八年级数学上册专题共顶点的等腰三角形习题课件(新版)新人教版
- 格式:ppt
- 大小:1.85 MB
- 文档页数:23
等腰三角形一、知识梳理:专题一:等腰三角形概念及性质;等腰三角形的判定.二、考点分类考点一:等腰三角形的概念有两边相等的三角形是等腰三角形。
【类型一】利用等腰三角形的概念求边长或周长【例1】如果等腰三角形两边长是6cm和3cm,那么它的周长是()A.9cm B.12cm C.15cm或12cm D.15cm解析:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm 时,6-3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15(cm).故选D.方法总结:在解决等腰三角形边长的问题时,如果不明确底和腰时,要进行分类讨论,同时要养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.考点二:等腰三角形的性质1、等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).2、解题方法:设辅助未知数法与拼凑法.3、重要的数学思想方法:方程思想、整体思想和转化思想.【类型一】利用“等边对等角”求角度【例2】等腰三角形的一个内角是50°,则这个三角形的底角的大小是()A .65°或50° B.80°或40° C .65°或80° D.50°或80°解析:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°.故选A.方法总结:等腰三角形的两个底角相等,已知一个内角,则这个角可能是底角也可能是顶角,要分两种情况讨论.【类型二】 利用方程思想求等腰三角形角的度数【例3】 如图①,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,求△ABC 各角的度数.解析:设∠A =x ,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.解:设∠A =x .∵AD =BD ,∴∠ABD =∠A =x .∵BD =BC ,∴∠BCD =∠BDC =∠ABD +∠A=2x .∵AB =AC ,∴∠ABC =∠BCD =2x .在△ABC 中,∠A +∠ABC +∠ACB =180°,∴x +2x+2x =180°,∴x =36°,∴∠A =36°,∠ABC =∠ACB =72°.方法总结:利用等腰三角形的性质和三角形外角的性质可以得到角与角之间的关系,当这种等量关系或和差关系较多时,可考虑列方程解答,设未知数时,一般设较小的角的度数为x .① ②【类型三】 利用“等边对等角”的性质进行证明【例4】 如图②,已知△ABC 为等腰三角形,BD 、CE 为底角的平分线,且∠DBC =∠F ,求证:EC ∥DF .解析:先由等腰三角形的性质得出∠ABC =∠ACB ,根据角平分线定义得到∠DBC =12∠ABC ,∠ECB =12∠ACB ,那么∠DBC =∠ECB ,再由∠DBC =∠F ,等量代换得到∠ECB =∠F ,于是根据平行线的判定得出EC ∥DF .证明:∵△ABC 为等腰三角形,AB =AC ,∴∠ABC =∠ACB .又∵BD 、CE 为底角的平分线,∴∠DBC =12∠ABC ,∠ECB =12∠ACB ,∴∠DBC =∠ECB .∵∠DBC =∠F ,∴∠ECB =∠F ,∴EC ∥DF .方法总结:证明线段的平行关系,主要是通过证明角相等或互补.【类型四】 利用等腰三角形“三线合一”的性质进行证明【例5】 如图①,点D 、E 在△ABC 的边BC 上,AB =AC .(1)若AD =AE ,求证:BD =CE ;(2)若BD =CE ,F 为DE 的中点,如图②,求证:AF ⊥BC .解析:(1)过A 作AG ⊥BC 于G ,根据等腰三角形的性质得出BG =CG ,DG =EG 即可证明;(2)先证BF =CF ,再根据等腰三角形的性质证明.