[学习]非晶材料在PFC上的应用
- 格式:pptx
- 大小:1.59 MB
- 文档页数:10
非晶材料的应用原理及举例1. 引言非晶材料是一种特殊的材料结构,其原子排列无规律,表现出非晶态或准非晶态的特性。
非晶材料具有一些独特的物理、化学和电子性质,在各个领域有着广泛的应用。
本文将介绍非晶材料的应用原理,并给出一些举例进行说明。
2. 非晶材料的应用原理非晶材料的应用原理可以概括为以下几点:2.1 高硬度和强韧性非晶材料具有高硬度和强韧性的特点,这使得它们在制造工具、刀具和导电材料中有广泛的应用。
由于非晶材料的结构无规则,原子相互之间的结合力较大,因此具有较高的硬度;而且非晶材料的结构中存在着大量的缺陷,这使得非晶材料表现出较高的强韧性。
2.2 优异的磁性能非晶材料在磁性材料中具有广泛的应用。
与晶态材料相比,非晶材料在磁性性能方面表现出更高的饱和磁化强度、更低的磁滞回线以及较高的磁导率。
这使得非晶材料在电感器、传感器和电动机等领域有着重要的应用。
2.3 优良的光学特性非晶材料具有一系列的优良光学特性,例如透明性、抗紫外线性能和抗辐射性能。
这使得非晶材料在光学器件、光学传感器和光纤通信中具有广泛的应用。
2.4 高温稳定性和耐腐蚀性非晶材料在高温和腐蚀环境下具有较好的稳定性和耐腐蚀性。
这使得非晶材料在航空航天、核工程和化学工业等领域有着重要的应用。
3. 非晶材料的应用举例下面将举例介绍一些非晶材料的应用:3.1 钠钙玻璃钠钙玻璃是一种常见的非晶材料,具有优异的光学特性和耐腐蚀性。
它被广泛应用于光学器件、光学传感器和光纤通信中。
另外,钠钙玻璃还可以作为医用材料,用于制造人工骨骼和牙科修复材料。
3.2 铁基非晶合金铁基非晶合金具有优异的磁性能和高温稳定性。
它们被广泛应用于电感器、变压器和电动机等领域。
铁基非晶合金还可以用作磁存储材料,用于制造高密度的硬盘驱动器。
3.3 金属玻璃金属玻璃是一种特殊的非晶材料,具有高硬度和强韧性。
它被广泛应用于制造工具、刀具和导电材料。
金属玻璃还可以用来制备纳米材料和先进的材料合金。
非晶/纳米晶软磁材料一.应用领域非晶态软磁合金材料为20世纪70年代问世的一种新型材料,因具有铁芯损耗小、电阻率高、频率特性好、磁感应强度高、抗腐蚀性强等优点,引起了人们的极大重视,被誉为21世纪新型绿色节能材料。
其技术特点为:采用超急冷凝固技术使合金钢液到薄带材料一次成型;采用纳米技术,制成介于巨观和微观之间的纳米态(10-20nm)软磁物质。
非晶、纳米晶合金的优异软磁特性都来自于其特殊的组织结构,非晶合金中没有晶粒和晶界,易于磁化;纳米晶合金的晶粒尺寸小于磁交换作用长度,导致平均磁晶各向异性很小,并且通过调整成分,可以使其磁致伸缩趋近于零。
【表1】列出了非晶/纳米晶近年来,随着信息处理和电力电子技术的快速发展,各种电器设备趋向高频化、小型化、节能化。
在电力领域,非晶、纳米晶合金均得到大量应用。
其中铁基非晶合金的最大应用是配电变压器铁芯。
由于非晶合金的工频铁损仅为硅钢的1/5~1/3,利用非晶合金取代硅钢可使配电变压器的空载损耗降低60﹪~70﹪。
因此,非晶配电变压器作为换代产品有很好的应用前景。
纳米晶合金的最大应用是电力互感器铁芯。
电力互感器是专门测量输变电线路上电流和电能的特种变压器。
近年来高精度等级(如0.2级、0.2S级、0.5S级)的互感器需求量迅速增加。
传统的冷轧硅钢片铁芯往往达不到精度要求,虽然高磁导率玻莫合金可以满足精度要求,但价格高。
而采用纳米晶铁芯不但可以达到精度要求、而且价格低于玻莫合金。
在电力电子领域,随着高频逆变技术的成熟,传统大功率线性电源开始大量被高频开关电源所取代,而且为了提高效率,减小体积,开关电源的工作频率越来越高,这就对其中的软磁材料提出了更高的要求。
硅钢高频损耗太大,已不能满足使用要求。
铁氧体虽然高频损耗较低,但在大功率条件下仍然存在很多问题,一是饱和磁感低,无法减小变压器的体积;二是居礼温度低,热稳定性差;三是制作大尺寸铁芯成品率低,成本高。
目前采用功率铁氧体的单个变压器的转换功率不超过20kW。
