乙酸乙酯速度常数的测定
- 格式:doc
- 大小:33.00 KB
- 文档页数:1
乙酸乙酯皂化反应速度常数和活化
能的测定
乙酸乙酯皂化反应速度常数和活化能的测定是指以乙酸乙酯为原料,进行加热制备皂化物,同时测定反应的速度常数k和活化能Ea。
1. 材料准备:乙酸乙酯、重金属盐类以及一定比例的水。
2. 实验装置:采用开放式实验装置,反应容器内保持氧气平衡,防止乙酸乙酯的氧化分解。
3. 实验操作:将乙酸乙酯和重金属盐类混合溶于水中,置于恒温热槽中,加热溶剂至反应温度,逐渐升高温度,实时测量反应的速度常数和活化能,记录温度和速率的关系。
4. 实验结果:根据实验结果可得到反应的速度常数k 和活化能Ea。
0.2mL,加水至刻度、设定”按钮按至“设定”位置,观察设定温度℃,调节“温度设置”旋钮,调节温度为30.00℃),用移液管量取NaOH和蒸馏水各25mL加入100mL锥形瓶中,混合均匀后置于恒温槽中。
恒温10min后测电导率G0。
测定方法:打开数显电导率仪,将电极插入电导池中进行测量即可。
此时电导率仪显示数字就是G0的值。
注意事项:电导率仪的电极须用蒸馏水冲洗擦干后方可使用;不可用力擦拭,防止电极上的铂黑脱落。
4、G t的测定将25mLNaOH和25mL乙酸乙酯分别加入电导池中(两种溶液不可混合)。
恒温10min后将两种溶液混合,同时用秒表记录反应时间。
并在两管中混合3~5次。
把电极插入立管中,并在5、10、15、20、25、30min分别读取电导率G t。
5、调节恒温水浴温度为40℃,按照步骤4的操作测定G0、G t。
6、实验结束后,关闭恒温水浴与电导率仪的电源;洗净电导池;用蒸馏水淋洗电导电极,并用蒸馏水浸泡好。
五、数据处理1、将t、G t、G0-G t及(G0-G t)/t等数据列于下表:实验温度:气压:G0:t/m in Gt/(ms∙cm-1)(G-Gt)/(ms∙cm-1)[G-Gt/t]/(ms∙cm-1∙min-1)5 1.793 0.141 0.070510 1.700 0.234 0.058515 1.612 0.322 0.053720 1.506 0.428 0.047625 1.425 0.509 0.042430 1.361 0.573 0.03822、以G t对(G0-G t)/t作图,由所得直线斜率,求出反应速率常数k。
3、求出反应的活化能。
实验八、乙酸乙酯皂化反应速度常数的测定一、实验目的⑴、理解反应体系电导与反应物浓度之间的关系。
⑵、掌握电导仪的使用方法。
⑶、学会用图解法求出二级反应的速率常数。
二、基本原理乙酸乙酯的皂化反应是一个典型的二级反应:CH3COOC2H5 +OH-CH3COO- +C2H5OH设反应物乙酸乙酯与碱的起始浓度相同,则反应速度方程为:-(dc/dt)= kc2积分得:本实验采用电导法测定反应过程中任一时刻t的浓度c 。
乙酸乙酯和乙醇不具有明显的电导性。
它们的浓度变化不致影响电导的数值。
反应中Na+的浓度始终不变,与电导的变化无关。
体系中只是OH-和CH3COO-的浓度变化对电导的影响较大,由于OH-的迁移速度约是CH3COO-的五倍,所以溶液的电导随着OH-的消耗而逐渐降低。
G0:NaOH溶液浓度为c0时的电导;G t:NaOH溶液浓度为c时的电导G NaOH与CH3COONa溶液浓度为c0-c时的电导G CH3COONa之和;G∞:是产物CH3COONa溶液浓度为c0时的电导。
由于溶液的电导与电解质的浓度成正比,所以可以得到用电导表示的反应速度常数的数学表达式:以G t对(G0-G t)/t作图,可求得反应速度常数k 。
由反应速度常数表达式可知,本反应的半衰期t1/2为:t1/2=1/kc0 ,亦即作图所得直线的斜率。
三、主要仪器与试剂恒温槽1套,电导仪1台,皂化池1个,电导电极1支。
