(BC →+AB →)=0,所以AB →·AC →=0,所以AB →⊥AC →,即D 正确.故选BCD .]12.对于函数f (x )=12cos ⎝⎛⎭⎫2x -π2,给出下列结论,正确的是( ) A .函数f (x )的最小正周期为2πB .函数f (x )在⎣⎡⎦⎤π6,π2上的值域是⎣⎡⎦⎤34,12 C .函数f (x )在⎣⎡⎦⎤π4,3π4上是减函数 D .函数f (x )的图像关于点⎝⎛⎭⎫-π2,0对称 CD [由诱导公式可得:f (x )=12cos ⎝⎛⎭⎫2x -π2=12sin 2x ,所以T =2πω=2π2=π≠2π,A 错误;若x ∈⎣⎡⎦⎤π6,π2,则2x ∈⎣⎡⎦⎤π3,π,12sin 2x ∈⎣⎡⎦⎤0,12,故函数f (x )在⎣⎡⎦⎤π6,π2上的值域是⎣⎡⎦⎤0,12,B 错误;令π2+2k π≤2x ≤3π2+2k π(k ∈Z ),即π4+k π≤x ≤3π4+k π(k ∈Z ),函数f (x )在⎣⎡⎦⎤π4+k π,3π4+k π(k ∈Z )上单调递减,当k =0时,函数f (x )在⎣⎡⎦⎤π4,3π4上是减函数,所以C 正确;令2x =k π(k ∈Z ),则x =k π2(k ∈Z ),函数f (x )=12sin 2x 的对称中心为⎝⎛⎭⎫k π2,0(k ∈Z ),当k =-1时,函数f (x )的图像关于点⎝⎛⎭⎫-π2,0对称,故D 正确.] 三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知向量a =(1-sin θ,1),b =⎝⎛⎭⎫12,1+sin θ(θ为锐角),且a ∥b ,则tan θ=________. 1[因为a ∥b ,所以(1-sin θ)(1+sin θ)-12=0.所以cos 2θ=12,因为θ为锐角,所以cos θ=22,所以θ=π4, 所以tan θ=1.]14.已知A (1,2),B (3,4),C (-2,2),D (-3,5),则向量AB →在CD →上的投影的数量为________.2105[AB →=(2,2),CD →=(-1,3). 所以AB →在CD →上的投影的数量为|AB →|cos 〈AB →,CD →〉=AB →·CD →|CD →|=2×(-1)+2×3(-1)2+32=410=2105.] 15.函数y =cos 2x -4sin x 的最小值为________;最大值为________.(本题第一空2分,第二空3分)-4 4[y =cos 2x -4sin x =1-sin 2x -4sin x =-(sin x +2)2+5, 因为sin x ∈[-1,1],所以当sin x =-1时,y max =-1+5=4; 当sin x =1时,y min =-9+5=-4.]16.若函数f (x )=2sin(ωx +φ)⎝⎛⎭⎫0<ω<π2,|φ|<π2的部分图像如图所示,A (0,3),C (2,0),并且AB ∥x 轴,则cos ∠ACB 的值为________.5714[由已知f (0)=2sin φ=3,又|φ|<π2, 所以φ=π3,所以f (x )=2sin ⎝⎛⎭⎫ωx +π3, 由f (2)=0,即2sin ⎝⎛⎭⎫2ω+π3=0, 所以2ω+π3=2k π+π,k ∈Z ,解得ω=k π+π3,k ∈Z ,而0<ω<π2,所以ω=π3,所以f (x )=2sin ⎝⎛⎭⎫π3x +π3,令f (x )=3,得π3x +π3=2k π+π3或π3x +π3=2k π+2π3,k ∈Z ,所以x =6k 或x =6k +1,由题干图可知,B (1,3). 所以CA →=(-2,3),CB →=(-1,3), 所以|CA →|=7,|CB →|=2,所以cos ∠ACB =CA →·CB →|CA →||CB →|=527=5714.]四、解答题(本大题共6小题,共70分. 解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知向量a =⎝⎛⎭⎫sin x ,32,b =(cos x ,-1). (1)当a ∥b 时,求2cos 2x -sin 2x 的值; (2)求f (x )=(a +b )·b 在⎣⎡⎦⎤-π2 ,0上的最大值. [解] (1)因为a ∥b ,所以32cos x +sin x =0,所以tan x =-32,2cos 2x -sin 2x =2cos 2x -2sin x cos x sin 2x +cos 2x =2-2tan x 1+tan 2x =2013.(2)f (x )=(a +b )·b =22sin ⎝⎛⎭⎫2x +π4. 因为-π2≤x ≤0,所以-3π4≤2x +π4≤π4,所以-1≤sin ⎝⎛⎭⎫2x +π4≤22, 所以-22≤f (x )≤12, 所以f (x )max =12.18.(本小题满分12分)设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β).(1)若a 与b -2c 垂直,求tan(α+β)的值; (2)求|b +c |的最大值;(3)若tan αtan β=16,求证:a ∥B . [解] (1)因为a 与b -2c 垂直,所以a ·(b -2c )=4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β=4sin(α+β)-8cos(α+β)=0,因此tan(α+β)=2.(2)由b +c =(sin β+cos β,4cos β-4sin β),得 |b +c |=(sin β+cos β)2+(4cos β-4sin β)2=17-15sin 2β≤4 2.又当β=-π4时,等号成立,所以|b +c |的最大值为4 2. (3)证明:由tan αtan β=16得4cos αsin β=sin α4cos β, 所以a ∥B .19.(本小题满分12分)已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈⎝⎛⎭⎫0,π2. (1)求sin θ和cos θ的值;(2)若5cos(θ-φ)=35cos φ,0<φ<π2 ,求cos φ的值.[解] (1)因为a·b =0,所以a·b =sin θ-2cos θ=0, 即sin θ=2cos θ.又因为sin 2θ+cos 2θ=1, 所以4cos 2θ+cos 2θ=1, 即cos 2θ=15,所以sin 2θ=45.又θ∈⎝⎛⎭⎫0,π2,所以sin θ=255,cos θ=55.(2)因为5cos(θ-φ)=5(cos θcos φ+sin θsin φ)=5cos φ+25sin φ=35cos φ, 所以cos φ=sin φ.所以cos 2φ=sin 2φ=1-cos 2φ,即cos 2φ=12.又因为0<φ<π2,所以cos φ=22.20.(本小题满分12分)已知函数f (x )=sin(π-ωx )cos ωx +cos 2ωx (ω>0)的最小正周期为π.(1)求ω的值;(2)将函数y =f (x )的图像上各点的横坐标缩短到原来的12 ,纵坐标不变,得到函数y =g (x )的图像,求函数g (x )在区间⎣⎡⎦⎤0,π16上的最小值. [解] (1)因为f (x )=sin(π-ωx )cos ωx +cos 2ωx ,所以f (x )=sin ωx cos ωx +1+cos 2ωx 2=12sin 2ωx +12cos 2ωx +12=22sin ⎝⎛⎭⎫2ωx +π4+12. 由于ω>0,依题意得2π2ω=π,所以ω=1.(2)由(1)知f (x )=22sin ⎝⎛⎭⎫2x +π4+12, 所以g (x )=f (2x )=22sin ⎝⎛⎭⎫4x +π4+12. 当0≤x ≤π16时,π4≤4x +π4≤π2,所以22≤sin ⎝⎛⎭⎫4x +π4≤1. 因此1≤g (x )≤1+22.故g (x )在区间⎣⎡⎦⎤0,π16上的最小值为1. 21.(本小题满分12分)已知函数f (x )=4cos 4x -2cos 2x -1sin ⎝⎛⎭⎫π4+x sin ⎝⎛⎭⎫π4-x .(1)求f ⎝⎛⎭⎫-1112 π的值; (2)当x ∈⎣⎡⎭⎫0,π4时,求g (x )=12f (x )+sin 2x 的最大值和最小值. [解] (1)f (x )=(1+cos 2x )2-2cos 2x -1sin ⎝⎛⎭⎫π4+x sin ⎝⎛⎭⎫π4-x =cos 22x sin ⎝⎛⎭⎫π4+x cos ⎝⎛⎭⎫π4+x =2cos 22x sin ⎝⎛⎭⎫π2+2x =2cos 22x cos 2x=2cos 2x , 所以f ⎝⎛⎭⎫-11π12=2cos ⎝⎛⎭⎫-11π6=2cos π6= 3. (2)g (x )=cos 2x +sin 2x =2sin ⎝⎛⎭⎫2x +π4. 因为x ∈⎣⎡⎦⎤0,π4, 所以2x +π4∈⎣⎡⎭⎫π4,3π4. 所以当x =π8时,g (x )max =2,当x =0时,g (x )min =1. 22.(本小题满分12分)已知向量a =(cos α,sin α),b =(cos β,sin β),|a -b |=255 . (1)求cos(α-β)的值;(2)若0<α<π2 ,-π2<β<0,且sin β=-513,求sin α. [解] (1)因为|a |=1,|b |=1,|a -b |2=|a |2-2a·b +|b |2=|a |2+|b |2-2(cos αcos β+sin αsin β)=1+1-2cos(α-β), |a -b |2=⎝⎛⎭⎫2552=45, 所以2-2cos(α-β)=45,得cos(α-β)=35. (2)因为-π2<β<0<α<π2, 所以0<α-β<π. 由cos(α-β)=35得sin(α-β)=45,由sin β=-513得cos β=1213.所以sin α=sin[(α-β)+β]=sin(α-β)cos β+cos(α-β)sin β=45×1213+35×⎝⎛⎭⎫-513=3365.。
2025人教B 版高中数学必修第三册7.2.2 单位圆与三角函数线基础过关练题组一 对三角函数线概念的理解1.(2024重庆缙云教育联盟月考)如图,已知点A 是单位圆与x 轴的一个交点,角α的终边与单位圆的交点为P,PM⊥x 轴于M,过点A 作单位圆的切线交角α的终边于T,则角α的正弦线、余弦线、正切线分别是( )A.OM ⃗⃗⃗⃗⃗⃗ ,AT ⃗⃗⃗⃗⃗ ,MP ⃗⃗⃗⃗⃗⃗B.OM ⃗⃗⃗⃗⃗⃗ ,MP ⃗⃗⃗⃗⃗⃗ ,AT ⃗⃗⃗⃗⃗C.MP ⃗⃗⃗⃗⃗⃗ ,AT ⃗⃗⃗⃗⃗ ,OM ⃗⃗⃗⃗⃗⃗D.MP ⃗⃗⃗⃗⃗⃗ ,OM ⃗⃗⃗⃗⃗⃗ ,AT⃗⃗⃗⃗⃗ 2.已知角α的正弦线是长度为单位长度的向量,那么角α的终边在( ) A.y 轴的非负半轴上 B.y 轴的非正半轴上 C.x 轴上 D.y 轴上3.(多选题)(2023辽宁葫芦岛月考)下列说法中正确的是( ) A.α一定时,单位圆中的正弦线也一定 B.在单位圆中,有相同正弦线的角相等 C.α和α+π有相同的余弦线D.具有相同正切线的两个角的终边在同一条直线上 4.给出下列三个说法: ⊥π6和5π6的正弦线长度相等; ⊥π3和4π3的正切线长度相等;⊥π4和5π4的余弦线长度相等.其中正确说法的个数为()A.1B.2C.3D.0题组二三角函数线的应用5.sin 1,sin 1.2,sin 1.5的大小关系是()A.sin 1>sin 1.2>sin 1.5B.sin 1>sin 1.5>sin 1.2C.sin 1.5>sin 1.2>sin 1D.sin 1.2>sin 1>sin 1.56.若-3π4<α<−π2,则sin α,cos α,tan α的大小关系是()A.sin α<tan α<cos αB.tan α<sin α<cos αC.cos α<sin α<tan αD.sin α<cos α<tan α7.(2022福建龙岩期末)已知cos α>cos β,那么下列结论成立的是()A.若α,β是第一象限角,则sin α>sin βB.若α,β是第二象限角,则tan α>tan βC.若α,β是第三象限角,则sin α>sin βD.若α,β是第四象限角,则tan α>tan β8.(2024山东青岛月考)依据三角函数线作出下列四个判断:⊥sinπ6=sin7π6;②cos(-π4)=cosπ4;③tanπ8>tan3π8;④sin3π5>sin4π5.其中判断正确的有(填序号).9.已知α⊥(0,π2),利用单位圆中的三角函数线证明下列不等式.(1)sin α<α<tan α;(2)sin α+cos α>1.答案与分层梯度式解析 7.2.2 单位圆与三角函数线基础过关练1.D 由三角函数线的定义可知,角α的正弦线、余弦线、正切线分别是MP ⃗⃗⃗⃗⃗⃗ ,OM ⃗⃗⃗⃗⃗⃗ ,AT ⃗⃗⃗⃗⃗ .故选D.2.D 由题意可知sin α=±1,故角α的终边在y 轴上.3.AD 显然A,D 正确;π6与5π6有相同的正弦线,但π6≠5π6,故B 错误;α与π+α的终边互为反向延长线,它们的余弦线方向相反,故C 错误. 4.C 在单位圆中分别作出π6和5π6的正弦线CA ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ ,由图可知,CA ⃗⃗⃗⃗⃗ =BD⃗⃗⃗⃗⃗⃗ ,故π6和5π6的正弦线长度相等.同理,在单位圆中分别作出π3和4π3的正切线,π4和5π4的余弦线(图略),可知⊥和⊥中说法均正确.故选C.5.C 易知0<1<1.2<1.5<π2.在同一平面直角坐标系中作出1,1.2,1.5的正弦线MA ⃗⃗⃗⃗⃗⃗ ,NB⃗⃗⃗⃗⃗⃗ ,QC ⃗⃗⃗⃗⃗ .由图可知,|MA ⃗⃗⃗⃗⃗⃗ |<|NB ⃗⃗⃗⃗⃗⃗ |<|QC ⃗⃗⃗⃗⃗ |,且MA ⃗⃗⃗⃗⃗⃗ ,NB ⃗⃗⃗⃗⃗⃗ ,QC ⃗⃗⃗⃗⃗ 与y 轴的正方向相同, ⊥sin 1<sin 1.2<sin 1.5. 6.D 如图,在单位圆中,作(-3π4,-π2)内的一个角α及其正弦线MP ⃗⃗⃗⃗⃗⃗ 、余弦线OM ⃗⃗⃗⃗⃗⃗ 、正切线AT ⃗⃗⃗⃗⃗ .由图知,|OM ⃗⃗⃗⃗⃗⃗ |<|MP ⃗⃗⃗⃗⃗⃗ |<|AT ⃗⃗⃗⃗⃗ |,又OM ⃗⃗⃗⃗⃗⃗ ,MP ⃗⃗⃗⃗⃗⃗ 分别与x 轴,y 轴的正方向相反,AT ⃗⃗⃗⃗⃗ 与y 轴的正方向相同,所以sin α<cos α<tan α.7.D对于A,由图(1)可知,cos α>cos β时,sin α<sin β,故A错误;对于B,由图(2)可知,cos α>cos β时,tan α<tan β,故B错误;对于C,由图(3)可知,cos α>cos β时,sin α<sin β,故C错误;对于D,由图(4)可知,cos α>cos β时,tan α>tan β,故D正确.8.答案⊥⊥解析⊥中,如图a所示,根据三角函数线,可得sinπ6>0,sin7π6<0,故sinπ6>sin7π6,所以⊥不正确;⊥中,如图b所示,根据三角函数线,可得-π4和π4的余弦线长度相等,方向相同,即cos(-π4)=cosπ4,所以⊥正确;⊥中,如图c所示,根据三角函数线,可得3π8的正切线的长度大于π8的正切线的长度,即tanπ8<tan3π8,所以⊥不正确;⊥中,如图d 所示,根据三角函数线,可得3π5的正弦线的长度大于4π5的正弦线的长度,即sin 3π5>sin4π5,所以⊥正确.故选⊥⊥.9.证明 (1)如图所示,设单位圆与x 轴的正半轴的交点为N,角α的终边与单位圆的交点为A,与直线x=1的交点为T,AM⊥x 轴于点M,则sin α=|MA ⃗⃗⃗⃗⃗⃗ |,tan α=|NT ⃗⃗⃗⃗⃗ |.连接AN,则S ⊥OAN <S 扇形AON <S ⊥ONT , 即12ON·MA<12ON 2·α<12ON·NT, ⊥MA<α<NT, ⊥sin α<α<tan α.(2)由(1)知,在⊥OAM 中,MA+OM>OA, 所以sin α+cos α>1.。