颗粒流软件 PFC及其在岩土工程中的应用摘要:PFC在岩土工程中的应用证明了PFC在模拟非连续岩体力学性能方面的应用,PFC不仅能够解决岩石的静、动力问题,还可以替代室内实验,也可以对模型的结果进行仿真,甚至可以在原始数据较为详尽的条件下进行仿真。
在缺乏实际测量数据的前提下,对岩土工程的初始应力、不连续性等问题的分析,可以利用PFC方法,对系统的一些参数特征进行分析,便于对系统的建模。
PFC还可以模拟粒子之间的相互作用、大变形和断裂等问题,PFC具有很大的应用前景。
关键词:岩土工程;颗粒流;PFC软件;工程应用1.引言颗粒材料广泛存在于生产生活中,其在不同条件下会表现出不同的相态。
颗粒材料力学特性的研究一般分为室内物理实验和数值模拟两个方面,其中离散元法作为数值模拟方法的代表之一,由于可以直接考虑颗粒运动与接触等物理本质特性而被广泛采用。
影响颗粒材料力学性质的因素有很多,如初始密实度、初始接触各向异性、加载历史和加载路径、颗粒间接触特性以及颗粒形状等。
由于颗粒材料的离散性,颗粒形状对其力学特性的影响显得尤为重要。
他是基于连续媒质理论的数值计算方法,其计算结果与实际情况有很大差别,PFC可以很好地解决这一问题。
本文对PFC软件的理论和特性进行了分析,对PFC与常规数值软件仿真的相似性进行了分析,总结了PFC在岩土本构模型、地质灾害分析、基坑及基础处理等方面的应用,并对PFC在岩土工程中的应用进行了探讨。
并指出了当前PFC软件在岩土工程中的应用和发展趋势。
2.颗粒流软件PFC概述PFC方法既可直接模拟圆形颗粒的运动与相互作用问题,也可以通过两个或多个颗粒与其直接相邻的颗粒连接形成任意形状的组合体来模拟块体结构问题。
PFC中颗粒单元的直径可以是一定的,也可按高斯分布规律分布,单元生成器根据所描述的单元分布规律自动进行统计并生成单元。
通过调整颗粒单元直径,可以调节孔隙率,通过定义可以有效地模拟岩体中节理等弱面。
非晶带材成型过程熔潭特性的数值模拟作者:张斐然程舟济潘永军来源:《现代信息科技》2021年第09期DOI:10.19850/ki.2096-4706.2021.09.011摘要:平面流铸技术的出现为非晶带材中宽带的制取提供了可能,而位于喷嘴和铜辊表面之间熔潭的状态则决定了带材的性能和质量。
通过对熔潭初始形成过程的数值模拟,详细分析了熔潭外形尺寸的变化及其内部温度场、速度场随时间的分布,进而推算出熔体的冷却速率这一制带关键参数。
实验结果表明:在非晶带材的制取过程中,周围气体及熔潭内部出现的回流会影响到温度的表现,并计算出熔体的平均冷却速率为2.1×106 K/s,对比已有的实验结论,验证了该数值模拟的可靠性。
关键词:平面流铸;熔潭;温度场;速度场;冷却速率中图分类号:TG249;TG244+.3 文献标识码:A 文章编号:2096-4706(2021)09-0038-04Numerical Simulation of Molten Pool Characteristics inAmorphous Strip Formation ProcessZHANG Feiran,CHENG Zhouji,PAN Yongjun(Wuhan Second Ship Design and Research Institute,Wuhan 430064,China)Abstract:The appearance of planar flow casting technology makes it possible to produce wide strip in amorphous strip,and the state of molten pool between nozzle and copper roller surface determines the performance and quality of the strip. Through the numerical simulation of the initial formation process of the molten pool,the change of the overall size of the molten pool and the distribution