0.02mol·L-1NaOH溶液,0.02mol·L-1CH3COOC2H5溶液四、实验操作步骤1、配制与NaOH标准溶液浓度相同的乙酸乙酯溶液。
(容量瓶上标有)122、电导率仪的调整:打开电源开关,将温度旋钮旋至水温温度,常数旋钮打到1,量程旋钮打至检查档,旋转校正旋钮使显示值至电导电极常数(电极上标有)乘以100处,不再变化为止,这样仪器就校正好了,以下步骤应保持不变,只要把量程开关打至所需的档,显示值乘以相应档的系数,就是所测溶液的电导率。
乙酸乙酯皂化反应速率常数的测定乙酸乙酯是一种常见的有机化合物,在化学实验室和工业生产中广泛应用。
了解乙酸乙酯的反应性质对于合成和应用都具有重要意义。
乙酸乙酯的皂化反应速率常数的测定是对其反应性质进行研究的一种方法。
皂化反应是指酯与碱反应生成相应的醇和盐。
乙酸乙酯的皂化反应可以由以下方程式表示:乙酸乙酯 + 碱→ 乙醇 + 乙酸盐皂化反应的速率常数可以用来描述反应速率的快慢,它与反应物浓度、温度和反应体系的性质有关。
因此,测定乙酸乙酯皂化反应速率常数可以帮助我们了解乙酸乙酯的反应性质以及控制其反应过程。
要测定乙酸乙酯皂化反应速率常数,首先需要准备一系列含有不同浓度的乙酸乙酯和碱溶液。
可以选择一种适当的碱,如氢氧化钠。
然后,将乙酸乙酯和碱溶液混合,并在一定的时间间隔内测量反应体系中乙醇生成的量。
根据乙醇生成的速率与反应物浓度的关系,可以计算得到乙酸乙酯皂化反应速率常数。
在实验过程中,可以通过不同方法来测量乙醇的生成量,如使用分光光度计、气相色谱仪或液相色谱仪等。
同时,为了保证实验的准确性,需要在一定温度下进行实验,并且控制实验条件的一致性。
在测定乙酸乙酯皂化反应速率常数的过程中,还可以探究其他因素对反应速率的影响。
例如,可以研究不同温度下的反应速率,以了解温度对反应速率的影响。
此外,还可以改变反应体系中乙酸乙酯和碱的浓度,以探究浓度对反应速率的影响。
这些研究可以帮助我们更好地理解乙酸乙酯的反应性质,并为其应用提供参考。
乙酸乙酯的皂化反应速率常数的测定是对其反应性质进行研究的一种方法。
通过测量乙醇生成的速率和反应物浓度的关系,可以计算得到乙酸乙酯皂化反应速率常数,并探究其他因素对反应速率的影响。
这些研究有助于我们更好地理解乙酸乙酯的反应性质,并为其应用提供参考和指导。
乙酸乙酯皂化反应速率常数的测定一.实验目的及要求二.实验原理三.实验步骤四.实验注意事项五.数据记录与处理 1.速率常数的求解 时间/min4681012151821242730电导率t κ/us ·cm -11910 1840 1790 1720 1680 1640 1590 1530 1500 1470 14500ttκκ-/us ·cm -1·s -172.5 6051.254843.33 37.33 33.89 31.90 29.17 27.0325Y =10.189x + 1221.7 Parameter Value Error------------------------------------------------------------A 1221.7B 10.189-----------------------------------------298.2K 时,k=18.5反应速率常数k (298.2K )= (2)308.2K k0=2550 时间min 4681012151821.25 242730电导率t κ/us ·cm -11754 1731 1599 1546 1487 1440 13981367 1339 1321时间min 4681012151821.25 242730电导率t κ/us ·cm -11754 1731 1599 1546 1487 1440 13981367 1339 13210ttκκ-/us ·cm -1·s-1153.2 131.5 92.181.17 