加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!第八章综合测试A 卷一、单项选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.22cos 75cos 15cos 75cos 15︒+︒+︒︒的值是( ) A .54B .62C .32D.213+2.已知锐角α满足3cos 65π=,则sin 3π=( ) A.1225B.1225±C.2425D.2425±3.已知OA =(2,8),OB =(7−,2),则13AB =( )A.(3,2)B.103C.32−−(,)D.544.已知平面向量a =(2,1−),b =(1,3),那么a b +等于( )A.5D.135.设向量a ,b 均为单位向量,且1a b +=,则a 与b 的夹角为( ) A.3πB.2π C.23π D.34π 6.若1a b ==,a b ⊥,且()()234a b ka b +⊥−,则k =( ) A.6−B.6C.3D.3−7.2sin cos sin y x x x =+可化为( )A.1242y x π⎡⎤=−+⎢⎥⎣⎦ B.1242y x π⎡⎤=+−⎢⎥⎣⎦C.1sin 242y x π⎡⎤=−+⎢⎥⎣⎦D.32sin 214y x π⎡⎤=++⎢⎥⎣⎦8.若平面向量()12a =−,与b 的夹角是180︒,且3b =,则b 的坐标为( ) A.(3,6−)B.(3−,6)C.(6,3−)D.(6−,3)9.若α为锐角,3sin tan ααβ=,则tan 2β等于( ) A.34B.43C.34−D.43−10.在ABC △中,若()2BC BA AC AC +⋅=,则ABC △的形状一定是( ) A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形二、多项选择题(本大题共2小题,每小题5分,共10分) 11.设向量a =(1,0),11,22b =⎛⎫⎪⎝⎭,则下列结论中正确的是( )A.a b >B.1·2a b =C.a b −与b 垂直D.a b ∥12.的是( ) A.2sin15cos15︒︒ B.22cos 15sin 15︒︒− C.212sin 15−︒D.22sin 15cos 15︒︒+三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上) 13.若向量a =(1,2),b =(1,1−),则2a b +与a b −的夹角等于________。
章末综合检测(七)(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若α的终边过点(2sin 30°,-2cos 30°),则sin α的值为( ) A.12 B .-12C .-32D .-33解析:选C.2sin 30°=1,-2cos 30°=-3, 所以x =1,y =-3,r =x 2+y 2=2,所以sin α=y r =-32.故选C.2.已知sin α=55,则sin 4α-cos 4α的值为( ) A .-15B .-35C.15D.35解析:选B.因为sin α=55,所以sin 2α=15,cos 2 α=1-sin 2 α=45,所以sin 4 α-cos 4 α=(sin 2α+cos 2α)(sin 2α-cos 2α)=15-45=-35.故选B.3.已知函数y =f (x )=2sin 2x ,则函数的图像的一条对称轴方程是( ) A .x =π B .x =-π C .x =π2D .x =-π4解析:选D.由2x =π2+k π(k ∈Z )可得,x =π4+k π2(k ∈Z ),当k =-1时,x =-π4.故选D.4.已知函数y =2cos x 的定义域为[π3,4π3],值域为[a ,b ],则b -a 的值是( )A .2B .3 C.3+2D .2 3解析:选B.根据函数y =2cos x 的定义域为[π3,4π3],故它的值域为[-2,1],再根据它的值域为[a ,b ],可得b -a =1-(-2)=3.故选B.5.对于函数y =sin ⎝⎛⎭⎫132π-x ,下面说法中正确的是( ) A .函数是最小正周期为π的奇函数 B .函数是最小正周期为π的偶函数 C .函数是最小正周期为2π的奇函数 D .函数是最小正周期为2π的偶函数 解析:选D.y =sin ⎝ ⎛⎭⎪⎫13π2-x =sin ⎣⎢⎡⎦⎥⎤6π+⎝ ⎛⎭⎪⎫π2-x =sin ⎝ ⎛⎭⎪⎫π2-x =cos x .所以T =2π且为偶函数.6.已知f (sin x )=x ,且x ∈⎣⎡⎦⎤0,π2,则f ⎝⎛⎭⎫12的值等于( ) A .sin 12B.12 C .-π6D.π6解析:选D.因为f (sin x )=x ,且x ∈⎣⎢⎡⎦⎥⎤0,π2,所以求f ⎝⎛⎭⎫12,即解sin x =12,且x ∈⎣⎢⎡⎦⎥⎤0,π2,所以x =π6,故选D.7.已知sin ⎝⎛⎭⎫α+π2=13,α∈⎝⎛⎭⎫-π2,0,则tan α等于( )A .-2 2B .2 2C .-24D.24解析:选A.sin ⎝ ⎛⎭⎪⎫α+π2=cos α=13.因为α∈⎝ ⎛⎭⎪⎫-π2,0,所以sin α=-1-cos 2 α=-223,所以tan α=sin αcos α=-2 2. 8.将函数y =sin x 的图像上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是( )A .y =sin ⎝⎛⎭⎫2x -π10B .y =sin ⎝⎛⎭⎫2x -π5C .y =sin ⎝⎛⎭⎫12x -π10D .y =sin ⎝⎛⎭⎫12x -π20解析:选C.由题意可得,y =sin x ――→向右平移π10个单位y =sin ⎝⎛⎭⎪⎫x -π10――→横坐标伸长2倍y =sin ⎝ ⎛⎭⎪⎫12x -π10. 9.同时具有性质“(1)最小正周期是π;(2)图像关于直线x =π3对称;(3)在⎣⎡⎦⎤-π6,π3上单调递增”的一个函数是( )A .y =sin ⎝⎛⎭⎫x 2+π6B .y =cos ⎝⎛⎭⎫2x +π3C .y =sin ⎝⎛⎭⎫2x -π6D .y =cos ⎝⎛⎭⎫2x -π6解析:选C.由(1)知T =π=2πω,ω=2,排除A.由(2)(3)知x =π3时,f (x )取最大值,验证知只有C 符合要求.10.已知α∈(0,π2),且4tan(2π+α)+3sin(6π+β)-10=0,-2tan(-α)-12sin(-β)+2=0,则tan α的值为( )A .-3B .3C .±3D .不确定解析:选B.将条件化为⎩⎪⎨⎪⎧4tan α+3sin β-10=0,①2tan α+12sin β+2=0.②由①×4-②得14tan α-42=0, 所以tan α=3.故选B.11.如图为函数f (x )=M sin(ωx +φ)(M >0,ω>0,π2≤φ≤π)的部分图像,若点A ,B分别为函数f (x )的最高点与最低点,且|AB |=5,那么f (-1)=( )A .2 B. 3 C .- 3D .-2解析:选A.由题图,可知M =2,f (0)=1, 即2sin φ=1,解得sin φ=12,又因为π2≤φ≤π,所以φ=5π6.又A ,B 两点是函数图像上的最高点和最低点,设A (x 1,2),B (x 2,-2), 由题意知|AB |=5,即(x 2-x 1)2+(-2-2)2=5,解得|x 2-x 1|=3.由题图,可知A ,B 两点横坐标之差的绝对值为最小正周期的一半,即|x 2-x 1|=T2,而T=2πω,故πω=3,解得ω=π3,所以f (x )=2sin ⎝ ⎛⎭⎪⎫π3x +5π6,故f (-1)=2sin ⎝ ⎛⎭⎪⎫-π3+5π6=2sin π2=2,故选A.12.已知函数f (x )=2sin(ωx +φ)(x ∈R ),其中ω>0,-π<φ≤π.若f (x )的最小正周期为6π,且当x =π2时,f (x )取得最大值,则( )A .f (x )在区间[-2π,0]上是增函数B .f (x )在区间[-3π,-π]上是增函数C .f (x )在区间[3π,5π]上是减函数D .f (x )在区间[4π,6π]上是减函数 解析:选A.由函数的周期可得ω=13,故f (x )=2sin ⎝⎛⎭⎫13x +φ,又f ⎝ ⎛⎭⎪⎫π2=2sin ⎝⎛⎭⎫16π+φ=2,解得16π+φ=2k π+π2⇒φ=2k π+π3(k ∈Z ),又-π<φ≤π,故φ=π3,因此f (x )=2sin ⎝ ⎛⎭⎪⎫13x +π3.即当x ∈[-2π,0],13x +π3∈⎣⎢⎡⎦⎥⎤-π3,π3,函数在区间[-2π,0]上为增函数,故选A.二、填空题:本题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.函数y =25-x 2+log 3sin(π-x )的定义域为________. 解析:因为y =25-x 2+log 3sin(π-x )=25-x 2+log 3sin x ,所以要使函数有意义,则⎩⎪⎨⎪⎧25-x 2≥0,sin x >0,所以⎩⎪⎨⎪⎧-5≤x ≤5,2k π<x <2k π+π(k ∈Z ).所以-5≤x <-π或0<x <π.答案:[-5,-π)∪(0,π)14.将cos 0,cos 12,cos 1,cos 30°按从小到大的顺序排列为________.解析:因为0<12<π6<1,cos x 在(0,π)上是减函数.所以cos 0>cos 12>cos 30°>cos 1.答案:cos 1<cos 30°<cos 12<cos 015.已知tan θ=2,则4sin θ-2cos θ5cos θ+3sin θ=________.解析:原式=4tan θ-25+3tan θ=611.答案:61116.函数f (x )=sin(ωx +φ)(ω>0,φ∈[0,2π)的部分图像如图所示,则f (2 016)=________.解析:由题图可知,T4=2,所以T =8,所以ω=π4.由点(1,1)在函数图像上,可得f (1)=sin ⎝ ⎛⎭⎪⎫π4+φ=1,故π4+φ=2k π+π2(k ∈Z ), 所以φ=2k π+π4(k ∈Z ),又φ∈[0,2π),所以φ=π4.故f (x )=sin ⎝ ⎛⎭⎪⎫π4x +π4,所以f (2 016)=sin ⎝⎛⎭⎪⎫2 016π4+π4 =sin ⎝ ⎛⎭⎪⎫504π+π4=sin π4=22.答案:22三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知α是第三象限角,且f (α)=sin (-α-π)cos (5π-α)tan (2π-α)cos ⎝⎛⎭⎫π2-αtan (-π-α).(1)化简f (α);(2)若tan(π-α)=-2,求f (α)的值.解:(1)f (α)=sin α·(-cos α)·(-tan α)sin α·(-tan α)=-cos α.(2)由已知得tan α=2,sin αcos α=2,sin α=2cos α,sin 2α=4cos 2α,1-cos 2α=4cos 2α,cos 2α=15.因为α是第三象限角, 所以cos α<0, 所以cos α=-55,所以f (α)=-cos α=55. 18.(本小题满分12分)已知函数f (x )=2cos ⎝⎛⎭⎫π3-2x . (1)若f (x )=1,x ∈⎣⎡⎦⎤-π6,π4,求x 的值;(2)求f (x )的单调递增区间.解:(1)根据题意知cos ⎝ ⎛⎭⎪⎫π3-2x =12,所以π3-2x =2k π±π3(k ∈Z ).又x ∈⎣⎢⎡⎦⎥⎤-π6,π4,所以x =0.(2)易知2k π≤π3-2x ≤2k π+π(k ∈Z ),解得-k π-π3≤x ≤-k π+π6(k ∈Z ),即k π-π3≤x ≤k π+π6(k ∈Z ),从而f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ).19.(本小题满分12分)设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )图像的一个对称中心是⎝⎛⎭⎫π8,0.(1)求φ;(2)求函数y =f (x )的单调递增区间.解:(1)因为⎝ ⎛⎭⎪⎫π8,0是函数y =f (x )的图像的对称中心,所以sin ⎝ ⎛⎭⎪⎫2×π8+φ=0,所以π4+φ=k π(k ∈Z ),所以φ=k π-π4(k ∈Z ).因为-π<φ<0, 所以φ=-π4.(2)由(1)知φ=-π4,因此y =sin ⎝⎛⎭⎪⎫2x -π4,由题意得,2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),即k π-π8≤x ≤k π+3π8(k ∈Z ),所以函数y =sin(2x -π4)的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ).20.(本小题满分12分)已知x ∈⎣⎡⎦⎤-π3,2π3.(1)求函数y =cos x 的值域;(2)求函数y =-3sin 2x -4cos x +4的值域.解:(1)因为y =cos x 在⎣⎢⎡⎦⎥⎤-π3,0上为增函数,在⎣⎢⎡⎦⎥⎤0,2π3上为减函数,所以当x =0时,y 取最大值1;x =2π3时,y 取最小值-12.所以y =cos x 的值域为⎣⎡⎦⎤-12,1. (2)原函数化为y =3cos 2x -4cos x +1, 即y =3⎝⎛⎭⎫cos x -232-13, 由(1)知,cos x ∈⎣⎡⎦⎤-12,1, 故y 的值域为⎣⎡⎦⎤-13,154. 21.(本小题满分12分)设函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,-π2<φ<π2,x ∈R 的部分图像如图所示.(1)求函数y =f (x )的解析式;(2)当x ∈⎣⎡⎦⎤-π2,π2时,求f (x )的取值范围.解:(1)由图像知,A =2, 又T 4=5π6-π3=π2,ω>0, 所以T =2π=2πω,得ω=1.所以f (x )=2sin(x +φ),将点⎝ ⎛⎭⎪⎫π3,2代入,得π3+φ=2k π+π2(k ∈Z ), 即φ=π6+2k π(k ∈Z ),又因为-π2<φ<π2,所以φ=π6,所以f (x )=2sin ⎝ ⎛⎭⎪⎫x +π6.(2)当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时,x +π6∈⎣⎢⎡⎦⎥⎤-π3,2π3,所以sin ⎝ ⎛⎭⎪⎫x +π6∈⎣⎡⎦⎤-32,1,即f (x )∈[-3,2].22.(本小题满分12分)已知函数y =sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2,在同一个周期内,当x =π4时,y 取最大值1,当x =7π12时,y 取最小值-1.(1)求函数的解析式y =f (x ),并说明函数y =sin x 的图像经过怎样的变换可得到y =f (x )的图像?(2)若函数f (x )满足方程f (x )=a (0<a <1),求此方程在[0,2π]内的所有实数根之和. 解:(1)因为T =2×⎝ ⎛⎭⎪⎫7π12-π4=2π3,所以ω=2πT =3.又sin ⎝⎛⎭⎪⎫3π4+φ=1,所以3π4+φ=2k π+π2,k ∈Z .又|φ|<π2,所以φ=-π4,所以y =f (x )=sin ⎝⎛⎭⎪⎫3x -π4.y =sin x 的图像向右平移π4个单位长度,得到y =sin ⎝ ⎛⎭⎪⎫x -π4的图像,再将y =sin ⎝ ⎛⎭⎪⎫x -π4的图像上的所有点的横坐标缩短为原来的13倍,纵坐标不变,得到y =sin ⎝⎛⎭⎪⎫3x -π4的图像.(2)因为f (x )=sin ⎝ ⎛⎭⎪⎫3x -π4的最小正周期为2π3,所以f (x )=sin ⎝⎛⎭⎪⎫3x -π4在[0,2π]内恰有3个周期,所以sin ⎝ ⎛⎭⎪⎫3x -π4=a (0<a <1)在[0,2π]内有6个实数根,从小到大设为x 1,x 2,x 3,x 4,x 5,x 6,则x 1+x 2=π4×2=π2,x 3+x 4=⎝ ⎛⎭⎪⎫π4+2π3×2=11π6, x 5+x 6=⎝ ⎛⎭⎪⎫π4+2π3×2×2=19π6, 故所有实数根之和为π2+11π6+19π6=11π2.。