of its internal temperature field and velocity field with time are analyzed in detail,and then the key parameter of strip making,the cooling rate of the melt material,is calculated. The experimental results show that during the production of amorphous strip,the reflux coming from surrounding gas and the internal molten pool will affect the temperature performance,and the average cooling rate of melt material is calculated to be 2.1×106 K/s,compared with the existing experimental conclusions,the reliability of the numerical simulation is verified.Keywords:planar flow casting;molten pool;temperature field;velocity field;cooling rate0 引言非晶带材以其独特的机械、物理、化学和电磁特性,被广泛应用在各工业领域中。
非晶态材料的性质及应用材料是我们生活中不可或缺的组成部分,材料的性质决定了它的用途和应用范围。
而近年来,非晶态材料作为一种新型材料,引起了越来越多人的关注。
本文将介绍非晶态材料的性质及应用领域。
一、非晶态材料的定义非晶态材料是指没有长程有序结构的固体材料,也被称为无定形材料或非晶体。
相对于传统晶态材料,非晶态材料具有许多独特的物理和化学性质,如高硬度、高弹性模量、高熔点、良好的化学稳定性等。
二、非晶态材料的形成非晶态材料的形成需要避免或消除晶体的有序排列,这需要通过快速冷却方法实现,如快速凝固、电极丝拉丝、热喷涂等方法。
这些方法可以使原本应该形成晶体的物质快速形成非晶体,而在形成时,原子或分子的有序性被破坏,从而形成无定形或非晶态的结构。
三、非晶态材料的性质非晶态材料具有许多独特的物理和化学性质:1.高硬度:非晶态材料通常具有高硬度和弹性模量。
例如,在非晶态钛合金中,其硬度可达到晶态钛合金的两倍以上。
2.高熔点:非晶态材料的熔点通常比晶态材料高。
例如,非晶态金属的熔点通常比同类晶态材料高30-50%。
3.高化学稳定性:非晶态材料通常具有良好的化学稳定性,可以耐受许多腐蚀性环境。
4.超导性:一些非晶态材料,如非晶态锰铜合金、非晶态铝铜合金等,表现出超导性质,这使它们在电子学和能源领域得到广泛的应用。
四、应用领域非晶态材料在许多领域都具有广泛的应用,如:1.超导体材料:非晶态材料中的超导体材料被广泛应用于电子学领域,如超导电缆和超导磁体等。
2.电子学:非晶态材料具有良好的电学性能,被广泛应用于电池、传感器、电子器件等领域。
3.磁性材料:非晶态磁性材料具有良好的磁学性质,可以被用于制造各种电子元件和传感器。
4.机械制造:非晶态材料具有优异的机械性能,可以被用于制造机械零件、汽车零部件和军事装备等。
5.能源领域:非晶态材料具有良好的导热性能和抗疲劳性能,可以被用于制造太阳能电池、热电材料等。
总之,非晶态材料是一种新型的材料,具有许多独特的物理和化学性质,被广泛用于电子学、磁性材料、机械制造和能源领域。
非晶态材料的热力学性质和应用非晶态材料是指不具有规则的晶体结构、而呈现类似于玻璃的无序状态的材料。
这种材料具有相对较高的熔点和硬度,同时又保持了一定的韧性,因此被广泛地应用于许多领域,如制造业、航天航空、光学设备等。
本文将探讨非晶态材料的热力学性质及其应用。
一、非晶态材料的热力学性质1.比热非晶态材料与结晶材料的比热差异明显。
在相同的温度下,非晶态材料的比热要比结晶材料的比热小很多。