68.87 6053.43 48.04 43.74 39.97 0ttκκ-/us ·cm -1·s -1153.2131.592.1 81.1768.876053.4348.0443.7439.97Y = 4.0005x+1189.4 Parameter Value Error------------------------------------------------------------A 1189.4B 4.0005------------------------------------------------------------ 308.2K 时,k=反应速率常数k (308.2K )=2.由两个不同温度下(298.2K 和308.2K )测得的速率常数1()k T 和2()k T 求出该反应的活化能212121()ln()()k T TTE R k T T T =⨯-= 七.思考题八.讨论(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
乙酸乙酯皂化反应速率常数的测定数据处理乙酸乙酯是一种广泛应用于化学工业中的有机化合物,其皂化反应速率常数的测定是一项重要的实验。
本文将介绍乙酸乙酯皂化反应速率常数的测定方法以及数据处理过程。
我们需要了解皂化反应的概念。
皂化反应是指碱与酯反应生成相应的盐和醇,其中碱起催化作用。
在本实验中,我们使用氢氧化钠作为碱催化剂,乙酸乙酯则为酯。
测定乙酸乙酯皂化反应速率常数的方法是,将一定量的氢氧化钠溶液和乙酸乙酯混合,然后在一定时间内测定生成的乙醇的量。
根据反应物的化学计量关系,可以计算出反应物的物质摩尔比例,从而得到反应速率常数。
在实验中,我们需要使用一些实验室常用的实验仪器,如天平、移液管、比色皿等。
同时,需要准备好一定浓度的氢氧化钠溶液、乙酸乙酯等实验试剂。
实验步骤如下:1. 将一定量的氢氧化钠溶液和乙酸乙酯混合,加入比色皿中。
2. 在一定时间内测定生成的乙醇的量,可以通过比色法、滴定法等方法进行测定。
3. 根据反应物的化学计量关系,计算出反应物的物质摩尔比例,从而得到反应速率常数。
数据处理过程如下:1. 计算出反应物的物质摩尔比例。
2. 根据反应速率常数的定义,计算出反应速率常数。
3. 统计测定结果并求出平均值,计算出标准偏差和相对误差。
4. 利用统计学原理,计算出反应速率常数的置信区间和置信度。
在数据处理过程中,需要注意一些细节问题。
例如,要确保实验中使用的试剂纯度高,实验操作要精确、规范,数据处理要仔细、准确。
总的来说,测定乙酸乙酯皂化反应速率常数是一项重要的实验,可以帮助我们更好地理解化学反应的机理和规律。
通过实验和数据处理,我们可以得到准确可靠的结果,为化学工业的应用提供了理论基础和技术支持。
乙酸乙酯皂化反应速率常数及活化能的测定一、实验目的1.通过电导法测定乙酸乙酯皂化反应速度常数。
2.求反应的活化能。
3.进一步理解二级反应的特点。
4.掌握电导仪的使用方法。
二、实验原理反应速率与反应物浓度的二次方成正比的反应为二级反应。
其速率方程为4.1将速率方程积分可得动力学方程:4.2式中为反应物的初始浓度,为时刻反应物的浓度,为二级反应的速率常数。
以对时间作图应为一直线,直线的斜率即为。
对大多数反应,反应速率与温度的关系可用阿仑尼乌斯经验方程来表示:4.3式中为阿仑尼乌斯活化能或叫反应活化能,为指前因子,为速率常数。
实验中若测得两个不同温度下的速率常数,由(4.3)式很容易得到:4.4由(4.4)式可求活化能。
乙酸乙脂皂化反应是二级反应=动力学方程为4.5由(4.5)式可以看出,只要测出t时刻的x值,c0为已知的初始浓度,就可以算出速率常数k2。
实验中反应物浓度比较低,因此我们可以认为反应是在稀的水溶液中进行,CH3COONaCOO-的导电能力大,随着是全部解离的。