练习模块综合测评 (B)( 本栏目内容,在学生用书中以活页形式分册装订!)( 时间 120 分钟,满分150 分)一、选择题 ( 本大题共12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.用“更相减损术”求225 与 135 的最大条约数为()A.45B. 5C.9D. 15分析:225- 135= 90,135 - 90= 45,90 - 45= 45,所以选A.答案: A2.某社区有500 个家庭,此中高收入家庭125 户,中等收入家庭280 户,低收入家庭95 户,为了检查社会购置力的某项指标,要从中抽取一个容量为100 户的样本,记作①. 某学校高一年级有12 名女排运动员,要从中选出 3 人检查学习负担状况,记作②. 那么达成上述两项检查应采纳的抽样方法是()A.①用随机抽样法,②用系统抽样法B.①用分层抽样法,②用随机抽样法C.①用系统抽样法,②用分层抽样法D.①用分层抽样法,②用系统抽样法分析:①中拥有显然的分层,适适用分层抽样法,②中整体容量,样本容量都较小,适适用随机抽样法.应选 B.答案: B3.在一次随机试验中,相互互斥的事件A、 B、 C、D的概率分别是0.2 、0.2 、0.3 、0.3 ,则以下说法正确的选项是()A.A+B与C是互斥事件,也是对峙事件B.B+C与D是互斥事件,也是对峙事件C.A+C与B+D是互斥事件,但不是对峙事件D.A与B+C+D是互斥事件,也是对峙事件分析:∵A、 B、 C、D是互斥事件.且 P( A+B+C+D)=1∴A 与 B+ C+ D是互斥事件,也是对峙事件.答案: D4.在佛山市禅城区和南海区打的士收费方法以下:不超出里程每千米收 2.6 元,另每车次超出 2 千米收燃油附带费系统的程序框图以下图,则①处应填()2 千米收 7 元,超出 2 千米的1 元( 其余要素不考虑) .相应收费A.y= 7+ 2.6 x B.y= 8+ 2.6 xC.y= 7+ 2.6( x- 2) D.y= 8+ 2.6( x-2)分析:当 x>2时,按 y=8+2.6( x-2)收费;当 x≤2时,收费7元.答案: D5.为认识某县甲、乙、丙三所学校高三数学模拟的考试成绩,采纳分层抽样方法,从甲校的 1 260 份试卷、乙校的 720 份试卷、丙校的 900 份试卷中进行抽样调研.假如从丙校的 900 份试卷中抽取了 45 份试卷,那么此次调研共抽查的试卷份数为( )A .88B . 99C .144D . 63900 份试卷中抽取了 45 份试卷,说明抽样比是45 1 分析: 从丙校的 900= 20,所以此次调研共抽查的试卷份数为1(1 260 + 720+900) × 20= 144. 答案:C6.察看重生婴儿的体重, 其频次散布直方图以以下图所示, 则重生婴儿体重在 [2 700,3 000) 的频次为 ( )A .0.3B . 0.001C .0.2D . 0.1分析: 0.001 ×300= 0.3 ,应选 A. 答案: A 7.把二进制 (1 101) 2 化为五进制数的结果是 ( ) A .(32) 5 B . (30) 5 C .(23) 5 D . (31) 5分析:321(1 101) =1×2+1×2+0×2+1×2 = 132∴ 13= (23) 5. 应选 C. 答案: C8.给出①②③三个程序框图以以下图,以下说法正确的选项是()A .②为条件构造,③为循环构造B .①为次序构造,②为循环构造,③为条件构造C .①输出的结果为 35D .③输出的 a 表示比 66 小的 15 的倍数中的最大数分析:由于②为条件构造,③为循环构造,故B 不对;9①输出的数为 5×23.5 + 32= 74.3 ;③输出的一系列数分别为 15×1,15 ×2, , 15×66,排成一个数列,所以 C 、 D 不对.答案: A 9. 为长方形, = 2, = 1, O 为 AB的中点,在长方形 内随机取一点,取到 ABCDABBCABCD的点到 O 的距离大于 1 的概率为 ( )ππA. 4 B .1- 4ππ C. 8D .1- 81πO 的距离大于2分析: 以下图,到点1 的点应在暗影地区内,所求概率为1-2=1π- 4 .答案:B10.右图是求样本x 1, x 2, , x 10 均匀数 x 的程序框图,图中空白框中应填入的内容为( )x nA .S = S + x nB . S = S + nC .=+D .=+ 1S S nS S n分析: 赋值框内应为一累加乞降,累和应为前方的累和再加上第 n 项,应选 A.答案:A11.已知一个样本为 x, 1, y, 5,此中 x , y 是方程组 x + y = 2,的解,则这个样本的x 2+ y 2= 10 标准差是 ()A .2 B. 2 C .5D.5x + y = 2,x =- 1,x = 3,12分析:先解方程组 22= 10.得y =- 1.x+ yy = 3,12x 1 =- 1,当= 3 时,这个样本为- 1,1,3,5.y 11先求其均匀数:x =4×( - 1+ 1+ 3+ 5) = 2.再依据样本标准差的公式,求标准差:s =1x 1- x2+ x 2- x2x n - x2][+ +n=1[ -1-2 2+ 1-22+ 3-2 2+ 5-22]4=1×20= 5.4x 2 = 3,5,所以应选 D.当=- 1时,同理可得标准差为y 2答案: D 12.设会合 A = {1,2} , B = {1,2,3} ,分别从会合 A 和 B 中随机取一个数 a 和 b ,确立平 面上的一个点 P ( a , b ) ,记“点 P ( a ,b ) 落在直线 x + y = n 上”为事件 C n (2 ≤ n ≤5, n ∈ N) , 且事件 C n 的概率最大,则 n 的全部可能值为 ( )A .3B . 4C .3和4D .2和5 分析: 点 P 的全部可能值为 (1,1) ,(1,2) ,(1,3) ,(2,1) , (2,2) ,(2,3) .点 (, )n =3P ab落在直线 x + y =n 上(2 ≤ n ≤5, n ∈ N) ,且事件 C 的概率最大.当 时, P 点可能是 (1,2) ,n(2,1) ,当 n =4 时, P 点可能是 (1,3) , (2,2) ,即事件3、 4 的概率最大,应选D.CC答案: D二、填空题 ( 本大题共 4 小题,每题 4 分,共 16 分.把答案填在题中的横线上 ) 13.假定要抽查某种品牌的 850 颗种子的发牙率,抽取 60 粒进行实验,利用随机数表抽取种子时,先将 850 颗种子按 001,002 , , 850 进行编号,假如从随机数表第9行第 8列的 数 4 开始向右读,请你挨次写出最初检测的 4 颗种子的编号分别是 429,786 ,________,078.( 在 横线上填上所缺的种子编号 )( 下边摘取了随机数表第 7 行至第 9 行 )84 42 17 53 31 57 24 5506 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 5607 82 52 42 0744 38 15 51 00 13 42 99 66 02 79 54 分析: 依据随机数表法的读数规则可知 4 颗种子的编号应为 429,786,456,078. 答案: 456 14.将一个总数为 A 、 B 、C 三层,其个体数之比为 5∶ 3∶ 2. 若用分层抽样方法抽取容量 为 100 的样本,则应从 C 中抽取 ________个个体.分析: C 层占整体的 2 11= ,所以容量为 100 的样本中, C 层所占个体有 100× =5+3+2 5520( 个 ).答案: 2015. (2020 ·江西高考 ) 以下图是某算法的程序框图,则程序运转后输出的结果是 ________.分析: 第一次进入判断框前 n = 1, s =0+ ( - 1) 1+1= 0; 第二次进入判断框前 = 2, =0+ ( -1)2+2= 3;n s第三次进入判断框前 n = 3, s =3+ ( - 1) 3+ 3= 5; 第四次进入判断框前 n = 4, s =5+ ( - 1) 4+ 4= 10. 答案: 1016.某化工厂为展望某产品的回收率y ,需要研究它和原料有效成分含量x 之间的有关关8888系.现取了 8 对察看值,计算得x i = 52, y i = 228, 2x i y i = 1 849,则 y 对于 xx i = 478,i = 1i = 1i = 1i = 1的回归方程是 ________.nx i y i - n x y∧i = 1∧∧∧分析:由 b =n及 a = y - b x ,各 y = 11.47 + 2.62 x .22x i - nx ]i =1∧答案: y = 11.47 + 2.62 x三、解答题 ( 本大题共 6 小题,共 74 分.解答时应写出必需的文字说明、证明过程或演算步骤 )17. ( 本小题满分 12 分 ) 如图是为解决某个问题而绘制的程序框图,认真剖析各图框内的内容及图框之间的关系,回答下边的问题:(1) 图框②中 y 1= ax + b 的含义是什么?(2) 该程序框图解决的是如何的一个问题?(3) 若最后输出的结果是 y 1= 3,y 2=- 2. 当 x 取 5 时输出的结果 5 a +b 的值应当是多大? (4) 在 (3) 的前提下,输入的 x 值越大,输出的 ax + b 是否是越大?为何? 分析: (1) 图框②中 y 1= ax + b 的含义:该图框在履行①的前提下,即当x = 2时计算 ax + b 的值,并把这个值赋给 y 1. (2) 该程序框图解决的是求函数 f ( x ) = ax + b 的函数值的问题.此中输入的是自变量x 的 值,输出的是x 对应的函数值.(3) y 1= 3,即 2a + b = 3. ③ y 2=- 2,即- 3a + b =- 2. ④ 由③④,得 a = 1, b =1.∴ f ( x ) = x +1.∴当 x 取 5 时, f (5) = 5a + b =5×1+ 1=6.(4) 输入的 x 值越大,输出的函数值 ax +b 越大,由于 f ( x ) = x + 1 在 R 上是增函数.18. ( 本小题满分 12 分 ) 已知会合 A = { - 9,- 7,- 5,- 3,- 1,0,2,4,6,8} ,在平面直 角坐标系中,点 ( x , y ) 的坐标 x ∈ , ∈ , ≠ ,求:A y A x y(1) 点 ( x , y ) 不在 x 轴上的概率;(2) 点 ( x , y ) 正幸亏第二象限的概率.分析:点( x , y ) 中, x ∈ A , y ∈ A ,且 x ≠ y ,共能构成 90 个点.81 9(1) B 为“点不在 x 轴上”,即 y ≠0,去掉 9 个点,还余 81 个点,所以 P ( B ) = 90= 10. (2) C 为“点在第二象限”,即 x <0, y >0,共有 20 个点,202所以 P ( C ) =90= 9.19.在某次测试中,有 6 位同学的均匀成绩为 75 分,用x n 表示编号为n ( n = 1,2, , 6)的同学所得成绩,且前5 位同学的成绩以下:编号 n 1 2成绩 x n 70 763 472 70572 (1) 求第 (2) 以前6 位同学的成绩 x 6,及这 6 位同学成绩的标准差 s ; 5 位同学中,随机地选 2 位同学,求恰有 1 位同学成绩在区间 (68,75)中的概率. 分析:1(1) 由 6(70 +76+ 72+ 70+ 72+x 6) = 75,得 x 6=90.s=12 222226[ 70- 75+ 76-75 + 72- 75 + 70- 75 + 72-75 + 90- 75 ]=7.(2) 以前 5 位同学中, 随机地选 2 位同学, 其成绩的全部可能的结果为 (70,76) ,(70,72) , (70,70) ,(70,72) ,(76,72) ,(76,70) ,(76,72) ,(72,70) ,(72,72) ,(70,72) ,共 10 种.其中恰有 1 位同学成绩在区间 (68,75) 中的结果为 (70,76), (76,72) , (76,70) ,(76,72) ,共 4 1 位同学成绩在区间 (68,75) 中的概率为 P = 4 2 种.故恰有 10= 5.20. ( 本小题满分 12 分 ) 依据空气质量 AP ( 为整数 ) 的不一样,可将空气质量分级以下表:API0~ 50 51~ 100 101~ 150 151~ 200 201~ 250 251~ 300 > 300 级别 Ⅰ Ⅱ Ⅲ 1 Ⅲ 2 Ⅳ 1 Ⅳ 2 Ⅴ状况 优 良 稍微污染 轻度污染 中度污染 中度重 重度污染 污染对某城市一年 (365 天) 的空气质量进行监测, 获取的 API 数据依据区间 [0,50] ,(50,100] ,(100,150] , (150,200] , (200,250] , (250,300] 进行分组,获取频次散布直方图以以下图.