证明:(1)如图①,过A 作AG ⊥BC 于G .∵AB =AC ,AD =AE ,∴BG =CG ,DG =EG ,∴BG-DG =CG -EG ,∴BD =CE ;(2)∵BD =CE ,F 为DE 的中点,∴BD +DF =CE +EF ,∴BF =CF .∵AB =AC ,∴AF ⊥BC .方法总结:在等腰三角形有关计算或证明中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.【类型五】 与等腰三角形的性质有关的探究性问题【例6】 如图①,已知△ABC 是等腰直角三角形,∠BAC =90°,BE 是∠ABC 的平分线,DE⊥BC ,垂足为D .(1)请你写出图中所有的等腰三角形;(2)请你判断AD 与BE 垂直吗?并说明理由.(3)如果BC =10,求AB +AE 的长.解析:(1)由△ABC 是等腰直角三角形,BE 为角平分线,可证得△ABE ≌△DBE ,即AB =BD ,AE =DE ,所以△ABD 和△ADE 均为等腰三角形;由∠C =45°,ED ⊥DC ,可知△EDC 也符合题意;(2)BE 是∠ABC 的平分线,DE ⊥BC ,根据角平分线定理可知△ABE 关于BE 与△DBE对称,可得出BE ⊥AD ;(3)根据(2),可知△ABE 关于BE 与△DBE 对称,且△DEC 为等腰直角三角形,可推出AB +AE =BD +DC =BC =10.解:(1)△ABC ,△ABD ,△ADE ,△EDC .(2)AD 与BE 垂直.证明:由BE 为∠ABC 的平分线,知∠ABE =∠DBE ,∠BAE =∠BDE =90°,BE =BE ,∴△ABE ≌△DBE ,∴△ABE 沿BE 折叠,一定与△DBE 重合,∴A 、D 是对称点,∴AD ⊥BE .(3)∵BE 是∠ABC 的平分线,DE ⊥BC ,EA ⊥AB ,∴AE =DE .在Rt △ABE 和Rt △DBE 中,∵⎩⎪⎨⎪⎧AE =DE ,BE =BE ,∴Rt △ABE ≌Rt △DBE (HL),∴AB =BD .又∵△ABC 是等腰直角三角形,∠BAC =90°,∴∠C =45°.又∵ED ⊥BC ,∴△DCE 为等腰直角三角形,∴DE =DC ,∴AB +AE =BD +DC =BC=10.① ②考点三:等腰三角形的判定方法(1)根据定义判定;(2)两个角相等的三角形是等腰三角形.【类型一】 确定等腰三角形的个数 【例7】 如图②,在△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别是∠ABC 、∠BCD 的角平分线,则图中的等腰三角形有( )A .5个B .4个C .3个D .2个解析:共有5个.(1)∵AB =AC ,∴△ABC 是等腰三角形;(2)∵BD 、CE 分别是∠ABC 、∠BCD的角平分线,∴∠EBC =12∠ABC ,∠ECB =12∠BCD .∵△ABC 是等腰三角形,∴∠EBC =∠ECB ,∴△BCE 是等腰三角形;(3)∵∠A =36°,AB =AC ,∴∠ABC =∠ACB =12(180°-36°)=72°.又∵BD 是∠ABC 的角平分线,∴∠ABD =12∠ABC =36°=∠A ,∴△ABD 是等腰三角形;同理可证△CDE 和△BCD 也是等腰三角形.故选A.方法总结:确定等腰三角形的个数要先找出相等的边和相等的角,然后确定等腰三角形,再按顺序不重不漏地数出等腰三角形的个数.【类型二】 在坐标系中确定三角形的个数【例8】 已知平面直角坐标系中,点A 的坐标为(-2,3),在y 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )A .3个B .4个C .5个D .6解析:因为△AOP 为等腰三角形,所以可分三类讨论:(1)AO =AP (有一个).