在反应过程中Na+的浓度不变,OH-的导电能力比CH3COO-不断增加,因此在实验中我们可以用测量溶液的电导(G)反应的进行,OH-不断减少,CH3来求算速率常数k2。
体系电导值的减少量与产物浓度x的增大成正比:4.64.7式中为时溶液的电导,为时间时溶液的电导,为反应进行完全(→∞)时溶液的电导。
将(4.6)、(4.7)两式代入(4.5)式得:整理得:4.8实验中测出及不同时刻所对应的,用对作图得一直线,由直线的斜率可求出速率常数。
若测得两个不同温度下的速率常数,后,可用(4.4)式求出该反应的活化能。
三、仪器与试剂1、仪器电导率仪(附DJS-1型铂黑电极)1台;电导池1只;恒温水浴1套;停表1只;移液管(10ml)3只;磨口三角瓶(200ml)1个。
2、药品NaOH水溶液(0.0200mol·dm-3);乙酸乙酯(A.R.);电导水。
乙酸乙酯水解速率常数的测定数据处理乙酸乙酯是一种常见的有机溶剂,在工业生产和实验室中广泛应用。
然而,乙酸乙酯的水解性质对于某些应用而言可能是一个重要的考虑因素。
因此,准确测定乙酸乙酯的水解速率常数具有重要意义。
本文将介绍乙酸乙酯水解速率常数的测定方法和数据处理。
选择一个适当的实验条件进行乙酸乙酯的水解实验。
实验条件的选择应基于以下几个因素:温度、浓度、酸碱性和催化剂等。
在实验过程中,需要记录乙酸乙酯的初始浓度、反应时间和反应温度等参数。
在实验过程中,乙酸乙酯会与水发生水解反应,生成乙醇和乙酸。
水解速率可以通过监测乙酸乙酯浓度的变化来确定。
一种常用的方法是使用紫外可见光谱仪测量乙酸乙酯溶液中乙酸乙酯的吸光度随时间的变化。
另一种方法是使用色谱仪测量乙酸乙酯和其水解产物的浓度。
实验数据处理是确定乙酸乙酯水解速率常数的关键步骤。
在数据处理过程中,可以使用一些数学模型来拟合实验数据,从而确定乙酸乙酯的水解速率常数。
常见的数学模型包括零级反应模型、一级反应模型和二级反应模型等。
这些模型可以用来描述乙酸乙酯水解反应的速率与浓度之间的关系。
为了确定乙酸乙酯水解速率常数,可以使用线性回归分析来拟合实验数据。
通过将实验数据按照某种数学关系进行转化,可以得到一条直线,从而确定乙酸乙酯水解速率常数的数值。
线性回归分析可以使用最小二乘法进行计算。
在进行数据处理时,还需要考虑实验误差的影响。
实验误差可能来自于实验条件的不确定性、仪器的误差以及实验操作的不准确等因素。
为了减小误差的影响,可以进行多次实验并取平均值,从而提高数据的准确性和可靠性。
根据实验数据处理的结果,可以得到乙酸乙酯的水解速率常数。
这个常数可以用来描述乙酸乙酯水解反应的速率和浓度之间的关系。
乙酸乙酯的水解速率常数的测定对于乙酸乙酯的应用和安全性评估具有重要意义。
乙酸乙酯水解速率常数的测定是一个重要而复杂的过程。
通过选择适当的实验条件、使用合适的仪器和方法,并进行数据处理和误差分析,可以获得准确的乙酸乙酯水解速率常数。
实验九 乙酸乙酯皂化反应速率常数的测定1 前言实验目的测定乙酸乙酯皂化反应的速率常数; 实验内容在30℃时,用电导率仪先测定 1mol ·L -1的NaOH 溶液的电导率,然后将20ml ·L -1的NaOH 溶液与20ml ·L -1的乙酸乙酯溶液混合,测定其电导率随时间的变化关系;然后将实验温度升高到37℃,重复上述实验; 实验原理对于二级反应A +B → 产物如果A,B 两物质起始浓度相同,均为a,则反应速率的表示式为2x -a )(k dt dx = 1 式中:x 为t 时刻生成物的浓度;式1定积分得:⎥⎦⎤⎢⎣⎡-=)(1x a a xt k 2以 xa x -对t 作图,若所得为直线,证明是二级反应;并可以从直线的斜率求出k;所以在反应进行过程中,只要能够测出反应物或生成物的浓度,即可求得该反应的速率常数k;温度对化学反应速率的影响常用阿伦尼乌斯方程描述2ln RT E