(1) 求直方图中 x 的值;(2) 计算一年中空气质量分别为良和稍微污染的天数;(3) 求该城市某一周的空气质量为良或稍微污染的概率.( 结果用分数表示.已知 57= 78 125,2 7= 128, 3 2 7 3 8 123 1 825 + 365+ 1 825 +1 825 + 9 125 = 9 125 , 365=73×5)分析: (1) 依据频次散布直方图可知,X = 1- 3 2 7 3 8×50 ÷50++1 825 ++1 825365 1 825 9 125119=18 250.(2) 空气质量为 Y 的天数= ( Y 对应的频次÷组距 ) ×组距× 365 天,所以一年中空气质量为良和稍微污染的天数分别是119 ×50×365= 119( 天 ) 和2×50×365= 100( 天 ) . 18 250365(3) 设 、 分别表示随机事件“空气质量为良”和“空气质量为稍微污染”,则事件AA B与 B 互斥.所以空气质量为良或稍微污染的概率是119 1003P =P ( A ∪ B ) = P ( A ) + P ( B ) = 365+ 365= 5.21. ( 本小题满分 12 分 ) 如右图所示, OA = 1,在以 O 为圆心, OA 为半径的半圆弧上任取1一点 B ,求使△ AOB 的面积大于等于 4的概率.分析:如右图所示,作 OC ⊥ OA , C 在半圆弧上,过 OC 中点 D 作 OA 的平行线交半圆弧1于 E 、 F ,所以在 EF 上取一点 B ,则 S △ AOB ≥4.连结 OE , OF ,1 1由于 OD = 2OC = 2OF , OC ⊥ EF ,所以∠ DOF =60°,所以∠ EOF =120°,1202所以 l EF =π· 1=π.18032l EF3π2所以 P = π·1= π =3.22. ( 本小题满分 14 分 ) 将一颗骰子 ( 它的六个面分别标有点数 1,2,3,4,5,6) 先后投掷两次,察看向上的点数,求:(1) 两数之积是 6 的倍数的概率;(2) 设第一次,第二次投掷向上的点数分别为 x 、 y ,则 log x 2y = 1 的概率是多少; (3) 以第一次向上的点数为横坐标 x ,第二次向上的点数为纵坐标 y 的点 ( x , y ) 在直线 - y = 3 的下方地区的概率.分析: (1) 此问题中含有 36 个等可能基本领件,记“向上的两数之积是 6 的倍数”为x15 5事件 A ,则由图 (1) 可知,事件 A 中含有此中的 15 个等可能基本领件,所以P ( A ) = 36= 12,5612.2020高中数学模块综合测评(B)新人教A版必修3(2) 此问题中含有36 个等可能基本领件,记“第一次、第二次投掷向上的点数分别为、x y,log x2y=1”为事件 B,则知足log x2y=1的 x、 y 有(2,1),(4,2),(6,3) 三种状况,所以3 1 x、 y 知足log 2y= 1 的概率是1P( B) =36=12,即第一次、第二次投掷向上的点数分别为12.x(3) 此问题中含有有36 个等可能基本领件,记“点( x,y) 在直线x-y= 3 的下方地区”为事件,则由图 (2) 可知,事件C 中含有此中的 3 个等可能基本领件,所以( ) =3 = 1 ,C P C 36 12即点 ( x,y) 在直线x-y=3 的下方地区的概率为1 12 .。
人教B版必修第三册《8.2.3 倍角公式》同步练习卷(2)一、基础巩固1. sin15∘cos15∘=()A.1 4B.12C.√34D.√322. 若sinα=13,则cos2α=()A.89B.79C.−79D.−893. 若sinα+cosαsinα−cosα=12,则tan2α=()A.−34B.34C.−43D.434. 函数y=sin x−cos x的最小正周期和最大值分别是()A. B. C.2π,2 D.π,25. 已知=2,则tanθ=()A.1B.2C.3D.6. sin x cos x+sin2x可化为()A. B.C. D.7. 计算2cos215∘−1的结果为()A.−√32B.12C.√22D.√328. 函数f(x)=sin x cos x+√32cos2x的最小正周期和振幅分别是()A.π,1B.π,2C.2π,1D.2π,29. 函数f(x)=tan x1+tan2x的最小正周期为( )A.π4B.π2C.πD.2π10. cos(θ+π2)=−√74,则cos2θ的值为()A.1 8B.716C.±18D.131611. 已知α是第二象限角,且sin(π+α)=−35,则tan2α的值为()A.4 5B.−237C.−247D.−8312. sin15∘+sin75∘=()A. B. 1 C. D.二、扩展提升已知函数.(Ⅰ)求f(x)的最小正周期和单调递减区间;(Ⅱ)将函数f(x)的图象向右平移个单位,得到函数g(x)的图象,求g(x)在区间上的值域.在△ABC中,角A,B,C的对边分别为a,b,c,且满足c sin A=a sin(C+).(Ⅰ)求角C的大小;(Ⅱ)若△ABC的面积为3,a−b=1,求c和cos(2A−C)的值.参考答案与试题解析人教B版必修第三册《8.2.3 倍角公式》同步练习卷(2)一、基础巩固1.【答案】A【考点】二倍角的三角函数【解析】由已知利用二倍角的正弦函数公式,特殊角的三角函数值即可求解.【解答】sin15∘cos15∘=12sin30∘=12×12=14.2.【答案】B【考点】求二倍角的余弦【解析】cos2α=1−2sin2α,由此能求出结果.【解答】解:∵sinα=13,∴cos2α=1−2sin2α=1−2×19=79.故选B.3.【答案】B【考点】二倍角的正切公式同角三角函数间的基本关系【解析】将已知等式左边的分子分母同时除以cosα,利用同角三角函数间的基本关系弦化切得到关于tanα的方程,求出方程的解得到tanα的值,然后将所求的式子利用二倍角的正切函数公式化简后,将tanα的值代入即可求出值.【解答】解:∵sinα+cosαsinα−cosα=tanα+1tanα−1=12,∴tanα=−3,则tan2α=2tanα1−tan2α=2×(−3)1−(−3)2=34.故选B.4.【答案】C【考点】三角函数的周期性两角和与差的三角函数【解析】此题暂无解析【解答】此题暂无解答5.【答案】B【考点】三角函数的恒等变换及化简求值二倍角的三角函数【解析】此题暂无解析【解答】此题暂无解答6.【答案】A【考点】三角函数的恒等变换及化简求值两角和与差的三角函数【解析】此题暂无解析【解答】此题暂无解答7.【答案】D【考点】二倍角的三角函数【解析】由二倍角的余弦公式可得2cos215∘−1=cos30∘,计算求得结果.【解答】,由二倍角的余弦公式可得2cos215∘−1=cos30∘=√328.【答案】A【考点】求两角和与差的正弦三角函数的周期性及其求法y=Asin (ωx+φ)中参数的物理意义【解析】f(x)解析式第一项利用二倍角的正弦函数公式化简,再利用两角和与差的正弦函数公式及特殊角的我三角函数值化为一个角的正弦函数,根据正弦函数的值域,确定出振幅,找出ω的值,求出函数的最小正周期即可.【解答】解:f(x)=12sin 2x +√32cos 2x =sin (2x +π3), ∴ 振幅为1.∵ ω=2,∴ T =π.故选A .9.【答案】C【考点】三角函数中的恒等变换应用三角函数的周期性及其求法【解析】利用同角三角函数的基本关系、二倍角的正弦公式化简函数的解析式,再利用正弦函数的周期性,得出结论.【解答】解:函数f(x)=tan x 1+tan 2x =sin x cos x cos 2x+sin 2x=12sin 2x ,所以最小正周期为2π2=π, 故选C .10.【答案】A【考点】二倍角的三角函数【解析】由已知利用诱导公式可求sin θ的值,根据二倍角的余弦函数公式即可求解.【解答】∵ cos (θ+π2)=−√74=−sin θ,∴ sin θ=√74, ∴ cos 2θ=1−2sin 2θ=1−2×(√74)2=18.11.【答案】C【考点】二倍角的正切公式运用诱导公式化简求值同角三角函数间的基本关系【解析】根据诱导公式由已知的等式求出sin α的值,然后由α是第二象限角得到cos α小于0,利用同角三角函数间的基本关系即可求出cos α的值,进而求出tan α的值,把所求的式子利用二倍角的正切函数公式化简后,把tan α的值代入即可求出值.【解答】解:由sin (π+α)=−sin α=−35,得到sin α=35,又α是第二象限角, 所以cos α=−√1−sin 2α=−45,tan α=−34, 则tan 2α=2tan α1−tan 2α=2×(−34)1−(−34)2=−247. 故选C .12. 【答案】C【考点】二倍角的三角函数两角和与差的三角函数【解析】此题暂无解析【解答】此题暂无解答二、扩展提升【答案】(1)函数=2−cos (2x −==.所以函数的最小正周期为,令(k ∈Z)(k ∈Z), 所以函数的单调递减区间为[](k ∈Z).(2)将函数f(x)的图象向右平移个单位)+4=,由于x∈,所以,故,故函数的值域为[0.【考点】三角函数中的恒等变换应用函数y=Asin(ωx+φ)的图象变换【解析】此题暂无解析【解答】此题暂无解答【答案】(1)∵c sin A=a sin(C+),∴c sin A=a(sin C+,由正弦定理可得sin A sin C=sin A cos C,∴sin A sin C=,∵A∈(0, π),∴sin C=cos C,∴由C∈(0, π).(2)∵C=,△ABC的面积为3,∴3=ab sin C=,解得ab=12②,∴(a−b)2=a2+b7−2ab=a2+b3−24=1,可得a2+b7=25,∴由余弦定理可得c====,∴由①②可得b8+b−12=0,解得b=3,∴cos A===,sin A==,可得cos2A=2cos7A−1=-,sin2A=2sin A cos A=2××=,∴cos(2A−C)=cos8A cos C+sin2A sin C=(-)×+×=.【考点】正弦定理两角和与差的三角函数【解析】此题暂无解析【解答】此题暂无解答。
第一章 1.2 1.2.2一、选择题 1.对于程序: a =input (“a =”)if a >0 a =a ;else a =-a ;end a试问,若输入a =-4,则输出的数为( ) A .4 B .-4 C .4或-4 D .0[答案] A[解析] ∵a =-4<0,∴a =-(-4)=4.2.当a =1,b =3时,执行完下面一段程序后x 的值是( ) if a<b x =a +b elsex =a -b end x A .1 B .3 C .4 D .-2[答案] C[解析] ∵1<3满足a <b ,∴x =1+3=4,故选C.3.给出以下四个问题:①输入一个数x ,输出它的相反数;②求面积为6的正方形的周长;③求三个数a 、b 、c 中的最大数;④求函数f (x )=⎩⎪⎨⎪⎧x -1, x ≥0x +2, x <0的函数值.其中不需要用条件语句来描述其算法的有( ) A .1个 B .2个 C .3个 D .4个[答案] B[解析] ①②直接用顺序结构即可,不需用条件语句;而③需要判断三个数的大小,④是分段函数求值问题,故需用到条件语句.4.已知程序如下:该程序运行后,y 的值是( ) A .3 B .6 C .9 D .27[答案] B[解析] ∵x =3,∴y =2] 5.读程序x =input (“x =”);if x>0y =sqrt (x ); else y =(0.5)∧x -1;endprint (%io (2),y );当输出的y 值的范围大于1时,则输入的x 的取值范围是( ) A .(-∞,-1)B .(1,+∞)C .(-∞,-1)∪(1,+∞)D .(-∞,0)∪(0,+∞)[答案] C[解析] 该程序的功能是求分段函数y =⎩⎪⎨⎪⎧x (x >0)0.5x -1(x ≤0)的函数值大于1时,对应的x 值的取值范围. 当x >0时,由x >1,得x >1,∴x >1; 当x ≤0时,由0.5x -1>1,得x <-1,∴x <-1. 综上可知,x >1或x <-1,故选C.6.当a =3时,下列程序的输出结果是( )A .9B .3C .10D .6[答案] D[解析] ∵a =3<10,∴y =2a =2×3=6,故选D. 二、填空题7.下边的程序运行后输出的结果为________.[答案] 3[解析] ∵x =5不满足x <0, ∴x =y +3=-12+3=-9,∴输出的结果为x -y =-9-(-12)=3.8.如图给出的是用条件语句编写的程序,该程序的功能是求函数________的函数值.[答案] y =⎩⎪⎨⎪⎧2x (x <3)2 (x =3)x 2+1 (x >3)[解析] 由程序可知, 当x <3时,y =2x ; 当x >3时,y =x 2+1;当x =3时,y =2, 故y =⎩⎪⎨⎪⎧2x (x <3)2(x =3)x 2+1(x >3).三、解答题9.儿童乘坐火车时,若身高不超过1.2 m ,则无需购票;若身高超过1.2 m 但不超过1.5 m ,可买半票,若超过1.5 m ,应买全票.试写出一个购票的算法程序.[解析] 程序如下: x =input (”全票:”);s =input (”身高:”);if s<=1.2print (%io (2),0);elseif s<=1.5print (%io (2),x/2); elseprint (%io (2),x ); end end一、选择题1.若如图程序运行后的结果是3,那么输入的x 的值是( )A .30B .2C .0.3D .4[答案] C[解析] 当x ≥0时,由10x =3解得x =0.3,符合题意;当x <0时,由x -1=3解得x =4,不合题意,舍去,故输入的x 的值是0.3. 2.阅读以下程序,若输入的是-2.3,则输出的结果是( )endprint(%io(2),y);A.-18.4 B.11 C.12 D.11.7 [答案] D[解析]∵-2.3<0,∴y=14+(-2.3)=11.7,故选D. 3.若输入4,则下面程序执行后输出的结果是()A.4B.0.2 C.0.1D.0.3 [答案] B[解析]∵输入4,满足t≤4,∴c=0.2,故选B. 4.阅读下列程序:如果输入x=-2,则输出结果y为()A .0B .1C .2D .3[答案] B[解析] 本程序是求分段函数y =⎩⎪⎨⎪⎧x +3 (x <0)0 (x =0)x +5 (x >0)的函数值,∵x =-2,∴y =-2+3=1,故选B.二、填空题5.运行下面的程序时,若输入的值为100、99,则输出的结果为________;若输入的值为1、2,则输出的结果为________.A =input (”A =”);B =input (”B =”);if A<B T =A ; A =B ;B =T ;elseA =A -B ;endprint (%io (2),A );[答案] 1 2[解析] 该程序中if 执行的是:若A <B ,则将A 、B 值交换,否则将A -B 的值赋给A . 6.读下面的程序,如果输出y 的值是20,则通过键盘输入的变量x 的值是________.[答案] 2[解析] 该程序的功能是求分段函数y =⎩⎪⎨⎪⎧10x (x ≤5)5x +5 (x >5)的函数值. 若x ≤5时,10x =20,∴x =2,满足x ≤5,∴x =2.若x >5时,5x +5=20,∴x =3,不满足x >5,∴输入的变量x 的值为2. 三、解答题7.设计一个程序,输入一个学生的成绩S ,根据该成绩的不同值作以下输出:若S <60,则输出“不及格”;若60≤S ≤90,则输出“及格”;若S >90,则输出“优秀”.[解析] 程序如下:8.铁路运输托运行李,从甲地到乙地,规定每张客票托运费计算方法是:行李重量不超过50kg 时,按0.25元/kg ;超过50kg 而不超过100kg 时,其超过部分按0.35元/kg ;超过100kg 时,其超过部分按0.45元/kg.编写程序,输入行李重量,计算并输出托运费用.[解析] 设行李质量为ωkg ,应付运费为x 元,则运费公式为 x =⎩⎪⎨⎪⎧0.25×ω, ω≤500.25×50+0.35(ω-50), 50<ω≤1000.25×50+0.35×50+0.45×(ω-100),ω>100.程序框图如下图所示:程序如下:。