此时只要以A 为圆心AO 长为半径画圆,可知圆与y 轴交于O 点和另一个点,另一个点就是点P ;(2)AO=OP (有两个).此时只要以O 为圆心AO 长为半径画圆,可知圆与y 轴交于两个点,这两个点就是P 的两种选择;(3)AP =OP (一个).作AO 的中垂线与y 轴有一个交点,该交点就是点P 的最后一种选择.综上所述,共有4个.故选B. 方法总结:解决此类问题的方法主要是线段垂直平分线与辅助圆的灵活运用以及分类讨论时做到不重不漏.【类型三】 判定一个三角形是等腰三角形【例9】如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的角平分线,AE与CD交于点F,求证:△CEF是等腰三角形.解析:根据直角三角形两锐角互余求得∠ABE=∠ACD,然后根据三角形外角的性质求得∠CEF=∠CFE,根据等角对等边求得CE=CF,从而求得△CEF是等腰三角形.证明:∵在△ABC中,∠ACB=90°,∴∠B+∠BAC=90°.∵CD是AB边上的高,∴∠ACD+∠BAC=90°,∴∠B=∠ACD.∵AE是∠BAC的角平分线,∴∠BAE=∠EAC,∴∠B+∠BAE=∠ACD+∠EAC,即∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.方法总结:“等角对等边”是判定等腰三角形的重要依据,是先有角相等再有边相等,只限于在同一个三角形中,若在两个不同的三角形中,此结论不一定成立.【类型四】等腰三角形性质和判定的综合运用【例10】如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠DEF的度数.解析:(1)根据等边对等角可得∠B=∠C,利用“边角边”证明△BDE和△CEF全等,根据全等三角形对应边相等可得DE=EF,再根据等腰三角形的定义证明即可;(2)根据全等三角形对应角相等可得∠BDE=∠CEF,然后求出∠BED+∠CEF=∠BED+∠BDE,再利用三角形的内角和定理和平角的定义求出∠B=∠DEF.(1)证明:∵AB =AC ,∴∠B =∠C .在△BDE 和△CEF 中,∵⎩⎪⎨⎪⎧BD =CE ,∠B =∠C ,BE =CF ,∴△BDE ≌△CEF (SAS),∴DE =EF ,∴△DEF 是等腰三角形;(2)解:∵△BDE ≌△CEF ,∴∠BDE =∠CEF ,∴∠BED +∠CEF =∠BED +∠BDE .∵∠B +∠BDE =∠DEF +∠CEF ,∴∠B =∠DEF .∵∠A =50°,AB =AC ,∴∠B =12×(180°-50°)=65°,∴∠DEF =65°.方法总结:等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.经典例题考点一:等腰三角形的概念【例1】等腰三角形的两边长分别为4和9,则这个三角形的周长为考点二:等腰三角形的性质【例3】已知等腰△ABC 中,AB=AC ,D 是BC 边上一点,连接AD ,若△ACD 和△ABD 都是等腰三角形,求∠C 的度数。
两个等腰直角三角形共点专题共锐角顶点直角开口方向相反基本方法:△EDB中与△ABC不共顶点B的那条线段DE平行移到另外等腰三角△ABC的底边BC的另一个点C处的CF。
典型例题同侧型:连接DC(不共顶点的两个底角点的连线),M是中点,求EM,AM的大小关系.方法:平移DE到CF,或倍长EM到MF思路:证明△AEB≌△AFC关键:证明∠ABE=∠ACF方法:∵DE⊥BE∴CG⊥BG∴∠ABE=∠ACF回头看:1.△ABC和△AEF是共直角顶点旋转2.四边形GBCA是共斜边的两个直角三角形共圆(外垂直)对侧型:四边形ABGC对角互补,共圆推广:两个等腰三角形,顶角互补也可以平移,或中线倍长提高.如图,在等腰Rt△ABC 与等腰Rt△DBE 中, ∠BDE=∠ACB=90°,且BE 在AB 边上,取AE 的中点F,CD 的中点G,连结GF.(1)FG 与DC 的位置关系是 ,FG 与DC 的数量关系是 ;(2)若将△BDE 绕B 点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立? 请证明你的结论.两个方法:已知:在△ABC 中,分别以AB 、AC 为斜边作等腰直角三角形ABM ,和CAN ,P 是边BC 的中点.求证:PM =PN正方形逆向15、请阅读下列材料问题:如图,在正方形ABCD 和平行四边形BEFG 中,点A 、B 、E 在同一条直线上,P 是线段DF 的中点,连接PG 、PC 。