dTkd a = 3 式中:Ea 为反应的活化能;假定活化能是常数,测定了两个不同温度下的速率常数kT 1和kT 2后可以按式3计算反应的活化能Ea;⎪⎪⎭⎫ ⎝⎛-⨯=122112)()(lnT T T T R T k T k E a 4 乙酸乙酯皂化反应是一个典型的二级反应,其反应式为:反应系统中,OH -电导率大,CH 3COO -电导率小;所以,随着反应进行,电导率大的OH -逐渐为电导率小的CH 3COO -所取代,溶液电导率有显着降低;对于稀溶液,强电解质的电导率κ与其浓度成正比,而且溶液的总电导率就等于组成该溶液的电解质电导率之和;若乙酸乙酯皂化反应在稀溶液中进行,则存在如下关系式:a A 10=κ 5a A 2=∞κ 6x A x a A t 21)(+-=κ 7式中:A 1,A 2分别是与温度、电解质性质和溶剂等因素有关的比例常数;κ0、κt 、κ∞分别为反应开始、反应时间为t 和反应终了时溶液的总电导率;由式5—式7,得ax t ⎪⎪⎭⎫ ⎝⎛--=∞κκκκ00 8代入式2并整理,得∞+⎪⎭⎫⎝⎛-=κκκκtak tt 01 9因此,以t κ对ttκκ-0作图为一直线即说明该反应为二级反应,且由直线的斜率可求得速率系数k ;由两个不同温度下测得的速率系数k T 1与kT 2,可以求出反应的活化能Ea;由于溶液中的化学反应实际上非常复杂,如上所测定和计算的是表观活化能;2 实验方法实验仪器和试剂仪器 DDS-llA 型电导率仪1台;自动平衡记录仪1台;恒温水浴1套;DJS-1型电导电极1支;双管反应器2只、大试管1只;100mL 容量瓶1个;20mL 移液管3支;刻度移液管1支;试剂 L 的NaOH 溶液;乙酸乙酯AR ;新鲜去离子水或蒸馏水; 实验步骤1 仪器准备:接通电导率仪的电源,校正电导率仪,正确选择其量程,并将电导率仪的记录输出与记录仪相连;2 配制乙酸乙酯溶液:用容量瓶配制L 的乙酸乙酯溶液100mL;乙酸乙酯密度与温度的关系式ρ= 10其中ρ、t 的单位分别为kg/m 3和℃需要乙酸乙酯约;已知室温等于℃,计算得需要乙酸乙酯;3 0κ的测量;将恒温水浴调至30℃,用移液管吸取L 的NaOH 溶液装入干净的大试管中再加入20mLH 2O,将电导电极套上塞子,电极经去离子水冲洗并用滤纸吸干后插入大试管中,大试管放入恒温水浴恒温约10min,将电导率仪的“校正测量”开关扳到“测量”位置,记录仪开始记录;4 t κ的测定;将洁净干燥的双管反应器置于恒温水浴中,有移液管取20mL L 乙酸乙酯溶液,放入粗管;将电极用电导水认真冲洗3次,用滤纸小心吸干电极上的水,然后插入粗管,并塞好;用另一支移液管取20mL LNaOH 溶液放入细管,恒温约5min;用洗耳球迅速反复抽压细管两次,将NaOH 溶液尽快完全压入粗管,使溶液充分混合;记录仪必须在反应前开始记录,大约20min 可以停止测量;5 重复以上步骤,测定37℃时反应的0κ与t κ;3 结果与讨论由实验室仪器读出室温为℃,大气压为;表1,表2中的第二列由记录仪采集,可见附图t κ-t 关系图上的数据;第一列时间并非直接由记录仪采集的数据读出,而是在t κ-t 关系图上找出最高点,记下最高点对应的时间,之后将各数据点对应的时间减去最高点对应的时间即为表中第一列t;第三列中的0κ同样由记录仪采集,见附图0κ的测量,得30℃时,0κ=格,37℃时,0κ=格;注:附图分别为30℃时0κ的测量图、37℃时0κ的测量图、30℃时t κ-t 关系图、37℃时t κ-t 关系图;表1 乙酸乙酯皂化反应动力学实验数据记录30℃时间t/min格子数t κ/格0κ—t κ/ t以表1中的第二列对第三列作图,得图1;图1 ℃时t κ ~0κ—t κ/ t 图线由图1知,实验的线性拟合较好,该反应为二级反应;由公式9得,图1中直线的斜率为Ca ︒30k 1,在该实验中,a=L,所以。