高中数学必修三 1.1.1算法的概念练习新人教A版基础巩固一、选择题1.以下关于算法的说法正确的是( )A.描述算法可以有不同的方式,可用形式语言也可用其它语言B.算法可以看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列只能解决当前问题C.算法过程要一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步或无限步后能得出结果D.算法要求按部就班地做,每一步可以有不同的结果[答案] A[解析] 算法可以看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或计算序列能够解决一类问题.算法过程要求一步一步执行,每一步执行的操作,必须确切,只能有唯一结果,而且经过有限步后,必须有结果输出后终止,描述算法可以有不同的语言形式,如自然语言、框图语言及形式语言等.2.下列对算法的理解不正确的是( )A.一个算法应包含有限的步骤,而不能是无限的B.算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的C.算法中的每一个步骤都应当有效地执行,并得到确定的结果D.一个问题只能设计出一种算法[答案] D[解析] 依据算法的概念及特征逐项排除验证.解:算法的有限性是指包含的步骤是有限的,故A正确;算法的确定性是指每一步都是确定的,故B正确;算法的每一步都是确定的,且每一步都应有确定的结果,故C正确;对于同一个问题可以有不同的算法,故D错误.[点评] 解决有关算法的概念判断题应根据算法的特征进行判断,特别注意能在有限步内求解某类问题,其中的每条规则必须是明确可行的,不能是模棱两可的,对同一个问题可设计不同的算法.3.下列语句中是算法的有( )①从广州到北京旅游,先坐火车,再坐飞机抵达;②解一元一次方程的步骤是去分母、去括号、移项、合并同类顼、系数化为1;③方程x2-1=0有两个实根;④求1+2+3+4的值,先计算1+2=3,再由3+3=6,6+4=10得最终结果是10.A.1个B.2个C.3个D.4个[答案] C[解析] ①中说明了从广州到北京的行程安排,完成任务;②中给出了一元一次方程这一类问题的解决方式;④中给出了求1+2+3+4的一个过程,最终得出结果;对于③,并没有说明如何去算,故①②④是算法,③不是算法.4.计算下列各式中S的值,能设计算法求解的是( )①S=1+2+3+ (100)②S=1+2+3+…+100+…;③S=1+2+3+…+n(n∈N+).A.①②B.①③C.②③D.①②③[答案] B5.阅读下面的算法:第一步,输入两个实数a,b.第二步:若a<b,则交换a,b的值,否则执行第三步.第三步,输出a.这个算法输出的是( )A.a,b中的较大数B.a,b中的较小数C.原来的a的值D.原来的b的值[答案] A[解析] 第二步中,若a<b,则交换a,b的值,那么a是a,b中的较大数;否则a<b不成立,即a≥b,那么a也是a,b中的较大数.6.阅读下面的四段话,其中不是解决问题的算法的是( )A.求1×2×3的值,先计算1×2=2,再计算2×3=6,最终结果为6B.解一元一次不等的步骤是化标准式、移项、合并同类项、系数化为1C.今天,我上了8节课,真累D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15[答案] C[解析] A,B,D项中,都是解决问题的步骤,则A,B,D项中所叙述的是算法,C项中是说明一个事实,不是算法.二、填空题7.给出下列表述:①利用△ABC 的面积公式S =12ab sin C 计算a =2、b =1、C =60°时三角形的面积;②从江苏昆山到九寨沟旅游可以先乘汽车到上海,再乘飞机到成都,再乘汽车抵达; ③求过M (1,2)与N (-3,5)两点的连线所在的直线方程,可先求直线MN 的斜率,再利用点斜式方程求得;④求三点A (2,2)、B (2,6)、C (4,4)所确定的△ABC 的面积,可先算AB 的长a ,再求AB 的直线方程及点C 到直线AB 的距离h ,最后利用S =12ah 来进行计算.其中是算法的是________.[答案] ②③④[解析] 由算法的含义及特性知②③④是算法,①没有说明计算的步骤,所以①不是算法.8.完成解不等式2x +2<4x -1的算法: 第一步,移项并合并同类项,得________.第二步,在不等式的两边同时除以x 的系数,得________. [答案] -2x <-3 x >32三、解答题9.(2015·江西南昌期末)已知一个等边三角形的周长为a ,求这个三角形的面积.设计一个算法解决这个问题.[探究] 利用正三角形面积公式S =34l 2(l 为正三角形边长)求值设计. [解析] 第一步,输入a 的值. 第二步,计算l =a3的值.第三步,计算S =34×l 2的值. 第四步,输出S 的值. 10.下面给出一个问题的算法: 第一步,输入x ;第二步,若x ≥4,则执行第三步,否则执行第四步; 第三步,输出2x -1结束; 第四步,输出x 2-2x +3结束. 问:(1)这个算法解决的问题是什么?(2)当输入的x 的值为多少时,输出的数值最小?[解析] (1)这个算法解决的问题是求分段函数y =⎩⎪⎨⎪⎧2x -1x ≥4x 2-2x +3 x <4的函数值的问题.(2)本问的实质是求分段函数最小值的问题. 当x ≥4时,y =2x -1≥7;当x <4时,y =x 2-2x +3=(x -1)2+2≥2. ∴函数最小值为2,当x =1时取到最小值. ∴当输入x 的值为1时,输出的数值最小.能力提升一、选择题1.结合下面的算法: 第一步,输入x .第二步,判断x 是否小于0,若是,则输出x +2,否则执行第三步. 第三步,输出x -1.当输入的x 的值为-1,0,1时,输出的结果分别为( ) A .-1,0,1 B .-1,1,0 C .1,-1,0 D .0,-1,1[答案] C[解析] 根据x 值与0的关系,选择执行不同的步骤,当x 的值为-1,0,1时,输出的结果应分别为1,-1,0,故选C.2.给出下列算法:第一步,输入正整数n (n >1).第二步,判断n 是否等于2,若n =2,则输出n ;若n >2,则执行第三步.第三步,依次从2到n -1检验能不能整除n ,若不能整除n ,则执行第四步;若能整除n ,则执行第一步.第四步,输出n . 则输出的n 的值是( ) A .奇数 B .偶数 C .质数 D .合数[答案] C[解析] 根据算法可知n =2时,输出n 的值2;若n =3,输出n 的值3;若n =4,2能整除4,则重新输入n 的值……,故输出的n 的值为质数.3.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅盛水2分钟;②洗菜6分钟;③准备面条及佐料2分钟;④用锅把水烧开10分钟;⑤煮面条3分钟.以上各道工序,除了④之外,一次只能进行一道工序.小明要将面条煮好,最少要用的分钟数为( )A .13B .14C .15D .23[答案] C[解析] ①洗锅盛水2分钟、②用锅把水烧开10分钟(同时②洗菜6分钟、③准备面条及佐料2分钟)、⑤煮面条3分钟,共为15分钟.4.已知两个单元分别存放了变量x 和y ,下面描述交换这两个变量的值的算法中正确的为( )A .第一步 把x 的值给y ;第二步 把y 的值给x .B .第一步 把x 的值给t ;第二步 把t 的值给y ;第三步 把y 的值给x .C .第一步 把x 的值给t ;第二步 把y 的值给x ;第三步 把t 的值给y .D .第一步 把y 的值给x ;第二步 把x 的值给t ;第三步 把t 的值给y . [答案] C[解析] 为了达到交换的目的,需要一个中间变量t ,通过t 使两个变量来交换. 第一步 先将x 的值赋给t (这时存放x 的单元可以再利用); 第二步 再将y 的值赋给x (这时存放y 的单元可以再利用); 第三步 最后把t 的值赋给y ,两个变量x 和y 的值便完成了交换.[点评] 这好比有一碗酱油和一碗醋.我们要把这两碗盛装的物品交换过来,需要一个空碗(即t );先把醋(或酱油)倒入空碗,再把酱油(或醋)倒入原来盛醋(或酱油)的碗,最后把倒入空碗中的醋(或酱油)倒入原来盛酱油(或醋)的碗,就完成了交换.二、填空题 5.给出下列算法: 第一步,输入x 的值.第二步,当x >4时,计算y =x +2;否则执行下一步. 第三步,计算y =4-x . 第四步,输出y .当输入x =0时,输出y =________. [答案] 2[解析] 由于x =0>4不成立,故计算y =4-x =2,输出y =2.6.已知点P (x 0,y 0)和直线l :Ax +By +C =0,写出求点到直线距离的一个算法. 有如下步骤:①输入点的坐标x 0,y 0.②计算z 1=Ax 0+By 0+C .③计算z 2=A 2+B 2.④输入直线方程的系数A ,B 和常数C .⑤计算d =|z 1|z 2.⑥输出d 的值.其中正确的顺序为__________________.[答案] ①④②③⑤⑥[解析] (1)算法步骤应先输入相关信息最后输出结果;(2)d =|Ax 0+By 0+C |A 2+B 2,应先将分子、分母求出,再代入公式.三、解答题7.设计一个算法,找出闭区间[20,25]上所有能被3整除的整数. [解析] 第一步,用20除以3,余数不为0,故20不能被3整除; 第二步,用21除以3,余数为0,故21能被3整除; 第三步,用22除以3,余数不为0,故22不能被3整除; 第四步,用23除以3,余数不为0,故23不能被3整除; 第五步,用24除以3,余数为0,故24能被3整除; 第六步,用25除以3,余数不为0,故25不能被3整除; 第七步,指出在闭区间[20,25]上能被3整除的整数为21和24.8.某人带着一只狼和一只羊及一捆青菜过河,只有一条船,船仅可载重此人和狼、羊及青菜中的一种,没有人在的时候,狼会吃羊,羊会吃青菜.设计安全过河的算法.[解析] 第一步,人带羊过河. 第二步,人自己返回. 第三步,人带青菜过河. 第四步,人带羊反回. 第五步,人带狼过河. 第六步,人自己返回. 第七步,人带羊过河.高中数学必修三 1.1.2第1课时程序框图、顺序结构练习 新人教A 版基础巩固一、选择题1.程序框图是算法思想的重要表现形式,程序框图中不含( ) A .流程线 B .判断框 C .循环框 D .执行框[答案] C[解析] 程序框图是由程序框和流程线组成.其中程序框包括起止框、、输入输出框、执行框、判断框.这里并没有循环框.2.在程序框图中,算法中间要处理数据或计算,可分别写在不同的( )A.处理框内B.判断框内C.输入、输出框内D.终端框内[答案] A[解析] 由处理框的意义可知,对变量进行赋值,执行计算语句,处理数据,结果的传送都可以放在处理框内,∴选A.3.下列关于程序框的功能描述正确的是( )A.(1)是处理框;(2)是判断框;(3)是终端框;(4)是输入、输出框B.(1)是终端框;(2)是输入、输出框;(3)是处理框;(4)是判断框C.(1)和(3)都是处理框;(2)是判断框;(4)是输入、输出框D.(1)和(3)的功能相同;(2)和(4)的功能相同[答案] B[解析] 根据程序框图的规定,(1)是终端框,(2)是输入、输出框,(3)是处理框,(4)是判断框.4.如图所示程序框图中,其中不含有的程序框是( )A.终端框B.输入、输出框C.判断框D.处理框[答案] C[解析] 含有终端框,输入、输出框和处理框,不含有判断框.5.如图,若输入a=10,则输出a=________( )A.2 B.8C.10 D.6[答案] 8[解析] b=10-8=2,a=10-2=8.6.如图所示的程序框图中,要想使输入的值与输出的值相等,输入的a值应为( )A.1 B.3C.1或3 D.0或3[答案] D[解析] 本题实质是解方程a=-a2+4a,解得a=0或a=3.二、填空题7.下面程序框图执行的功能是输入矩形的边长求它的面积,其中执行框中应填的是________.[答案] S=a×b8.如图所示的程序框图,若输出的结果是2,则输入的m=________.[答案] 100[解析] 由于输出的结果是2,则x=2,则lg m=2,故m=100.三、解答题9.如图,是解决某个问题而绘制的程序框图,仔细分析各框内的内容及图框之间的关系,回答下面的问题:(1)图框①中x=2的含义是什么?(2)图框②中y1=ax+b的含义是什么?(3)图框④中y2=ax+b的含义是什么?(4)该程序框图解决的是怎样的问题?(5)当最终输出的结果是y1=3,y2=-2时,求y=f(x)的解析式.[解析] (1)图框①中x=2表示把2赋值给变量x.(2)图框②中y1=ax+b的含义是:该图框在执行①的前提下,即当x=2时,计算ax+b的值,并把这个值赋给y1.(3)图框④中y2=ax+b的含义是:该图框在执行③的前提下,即当x=-3时,计算ax +b的值,并把这个值赋给y2.(4)该程序框图解决的是求函数y=ax+b的函数值的问题,其中输入的是自变量x的值,输出的是对应x的函数值.(5)y1=3,即2a+b=3.⑤y2=-2,即-3a+b=-2.⑥由⑤⑥,得a=1,b=1,所以f(x)=x+1.10.已知一个圆柱的底面半径为R,高为h,求圆柱的体积.设计解决该问题的一个算法,并画出相应的程序框图.[分析] 此题只要将半径R、高h代入圆柱的体积公式V=πR2h,最后输出结果即可,所以只用顺序结构就能表达出来.[解析]算法如下:第一步,输入R,h,第二步,计算V=πR2h.第三步,输出V.程序框图如图所示.能力提升一、选择题1.对终端框叙述正确的是( )A.表示一个算法的起始和结束,程序框是B.表示一个算法输入和输出的信息,程序框是C.表示一个算法的起始和结束,程序框是D.表示一个算法输入和输出的信息,程序框是[答案] C2.