探究:当PG 与PC 的夹角为多少度时,平行四边形BEFG 是正方形? 小聪同学的思路是:首先可以说明四边形BEFG 是矩形;然后延长GP 交DC 于点H ,构造全等三角形,经过推理可以探索出问题的答案。
请你参考小聪同学的思路,探究并解决这个问题。
(1)求证:四边形BEFG 是矩形;(2)PG 与PC 的夹角为多少度时?四边形BEFG 是正方形,请说明理由。
14、正方形ABCD 和正方形CEFG ,M 为AF 的中点,连接MD 、ME .⑴如图①,B 、C 、G 依次在同一条直线上,求证:△MDE 等腰直角三角形;⑵如图②,将正方形CEFG 绕顶点C 旋转45°.使B 、C 、F 依次在同一条直线上,则△MDE 的形状是 ⑶如图③、将正方形CEFG 任意旋转,设∠DC E=α°,猜想△MDE 的形状?写出你的结论并给予证明. 反开口,两个中点变一个中点再找关系19.如图,△ABO 与△CDO 均为等腰三角形,且∠BAO=∠DCO=90°,M 为BD 的中点,MN⊥AC,试探究MN 与AC 的数量关系,并说明理由。
人教版八年级上册模型构建专题共顶点的等腰三角形——明模型,悉结论◆类型一共直角顶点的等腰直角三角形1.如图,已知△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)猜想:AD和CE是否垂直?若垂直,请说明理由;若不垂直,则只要写出结论,不用写理由.◆类型二共顶点的等边三角形2.如图①,等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE.(1)△DBC和△EAC会全等吗?请说明理由;(2)试说明AE∥BC的理由;(3)如图②,将(1)中动点D运动到边BA 的延长线上,所作仍为等边三角形,请问是否仍有AE∥BC?证明你的猜想.参考答案与解析1.(1)证明:∵△ABC和△DBE均为等腰直角三角形,∴AB =BC ,BD =BE ,∠ABC =∠DBE =90°,∴∠ABC -∠DBC =∠DBE -∠DBC ,即∠ABD =∠CBE ,∴△ABD ≌△CBE (SAS),∴AD =CE .(2)解:垂直.理由如下:如图,延长AD 分别交BC 和CE 于G 和F .∵△ABD ≌△CBE ,∴∠BAD =∠BCE .∵∠BAD +∠ABC +∠BGA =∠BCE +∠AFC +∠CGF =180°,∠BGA =∠CGF ,∴∠AFC =∠ABC =90°,∴AD ⊥CE .2.解:(1)△DBC 和△EAC 全等.理由如下:∵△ABC 和△EDC 为等边三角形,∴BC =AC ,DC =EC ,∠ACB =∠DCE =60°,∴∠ACB -∠ACD =∠DCE -∠ACD ,即∠BCD =∠ACE ,∴△DBC ≌△EAC (SAS).(2)∵△DBC ≌△EAC ,∴∠EAC =∠B =60°.又∵∠ACB =60°,∴∠EAC =∠ACB ,∴AE ∥BC .(3)仍有AE ∥BC .证明如下:∵△ABC ,△EDC 为等边三角形,∴BC =AC ,DC =CE ,∠BCA =∠DCE =60°,∴∠BCA +∠ACD =∠DCE +∠ACD ,即∠BCD =∠ACE .在△DBC 和△EAC 中,∵⎩⎪⎨⎪⎧BC =AC ,∠BCD =∠ACE ,CD =CE ,∴△DBC ≌△EAC (SAS),∴∠EAC =∠B =60°.又∵∠ACB =60°,∴∠EAC =∠ACB ,∴AE ∥BC .。