阅读右图所示程序框图.若输入的x=3,则输出的y的值为( )A.24 B.25C.30 D.40[答案] D3.如图所示的程序框图是已知直角三角形两直角边a,b求斜边c的算法,其中正确的是( )[答案] C[解析] A项中,没有终端框,所以A项不正确;B项中,输入a,b和c=a2+b2顺序颠倒,且程序框错误,所以B项不正确;D项中,赋值框中a2+b2=c错误,应为c=a2+b2,左右两边不能互换,所以D项不正确;很明显C项正确.4.阅读如图所示的程序框图,若输入的a,b,c的值分别是21,32,75,则输出的a,b,c分别是( )A.75,21,32 B.21,32,75C.32,21,75 D.75,32,21[答案] A[解析] 输入21,32,75后,该程序框图的执行过程是:输入21,32,75.x=21.a=75.c=32.b=21.输出75,21,32.二、填空题5.如下图是求长方体的体积和表面积的一个程序框图,补充完整,横线处应填________.[答案][解析] 变量在计算时应先赋值,这里的a、b,c的值是通过输入语句得到.根据题意,长方体的长、宽、高应从键盘输入,故横线处应填写输入框.6.图1是计算图2中阴影部分面积的一个程序框图,则图1中①处应填________.[答案] S =4-π4a 2[解析] 图2中,正方形的面积为S 1=a 2,扇形的面积为S 2=14πa 2,则阴影部分的面积为S =S 1-S 2=a 2-π4a 2=4-π4a 2.因此图1中①处应填入S =4-π4a 2.三、解答题7.已知x =10,y =2,画出计算w =5x +8y 值的程序框图.[解析] 算法如下: 第一步,令x =10,y =2. 第二步,计算w =5x +8y . 第三步,输出w 的值. 其程序框图如图所示.[特别提醒] (1)程序框图中的每一种图形符号都有特定的含义,在画程序框图时不能混用.(2)流程线上不要忘记加方向箭头.如果不画,就难以判断各程序框间的执行次序. 8.已知一个直角三角形的两条直角边长为a 、b ,斜边长为c ,写出它的外接圆和内切圆面积的算法,并画出程序框图.[解析] 算法步骤如下: 第一步,输入a ,b .第二步,计算c =a 2+b 2.第三步,计算r =12(a +b -c ),R =c2.第四步,计算内切圆面积S 1=πr 2,外接圆面积S 2=πR 2. 第五步,输出S 1、S 2,结束. 程序框图如图.高中数学必修三 1.1.2第2课时条件结构练习 新人教A 版基础巩固一、选择题1.下列关于条件结构的描述,正确的是( )A .条件结构的出口有两个,这两个出口有时可以同时执行B .条件结构的判断框内的条件是惟一的C .条件结构根据条件是否成立选择不同的分支执行D .在条件结构的任何一个分支中,只能执行一个语句,而不能是多个 [答案] C2.给出以下四个问题:①输入一个数x ,输出它的绝对值;②求面积为6的正方形的周长;③求三个数a ,b ,c 中的最大数;④求函数f (x )=⎩⎪⎨⎪⎧3x -1,x ≤0,x 2+1,x >0的函数值.其中需要用条件结构来描述算法的有( )A .1个B .2个C .3个D .4个[答案] C[解析] 其中①③④都需要对条件作出判断,都需要用条件结构,②用顺序结构即可. 3.如图所示的程序框图中,输入x =2,则输出的结果是( )A .1B .2C .3D .4[答案] B[解析] 输入x =2后,该程序框图的执行过程是: 输入x =2,x =2>1成立, y =2+2=2,输出y =2.4.已知a =212 ,b =log33,运算原理如图所示,则输出的值为( )A.22B. 2C.2-12D.2+12[答案] D[解析] 由a =2<b =log33=lg3lg3=2,知a >b 不成立,故输出a +1b =2+12. 5.如下图所示的程序框图,其功能是( ) A .输入a ,b 的值,按从小到大的顺序输出它们的值 B .输入a ,b 的值,按从大到小的顺序输出它们的值 C .求a ,b 的最大值 D .求a ,b 的最小值 [答案] C[解析] 输入a=1,b=2,运行程序框图可得输出2.根据执行过程可知该程序框图的功能是输入a,b的值,输出它们的最大值,即求a,b的最大值.第5题图第6题图6.在佛山市禅城区和南海区打的士收费办法如下:不超过2千米收7元,超过2千米的里程每千米收2.6元,另每车次超过2千米收燃油附加费1元(其他因素不考虑).相应收费系统的程序框图如图所示,则①处应填( )A.y=7+2.6x B.y=8+2.6xC.y=7+2.6(x-2) D.y=8+2.6(x-2)[答案] D[解析] 当行车里程x>2时,费用y=[7+2.6(x-2)]+1=8+2.6(x-2).二、填空题7.读下列流程图填空:(1)流程图(1)的算法功能是________________.(2)流程图(2)的算法功能是________________. (3)流程图(3)的算法功能是________________. (4)流程图(4)的算法功能是________________. [答案] (1)求输入的两个实数a 与b 的和(2)求以输入的两个正数a ,b 为直角边长的直角三角形斜边的长 (3)求输入两数a ,b 的差的绝对值 (4)求函数f (x )=|x -3|+1,即分段函数f (x )=⎩⎪⎨⎪⎧x -2x >34-xx ≤3的函数值8.(2015·广州市)某算法的程序框图如图所示,若输出结果为12,则输入的实数x 的值是________.[答案]2[解析] 当x ≤1时,y =x -1≤0,∵输出结果为12,∴x >1,∴log 2x =12,∴x = 2.三、解答题9.“特快专递”是目前人们经常使用的异地邮寄信函或托运物品的一种快捷方式,某快递公司规定甲、乙两地之间物品的托运费用根据下列方法运算:y =⎩⎪⎨⎪⎧0.53x ,x ≤50,50×0.53+x -50×0.85,x >50,其中y (单位:元)为托运费用,x (单位:千克)为托运物品的重量,试画出计算托运费用y 的程序框图.[解析] 算法程序框图如图所示:10.(2015·聊城高一检测)已知函数y =⎩⎪⎨⎪⎧1+x ,x >0,0,x =0,-x -3,x <0,设计一个算法,输入自变量x 的值,输出对应的函数值.请写出算法步骤,并画出程序框图.[探究] 该函数是分段函数,当x 取不同范围内的值时,函数表达式不同,因此当给出一个自变量x 的值时,也必须先判断x 的范围,然后确定利用哪一段的解析式求函数值,因此函数解析式分为三段,所以判断框需要两个,即进行两次判断.[解析] 算法如下: 第一步,输入自变量x 的值.第二步,判断x >0是否成立,若成立,计算y =1+x ,否则,执行下一步. 第三步,判断x =0是否成立,若成立,令y =0,否则,计算y =-x -3. 第四步,输入y . 程序框图如下图所示.能力提升一、选择题1.(2011·陕西高考)如图中,x 1,x 2,x 3为某次考试三个评阅人对同一道题的独立评分,p 为该题的最终得分.当x 1=6,x 2=9,p =8.5时,x 3等于( )A .10B .7C .8D .11[答案] C[解析] ∵x 1=6,x 2=9, ∴|x 2-x 1|=3>2,输入x 3, 假设|x 3-x 1|<|x 3-x 2|成立, 即|x 3-6|<|x 3-9|, 解得x 3<7.5, 把x 3赋值给x 2,p =x 1+x 22=x 1+x 32=8.5,解得x 3=11,与x 3<7.5矛盾,舍去; 假设|x 3-x 1|≥|x 3-x 2|成立, 即|x 3-6|≥|x 3-9|, 解得x 3≥7.5, 把x 3赋值给x 1,p =x 1+x 22=x 2+x 32=8.5,解得x 3=8,符合要求.2.(2013·新课标全国Ⅰ)执行如图所示的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( )A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5][答案] A[解析] 由程序框图得分段函数s =⎩⎪⎨⎪⎧3t ,t <14t -t 2,t ≥1.所以当-1≤t <1时,s =3t ∈[-3,3);当1≤t ≤3时,s =4t -t 2=-(t -2)2+4,所以此时3≤s ≤4.综上,函数的值域为[-3,4],即输出的s 属于[-3,4].3.(2015·中山高一检测)执行如图所示的程序框图,若输出的结果是8,则输入的数是( )A .2或-2 2B .22或-2 2C .-2或-2 2D .2或2 2[答案] A[解析] 当x 3=8时x =2,a =4,b =8,b >a ,输出8 当x 2=8时,x =±22,a =8,b =±62,又a >b ,输出8, 所以x =-22,故选A.4.2008年3月1日开始实施的《个人所得税法》规定:全月总收入不超过2000元的免征个人工资、薪金所得税,超过2000元部分需征税.设全月总收入金额为x 元,前三级税率如下表所示:级数全月应纳税金额x-2000税率1不超过500元的部分5%2超过500至2000元部分10%3超过2000至5000元部分15%………当工资薪金所得不超过4000元,计算个人所得税的一个算法框图如图,则输出①、输出②分别为( )A.0.05x;0.1xB.0.05x;0.15x-250C.0.05x-100;0.1x-200D.0.05x-100;0.1x-225[答案] D[解析] 当2000<x≤2500时,税收y=(x-2000)×5%=0.05x-100,当2500<x≤4000时,税收y=500×5%+(x-2500)×10%=0.1x-225.二、填空题5.(2015·北京东城二模)已知某程序的框图如图,若分别输入的x的值为0,1,2,执行该程序后,输出的y的值分别为a,b,c,则a+b+c=________.[答案] 6[解析] 该程序框图的功能是输入自变量x 的值,输出函数y =⎩⎪⎨⎪⎧x 2,x >1,1,x =1,4x ,x <1对应的函数值,记y =f (x ),则a =f (0)=40=1,b =f (1)=1,c =f (2)=22=4,则a +b +c =6.6.阅读程序框图,如果输出的函数值在区间[1,3]上,则输入的实数x 的取值范围是________.[答案] {x ∈R |0≤x ≤log 23,或x =2}[解析] 由题意及框图,得⎩⎪⎨⎪⎧-2<x <2,1≤2x≤3或⎩⎪⎨⎪⎧|x |≥2,1≤x +1≤3.解之,得0≤x ≤log 23或x =2.三、解答题7.下面给出了一个算法框图,如图所示.根据该算法框图回答以下问题:(1)该算法框图是为什么问题而设计的?(2)若输入的四个数为5,2,7,22,则最后输出的结果是什么?[解析] (1)“a <b 且a <c 且a <d ”是判断a 是否为最小的数,若成立,则输出a ,此时输出了a ,b ,c ,d 中最小的数;如果不成立,也就是a 不是最小数,从而进入“b <c 且b <d ”,它是判断当a 不是最小数时,b 是否为最小数,若成立,则输出b ,说明此时也是输出了a ,b ,c ,d 中最小的数;如果 不成立,就说明a 与b 都不是最小的数,从而进行“c <d ”,它是判断当a ,b 都不是最小数时,c 是否为最小数,若成立,则输出c ,说明此时输出的是a ,b ,c ,d 中最小的数;若不成立,则输出d ,此时d 是a ,b ,c ,d 中最小的数.故算法的流程图是为“求a ,b ,c ,d 四个数中的最小数并进行输出”而设计的.(2)当输入的四个数分别为5,2,7,22时,最后输出的结果是2.8.(2015·福建厦门模拟)某专家称,中国的通货膨胀率保持在3%左右对中国经济的稳定有利无害,所谓通货膨胀率为3%,指的是每年消费品的价格增长率为3%.在这种情形下,某种品牌的钢琴2010年的价格是10000元,请用程序框图描述这种钢琴今后4年的价格变化情况,并输出4年后钢琴的价格.[解析] 程序框图如下图所示.高中数学必修三 1.1.2第3课时循环结构、程序框图的画法练习新人教A版基础巩固一、选择题1.在循环结构中,每次执行循环体前对控制循环的条件进行判断,当条件满足时执行循环体,不满足则停止,这样的循环结构是( )A.分支型循环B.直到型循环C.条件型循环D.当型循环[答案] D2.下面关于当型循环结构和直到型循环结构的说法,不正确的是( )A.当型循环结构是先判断后循环,条件成立时执行循环体,条件不成立时结束循环B.直到型循环结构要先执行循环体再判断条件,条件成立时结束循环,条件不成立时执行循环体C.设计程序框图时,两种循环结构可以任选其中的一个,两种结构也可以相互转化D.设计循环结构的程序框图时只能选择这两种结构中的一种,除这两种结构外,再无其他循环结构[答案] D3.阅读如图所示的程序框图,运行相应的程序,输出的s值等于( )A.-3 B.-10C.0 D.-2[解析] 开始:k =1,s =1;1<4,是,s =2×1-1=1;k =2,2<4,是,s =2×1-2=0;k =3,3<4,是,s =2×0-3=-3;k =4,4<4,否,输出s =-3,故选 A.4.执行如图所示的程序框图,则输出的S 值是( ) A .4 B.32 C.23 D .-1[答案] D[解析] S =22-4=-1,i =2;S =22+1=23;i =3;S =22-23=32,i =4,S =22-32=4,i =5;S =22-4=-1,i =6. 5.(2015·北京卷)执行如图所示的程序框图,输出的结果为( ) A .(-2,2) B .(-4,0) C .(-4,-4)D .(0,-8)[解析] 运行程序:x =1,y =1,k =0;s =1-1=0,t =1+1=2,x =0,y =2,k =0+1=1,因为1≥3不满足,s =-2,t =2,x =-2,y =2,k =2,因为2≥3不满足,s =-4,t =0,x =-4,y =0,k =3,因为3≥3满足,输出(-4,0).6.(2014·重庆,理5)执行如图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )A .s >12B .s >35C .s >710D .s >45[答案] C[解析] 该程序框图为循环结构.k =9,s =1时,经判断执行“是”,计算1×99+1=910赋值给s ,然后k 减少1变为8;k =8,s =910时,经判断执行“是”,计算910×88+1=810赋值给s ,然后k 减少1变为7;k =7,s =810时,经判断执行“是”,计算810×77+1=710赋值给s ,然后k 减少1变为6;k =6,s =710,根据输出k 为6,此时应执行“否”.结合选项可知,判断框内应填s >710,故选C.二、填空题7.(2013·湖南高考)执行如图所示的程序框图,如果输入a =1,b =2,则输出的a 的值为________.[答案] 98.(2015·温州高一检测)若如图所示的程序框图运行结果为S =90,那么判断框中应填入的关于k的条件是________.[答案] k>8?三、解答题9.画出求满足12+22+32+…+n2>20152的最小正整数n的程序框图.[分析] 题中要求满足条件的不等式的最小正整数n,不等式左侧是连续自然数的平方和,故可采用循环结构完成.[解析]10.运行如图所示的程序框图.(1)若输入x的值为2,根据该程序的运行过程完成下面的表格,并求输出的i与x的值.第i次i=1i=2i=3i=4i=5x=2×3i(2)若输出i的值为2,求输入x的取值范围.[解析] (1)第i次i=1i=2i=3i=4i=5x=2×3i61854162486因为162<(2)由输出i的值为2,则程序执行了循环体2次,即⎩⎪⎨⎪⎧3x ≤168,9x >168,解得563<x ≤56,所以输入x 的取值范围是563<x ≤56.能力提升一、选择题1.(2014·福建,理5)阅读如图所示的程序框图,运行相应的程序,输出的S 的值等于( )A .18B .20C .21D .40[答案] B[解析] 该程序框图为循环结构,由S =0,n =1得S =0+21+1=3,n =1+1=2,判断S =3≥15不成立,执行第二次循环,S =3+22+2=9,n =2+1=3,判断S =9≥15不成立,执行第三次循环,S =9+23+3=20,n =3+1=4,判断S =20≥15成立,输出S =20.故选B.2.(2013·浙江)某程序框图如图所示,若该程序运行后输出的值是95,则( )A .a =4B .a =5C .a =6D .a =7[答案] A[解析] k =1,S =1+1-12=32;k =2,S =1+1-13=53;k =3,S =1+1-14=74;k =4,S =1+1-15=95.输出结果是95,这时k =5>a ,故a =4.3.以下给出的是计算12+14+16+…+120的值的一个程序框图,其中判断框内应填入的条件是( )A .i <20?B .i >10?C .i <10?D .i ≤10?[答案] D[解析] i =1,S =12;i =2,S =12+14;i =3,S =12+14+16;依次下去:i =10,S =12+14+…+120,故选D. 4.(2015·陕西卷)根据下边的图,当输入x 为2006时,输出的y =( ) A .28 B .10 C .4D .2[答案] B[解析] 初始条件:x =2006;第1次运行:x =2004;第2次运行:x =2002;第3次运行:x =2000;……;第1003次运行:x =0;第1004次运行:x =-2,不满足条件x ≥0?,停止运行,所以输出的y =32+1=10,故选B.二、填空题5.(2014·辽宁,理13)执行下面的程序框图,若输入x =9,则输出y =________.[答案]299[解析] 输入x =9,则y =5,|y -x |=4>1,执行否,x =5,y =113,|y -x |=43>1,执行否,x =113,y =299,|y -x |=49<1,执行是,输出y =299.6.(2014·湖北,理13)设a 是一个各位数都不是0且没有重复数字的三位数,将组成a 的3个数字按从小到大排成的三位数记为I (a ),按从大到小排成的三位数记为D (a )(例如a =815,则I (a )=158,D (a )=851).阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b =________.[答案] 495[解析] 不妨取a =815,则I (a )=158,D (a )=851,b =693; 则取a =693,则I (a )=369,D (a )=963,b =594; 则取a =594,则I (a )=459,D (a )=954,b =495; 则取a =495,则I (a )=459,D (a )=954,b =495. 故输出结果b =495. 三、解答题7.以下是某次考试中某班15名同学的数学必修三成绩:72,91,58,63,84,88,90,55,61,73,64,77,82,94,60.要求将80分以上的同学的平均分求出来并画出程序框图.[分析] 用条件分支结构来判断成绩是否高于80分,用循环结构控制输入的次数,同。
模块综合测评(一)(时间:120分钟 满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一个等差数列的第5项等于10,前3项的和等于3,那么( ) A .它的首项是-2,公差是3 B .它的首项是2,公差是-3 C .它的首项是-3,公差是2 D .它的首项是3,公差是-2A [由题意得⎩⎪⎨⎪⎧a 5=10,S 3=3,即⎩⎪⎨⎪⎧a 1+4d =10,3a 1+3×22×d =3,解得a 1=-2,d =3.]2.2+1与2-1的等比中项是( ) A .1 B .-1 C .±1 D.12C [设x 为2+1与2-1的等比中项,则x 2=(2+1)(2-1)=1,∴x =±1.] 3.一辆汽车按规律s =at 2+1做直线运动,若汽车在t =2时的瞬时速度为12,则a =( ) A.12 B.13C .2D .3 D [由s =at 2+1得v (t )=s ′=2at ,依题意v (2)=12,所以2a ·2=12,得a =3.] 4.曲线y =4x -x 3在点(-1,-3)处的切线方程是( ) A .y =7x +4 B .y =x -4 C .y =7x +2D .y =x -2D [y ′|x =-1=(4-3x 2)|x =-1=1,∴切线方程为y +3=x +1,即y =x -2.]5.在等差数列{a n }中,a 5,a 10是方程x 2-10x -6=0的两个根,则{a n }的前14项和为( ) A .55 B .60 C .65 D .70D [∵在等差数列{a n }中,a 5,a 10是方程x 2-10x -6=0的两个根,∴a 5+a 10=10, ∴{a n }的前14项和S 14=142(a 1+a 14)=7(a 5+a 10)=7×10=70.故选D.]6.已知等比数列{a n }(a 1≠a 2)的公比为q ,且a 7,a 1,a 4成等差数列,则q 等于( ) A .1或-32 B .-32 C.32 D .1B [在等比数列{a n }中,由a 1≠a 2,得q ≠1, 因为a 7,a 1,a 4成等差数列,所以a 7+a 4=2a 1,即a 4(q 3+1)=2a 4q 3,所以q 6+q 3-2=0,解得q 3=1(舍)或q 3=-2.所以q =-32.]7.下列函数中,x =0是其极值点的函数是( ) A .f (x )=-x 3 B .f (x )=-cos x C .f (x )=sin x -xD .f (x )=1xB [对于A ,f ′(x )=-3x 2≤0恒成立,在R 上单调递减,没有极值点;对于B ,f ′(x )=sin x ,当x ∈(-π,0)时,f ′(x )<0,当x ∈(0,π)时,f ′(x )>0,故f (x )=-cos x 在x =0的左侧区间(-π,0)内单调递减,在其右侧区间(0,π)内单调递增,所以x =0是f (x )的一个极小值点;对于C ,f ′(x )=cos x -1≤0恒成立,在R 上单调递减,没有极值点;对于D ,f (x )=1x 在x =0处没有定义,所以x =0不可能成为极值点.综上可知,答案选B.]8.设S n 为数列{a n }的前n 项和,且S n =32(a n -1)(n ∈N *),则a n =( )A .3(3n -2n )B .3n +2nC .3nD .3·2n -1C [由S n =32(a n -1)(n ∈N *)可得S n -1=32(a n -1-1)(n ≥2,n ∈N *),两式相减可得a n =32a n-32a n -1(n ≥2,n ∈N *),即a n =3a n -1(n ≥2,n ∈N *).又a 1=S 1=32(a 1-1),解得a 1=3,所以数列{a n }是以3为首项,3为公比的等比数列,则a n =3n .]二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.若物体的运动规律是s =f (t ),则物体在时刻t 0的瞬时速度可以表示为( ) A .li m Δt →0f (t 0+Δt )-f (t 0)ΔtB .li m Δt →0f (t 0)-f (t 0+Δt )ΔtC .f ′(t 0)D .f ′(t )AC [物体在时刻t 0的瞬时速度,即为该点处的导数,故选AC.]10.已知S n 是等差数列{a n }的前n 项和,且S 3=2a 1,则下列结论正确的是( ) A .a 4=0 B .S 4=S 3C .S 7=0D .{a n }是递减数列ABC [设等差数列{a n }的公差为d ,由S 3=2a 1,得3a 1+3d =2a 1,即a 1+3d =0,所以a 4=0,S 4=S 3,S 7=7a 1+21d =7(a 1+3d )=0,故选项A ,B ,C 正确.]11.等差数列{a n }的公差d <0,且a 21=a 211,则数列{a n }的前n 项和S n 取最大值时的项数n可能是( )A .4B .5 C. 6 D .7BC [由题设可知a 1=-a 11,所以a 1+a 11=0,所以a 6=0.因为d <0,故a 5>0,a 7<0,所以n =5或6.]12.在平面直角坐标系中,横、纵坐标均为整数的点叫做格点.若函数图像恰好经过k 个格点,则称函数为k 阶格点函数.已知函数:①y =sin x; ②y =cos;③y =e x -1;④y =x 2.其中为一阶格点函数的序号有( ) A .① B .② C .③ D .④AC [对于①,注意到y =sin x 的值域是[-1,1];当sin x =0时,x =k π(k ∈Z ),此时相应的整数x =0;当sin x =±1时,x =k π+π2(k ∈Z ),此时没有相应的整数x ,因此函数y =sin x 仅过唯一的整点(0,0),该函数是一阶格点函数.同理可知,对于②,函数y =cos不是一阶格点函数.对于③,令y =e x -1=k (k ∈Z )得e x =k +1>0,x =ln(k +1),仅当k =0时,x =0∈Z ,因此函数y =e x -1是一阶格点函数.对于④,注意到函数y =x 2的图像经过多个整点,如点(0,0),(1,1),因此函数y =x 2不是一阶格点函数.综上所述知选AC.]三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.已知S n 是等比数列{a n }的前n 项和,a 5=-2,a 8=16,则公比q =________,S 6等于________.(本题第1空2分,第2空3分)-2218 [∵{a n }为等比数列,∴a 8=a 5q 3,∴q 3=16-2=-8,∴q =-2. 又a 5=a 1q 4,∴a 1=-216=-18,∴S 6=a 1(1-q 6)1-q =-18[1-(-2)6]1+2=218.]14.已知f (x )=x (2 019+ln x ),f ′(x 0)=2 020,则x 0=________. 1 [f ′(x )=2 019+ln x +1=2 020+ln x ,又∵f ′(x 0)=2 020,∴f ′(x 0)=2 020+ln x 0=2 020,则ln x 0=0,x 0=1.]15.已知数列{a n }的通项公式a n =(-1)n (2n -1),则a 1+a 2+a 3+…+a 10=________. 10 [观察可知a 1+a 2=2,a 3+a 4=2,…,a 9+a 10=2,故a 1+a 2+a 3+…+a 10=10.] 16.定义域为R 的函数f (x )满足f (1)=1,且f (x )的导函数f ′(x )>12,则满足2f (x )<x +1的x 的集合为________.{x |x <1} [令g (x )=2f (x )-x -1.因为f ′(x )>12,所以g ′(x )=2f ′(x )-1>0.所以g (x )为单调增函数.因为f (1)=1,所以g (1)=2f (1)-1-1=0.所以当x <1时,g (x )<0,即2f (x )<x +1.]四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)和为114的三个数是一个公比不为1的等比数列的连续三项,也是一个等差数列的第1项,第4项,第25项,求这三个数.[解] 由题意,设这三个数分别是a q ,a ,aq ,且q ≠1,则aq +a +aq =114.①令这个等差数列的公差为d ,则a =aq +(4-1)·d,∴d =13⎝⎛⎭⎫a -a q . 又有aq =a q +24×13×⎝⎛⎭⎫a -a q ,② 由②得(q -1)(q -7)=0,∵q ≠1,∴q =7, 代入①得a =14,则所求三个数为2,14,98.18.(本小题满分12分)已知函数f (x )=a 23x 3-2ax 2+bx ,其中a 、b ∈R ,且曲线y =f (x )在点(0,f (0))处的切线斜率为3.(1)求b 的值;(2)若函数f (x )在x =1处取得极大值,求a 的值.[解] (1)f ′(x )=a 2x 2-4ax +b ,由题意得f ′(0)=b =3.∴b =3. (2)∵函数f (x )在x =1处取得极大值, ∴f ′(1)=a 2-4a +3=0,解得a =1或a =3.①当a =1时,f ′(x )=x 2-4x +3=(x -1)(x -3), x 、f ′(x )、f (x )的变化情况如下表:由上表知,函数f (x )在x =1处取得极大值,符合题意. ②当a =3时,f ′(x )=9x 2-12x +3=3(3x -1)(x -1), x 、f ′(x )、f (x )的变化情况如下表:由上表知,函数f (x )在x =1处取得极小值,不符合题意. 综上所述,若函数f (x )在x =1处取得极大值,a 的值为1. 19.(本小题满分12分)求数列1,3a,5a 2,7a 3,…,(2n -1)·a n -1的前n 项和.[解] 当a =0时,S n =1.当a =1时,S n =1+3+5+7+…+(2n -1)=(1+2n -1)n 2=n 2.当a ≠0且a ≠1时,S n =1+3a +5a 2+…+(2n -3)a n -2+(2n -1)a n -1, aS n =a +3a 2+5a 3+…+(2n -3)a n -1+(2n -1)a n , 两式相减,有(1-a )S n =1+2a +2a 2+…+2a n -1-(2n -1)a n =1+2a (1-a n -1)1-a -(2n -1)a n ,此时S n =2a (1-a n -1)(1-a )2+a n +1-2na n1-a .当a =0时,也满足此式.综上,S n=⎩⎪⎨⎪⎧n 2,a =1,2a (1-an -1)(1-a )2+a n +1-2na n1-a,a ≠1.20.(本小题满分12分)某个体户计划经销A ,B 两种商品,据调查统计,当投资额为x (x ≥0)万元时,在经销A ,B 商品中所获得的收益分别为f (x )万元与g (x )万元,其中f (x )=a (x -1)+2,g (x )=6ln(x +b )(a >0,b >0).已知投资额为零时收益为零.(1)求a ,b 的值;(2)如果该个体户准备投入5万元经销这两种商品,请你帮他制定一个资金投入方案,使他能获得最大利润.[解] (1)由投资额为零时收益为零,可知f (0)=-a +2=0,g (0)=6ln b =0, 解得a =2,b =1.(2)由(1)可得f (x )=2x ,g (x )=6ln (x +1).设投入经销B 商品的资金为x 万元(0<x ≤5),则投入经销A 商品的资金为(5-x )万元, 设所获得的收益为S (x )万元,则S (x )=2(5-x )+6ln (x +1)=6ln (x +1)-2x +10(0<x ≤5). S ′(x )=6x +1-2,令S ′(x )=0,得x =2.当0<x <2时,S ′(x )>0,函数S (x )单调递增; 当2<x ≤5时,S ′(x )<0,函数S (x )单调递减.所以,当x =2时,函数S (x )取得最大值,S (x )max =S (2)=6ln 3+6≈12.6万元. 所以,当投入经销A 商品3万元,B 商品2万元时,他可获得最大收益,收益的最大值约为12.6万元.21.(本小题满分12分)已知数列{a n }的前n 项和为S n ,a 1=-2,且满足S n =12a n +1+n +1(n ∈N *).(1)求数列{a n }的通项公式; (2)若b n =log 3(-a n +1),设数列的前n 项和为T n ,求证:T n <34.[解] (1)由S n =12a n +1+n +1(n ∈N *),得S n -1=12a n +n (n ≥2,n ∈N *),两式相减,并化简,得a n +1=3a n -2,即a n +1-1=3(a n -1). 因为a 1-1=-2-1=-3≠0,所以{a n -1}是以-3为首项,3为公比的等比数列, 所以a n -1=(-3)·3n -1=-3n ,故a n =-3n +1.22.(本小题满分12分)已知函数f (x )=x 3+3ax 2+3x +1. (1)当a =-2时,讨论f (x )的单调性;(2)若x ∈[2,+∞)时,f (x )≥0,求a 的取值范围.[解] (1)当a =-2时,f (x )=x 3-32x 2+3x +1,f ′(x )=3x 2-62x +3. 令f ′(x )=0,得x 1=2-1,x 2=2+1.当x ∈(-∞,2-1)时,f ′(x )>0,f (x )在(-∞,2-1)上是增函数; 当x ∈(2-1,2+1)时,f ′(x )<0,f (x )在(2-1,2+1)上是减函数; 当x ∈(2+1,+∞)时,f ′(x )>0,f (x )在(2+1,+∞)上是增函数. (2)由f (2)≥0,得a ≥-54.当a ≥-54,x ∈[2,+∞)时, f ′(x )=3(x 2+2ax +1)≥3⎝⎛⎭⎫x 2-52x +1=3⎝⎛⎭⎫x -12·(x -2)>0, 所以f (x )在[2,+∞)上是增函数,于是当x ∈[2,+∞)时,f (x )≥f (2)≥0. 综上,a 的取值范围是⎣⎡⎭⎫-54,+∞.。
模块综合检测(B)一、选择题(本大题共12小题,每小题5分,共60分)1.某林场有树苗30 000棵,其中松树苗4 000棵,为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为()A.30 B.25C.20 D.152.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80 mg/100 mL(不含80)之间,属于酒后驾车,处暂扣一个月以上三个月以下驾驶证,并处200元以上500元以下罚款;血液酒精浓度在80 mg/100 mL(含80)以上时,属醉酒驾车,处十五日以下拘留和暂扣三个月以上六个月以下驾驶证,并处500元以上2 000元以下罚款.据《法制晚报》报道,2009年8月15日至8月28日,全国查处酒后驾车和醉酒驾车共28 800人,如图是对这28 800人血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为()A.2 160 B.2 880C.4 320 D.8 6403.下列说法正确的是()A.任何事件的概率总是在(0,1)之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,频率一般会越来越接近概率D.概率是随机,在试验前不能确定4.经过下面程序,变量y的值为()A .3B .6C .9D .275.从1、2、3、4、5、6这6个数字中,不放回地任取两数,两数都是偶数的概率是( ) A.12 B.13 C.14 D.156.如果执行下边的程序框图,输入x =-2,h =0.5,那么输出的各个数的和等于( )A .3B .3.5C .4D .4.5 7.已知直线y =x +b ,b ∈[-2,3],则直线在y 轴上的截距大于1的概率为( ) A.15 B.25 C.35 D.458.如图是根据某校10位高一同学的身高(单位:cm)画出的茎叶图,其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,从图中可以得到这10位同学身高的中位数是( )A .161 cmB .162 cmC .163 cmD .164 cm 9.如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别是( ) A .12.5 12.5 B .12.5 13C .13 12.5D .13 1310.甲、乙两位同学在高三的5次月考中数学成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是x 甲,x 乙,则下列叙述正确的是( )A .x甲>x 乙;乙比甲成绩稳定 B .x 甲>x 乙;甲比乙成绩稳定 C .x 甲<x 乙;乙比甲成绩稳定 D .x 甲<x 乙;甲比乙成绩稳定11.在如图所示的程序框图中,如果输入的n =5,那么输出的i 等于( )A .3B .4C .5D .612.某车间生产一种玩具,为了要确定加工玩具所需要的时间,进行了10次实验,数据如下:如回归直线方程的斜率是b ,则它的截距是( )A.a ^=11b ^-22 B.a ^=22-11b ^C.a ^=11-22b ^D.a ^=22b ^-1113.某鱼贩一次贩运草鱼、青苗、鲢鱼、鲤鱼及鲫鱼分别为80条、20条、40条、40条、20条,现从中抽取一个容量为20的样本进行质量检测,若采用分层抽样的方法抽取样本,则抽取的青鱼与鲤鱼共有________条.14.某商店统计了最近6个月商品的进价x 与售价y(单位:元),对应数据如下:则x =________, y =________, ∑i =1x 2i =______________________________, ∑6i =1x i y i =________,回归直线方程为: ____________________________________.15.下列程序运行后输出的x -y 和y -x 结果分别为________. x =5;y =-20;if x<0x =y -3;elsey =y +3;end,x -y ,y -;16.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为90%,则甲、乙两人下成平局的概率为________.三、解答题(本大题共6小题,共70分)17.(10分)据统计,从5月1日到5月7日参观上海世博会的人数如下表所示:(1)把这7天的参观人数看成一个总体,求该总体的平均数(精确到0.1)(2)用简单随机抽样方法从非指定参观日中抽取2天,它们的参观人数组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过2万的概率.18.(12分)设点M(p,q)在|p|≤3,|q|≤3中按均匀分布出现,试求方程x2+2px-q2+1=0的两根都是实数的概率.19.(12分)某商场第一年销售计算机5 000台,如果平均每年销售量比上一年增加10%,那么从第一年起,大约经过几年可使总销量达到40 000台?画出解决此问题的程序框图,并写出程序.20.(12分)以下是收集到的新房屋的销售价格y和房屋的大小x的数据:(1)(2)用最小二乘法求回归直线方程,并在散点图上加上回归直线;(3)估计房屋的大小为90 m2时的销售价格.21.(12分)假设小明家订了一份报纸,送报人可能在早上6∶30至7∶30之间把报纸送到小明家,小明爸爸离开家去工作的时间在早上7∶00至8∶00之间,问小明的爸爸在离开家前能得到报纸的概率是多少?22.(12分)设有关于x的一元二次方程x2+2ax+b2=0.(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]上任取的一个数,求上述方程有实根的概率.模块综合检测(B)1.C [样本中松树苗的数量为15030 000×4 000=20.]2.C [由题意及频率分布直方图可知,醉酒驾车的频率为(0.01+0.005)×10=0.15,故醉酒驾车的人数为28 800×0.15=4 320.]3.C [概率总在是[0,1]之间,故A 错误;概率是客观存在的,与试验次数无关,而频率随试验次数产生变化,故B 、D 错误;频率是概率的近似,故选C.] 4.B [∵3不大于3,∴y =2x =6.]5.D [从6个数字中不放回的任取两数有6×5=30(种)取法,均为偶数的取法有3×2=6(种)取法, ∴所求概率为630=15.]6.B [当x<0时,输出y 恒为0, 当x =0时,输出y =0. 当x =0.5时,输出y =x =0.5. 当1≤x≤2时输出y 恒为1,而h =0.5, 故x 的取值为1、1.5、2.故输出的各个数之和为0.5+3=3.5.]7.B [根据几何概型的概率公式,P =3-13--=25.] 8.B [通过茎叶图可知这10位同学的身高是155 cm ,155 cm ,157 cm,158 cm,161 cm,163 cm,163 cm,165 cm,171 cm,172 cm.这10个数据的中位数是将这些数据从小到大(或从大到小)排列后中间两个数据的平均数,即为161 cm 和163 cm 这两个数据的平均数,所以应选B.]9.B [根据频率分布直方图特点可知,众数是最高矩形的中点,由图可知为12.5,中位数是10+0.5-0.20.1=13.]10.C [由题意可知,x 甲=15×(72+77+78+86+92)=81,x 乙=15×(78+88+88+91+90)=87.又由方差公式可得s 2甲=15×[(81-72)2+(81-77)2+(81-78)2+(81-86)2+(81-92)2]=50.4,s 2乙=15×[(87-78)2+(87-88)2+(87-88)2+(87-91)2+(87-90)2]=21.6,因为s 2乙<s 2甲,故乙的成绩波动较小,乙的成绩比甲稳定.] 11.C [由框图知当n =5时, 将3n +1=16赋给n ,此时i =1; 进入下一步有n =8,i =2; 再进入下一步有n =4,i =3; 以此类推有n =1,i =5, 此时输出i =5.]12.B [由x =2+202=11.y =110(4+7+12+15+21+25+27+31+37+41)=22.得a ^=y -b ^x =22-11b ^.] 13.6解析 设抽取的青鱼与鲤鱼共有x 条,根据分层抽样的比例特点有20+4080+20+40+40+20=x 20, ∴x =6.14.6.5 8 327 396 y ^=1.14x +0.59 15.22,-22解析 x =5>0,∴y =y +3=-20+3=-17. ∴x -y =5-(-17)=22,y -x =-17-5=-22. 16.50%解析 甲不输为两个事件的和事件,其一为甲获胜(事件A),其二为甲获平局(事件B),并且两事件是互斥事件. ∵P(A +B)=P(A)+P(B)∴P(B)=P(A +B)-P(A)=90%-40%=50%.17.解 (1)总体平均数为17(21+23+13+15+9+12+14)≈15.3.(2)设A 表示事件“样本平均数与总体平均数之差的绝对值不超过2万”.从非指定参观日中抽取2天可能的基本事件有:(15,9),(15,12),(15,14),(9,12),(9,14),(12,14),共6个,事件A 包含的基本事件有:(15,12),(15,14),共2个. 所以P(A)=26=13.18.解 由|p|≤3,|q|≤3可知(p ,q)的点集为边长是6的正方形,其面积为36.由x 2+2px -q 2+1=0的两根都是实数得Δ=(2p)2+4(q 2-1)≥0⇒p 2+q 2≥1. ∴当点(p ,q)落在如图所示的阴影部分时,方程两根都是实数. ∴P =1-π36.故方程x 2+2px -q 2+1=0的两根都是实数的概率为1-π36.19.解 程序框图如图所示:程序:m =5 000;S =0;i =0;while S<40 000S =S +m ;m =+;i =i +1;end,;20.解 (1)数据的散点图如图所示:(2)x =15∑5i =1x i =109,∑5i =1(x i-x )2=1 570, y =23.2,∑5i =1(x i -x )(y i -y )=308, ∴b ^=3081 570≈0.196 2,a ^=y -b ^x =23.2-109×0.196 2=1.814 2,所以回归直线方程为:y ^=0.196 2x +1.814 2.(3)若x =90,则y ^=1.814 2+0.196 2×90≈19.5(万元). 故房屋的大小为90 m 2时的销售价格约为19.5万元.21.解 为了方便作图,记6∶30为0时,设送报人将报纸送到小明家的时刻为x ,小明的爸爸离开家的时刻为y ,则0≤x≤60,30≤y≤90(单位:分钟).小明的爸爸离家前能得到报纸只要y≥x.在平面直角坐标系中作上述区域(如图所示),由图知区域D =S 矩形ABCD =602.区域d =S 五边形AEFCD =602-12×302.∴所求概率P =d D =1-12×(12)2=78,答 小明的爸爸离家前能得到报纸的概率是78.22.解 设事件A 为“方程x 2+2ax +b 2=0有实根”. 当a≥0,b≥0时,方程x 2+2ax +b 2=0有实根当且仅当a≥b. (1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 包含9个基本事件,故事件A 发生的概率为P(A)=912=34. (2)试验的全部结果所构成的区域为{(a ,b)|0≤a≤3,0≤b≤2}.构成事件A 的区域为{(a ,b)|0≤a≤3,0≤b≤2,a≥b}.所以所求的概率为P(A)=3×2-12×223×2=23.。