这是因为非晶态材料的原子排列更加紧密,使得内部的热运动更加活跃,从而导致更高的热导率。
此外,非晶态材料的比热还与其化学成分、形态等因素有关。
2.热膨胀系数热膨胀系数是指材料在温度变化时,长度或体积的相应变化程度。
非晶态材料的热膨胀系数比结晶材料的要小,这是由于其原子间的结构更加紧密。
因此,非晶态材料在高温的环境下比结晶材料更加稳定。
3.热稳定性非晶态材料通常具有良好的热稳定性。
当温度升高到一定程度时,结晶材料的原子结构会发生变化,但非晶态材料保持其无序状态。
这使得非晶态材料具有更优异的高温性能。
二、非晶态材料的应用1.建筑领域非晶态材料在建筑设计领域展现了广泛的应用前景。
非晶态材料可以用于生产玻璃、透明隔热材料等。
其高阻隔性和稳定的性能使得其成为抵御自然灾害的首选材料。
2.制造业非晶态材料在制造业中应用广泛,可用于制造高性能机械部件和工具。
例如,非晶态合金用作钝化层可以使工具具有更高的硬度和耐磨性,从而大大地延长了其寿命。
3.电子领域非晶态材料在电子领域也有广泛的应用。
非晶态材料的导电性优良,例如非晶态铜合金,在半导体材料中具有优异的导电性能,可用于制造导线、立体电路和传感器等。
4.光学领域非晶态材料在光学领域的应用非常多。
非晶态玻璃可以用于制造高透光率的屏幕和显示器。
此外,非晶态光导纤维在激光器和医疗器械领域也得到了广泛的应用。
总之,非晶态材料具有许多独特的性质和应用价值,这种材料在未来的发展中将会扮演重要的角色。
PFC工作原理和控制方法2010—12-15 14:46 分类:电源知识PFC不是一个新概念了,在UPS电源要运用地较多,而PC电源上很少见到PFC电路。
PFC在PC电源上的兴起,主要是源于CCC认证,所有需要通过CCC认证的电脑电源,都必须增加PFC电路.PFC就是“功功率因数校正”的意思,主要用来表征电子产品对电能的利用效率。
功率因数越高,说明电能的利用效率越高。
PC电源采用传统的桥式整流、电容滤波电路会使AC输入电流产生严重的波形畸变,向电网注入大量的高次谐波,因此网侧的功率因数不高,仅有0。
6左右,并对电网和其它电气设备造成严重谐波污染与干扰。
早在80年代初,人们已对这类装置产生的高次谐波电流所造成的危害引起了关注.1982年,国际电工委员会制订了IEC55-2限制高次谐波的规范(后来的修订规范是IEC1000-3-2),促使众多的电力电子技术工作者开始了对谐波滤波和功率因数校正(PFC)技术的研究。
电子电源产品中引入PFC电路,就可以大大提高对电能的利用效率。
PFC有两种,一种是无源PFC(也称被动式PFC),一种是有源PFC(也称主动式PFC)。
无源PFC一般采用电感补偿方法使交流输入的基波电流与电压之间相位差减小来提高功率因数,但无源PFC的功率因数不是很高,只能达到0。
7~0.8;有源PFC由电感电容及电子元器件组成,体积小,可以达到很高的功率因数,但成本要高出无源PFC一些。
有源PFC电路中往往采用高集成度的IC,采用有源PFC电路的PC电源,至少具有以下特点:1)输入电压可以从90V到270V;2)高于0。
99的线路功率因数,并具有低损耗和高可靠等优点;3) IC的PFC还可用作辅助电源,因此在使用有源PFC电路中,往往不需要待机变压器;4)输出不随输入电压波动变化,因此可获得高度稳定的输出电压;5) 有源PFC输出DC电压纹波很小,且呈100Hz/120Hz(工频2倍)的正弦波,因此采用有源PFC的电源不需要采用很大容量的滤波电容。
颗粒流(PFC)简介颗粒流(PFC)简介注:今天偶然间见到颗粒流的概念,以前一直不了解,今天查了查,贴在这里,以备以后可以温故知新。
本文内容源自浙江大学罗勇先生的博士论文,使得吾辈能花较少的时间看到广博的知识,在此特向其表示感谢!岩土工程数值计算总体上可以分为两大类:一类是基于连续介质力学理论的方法,如有限元法(FEM)和快速拉格朗日法(FLAC(1tasea,2002))等;另一类是不连续介质力学的方法,如离散元法 UDEC(1tasca,2000)、3DEC(Itasea,1998)、PFC(Itasea,2002)和块体理论DDA(石根华,1988)等。
离散元方法按其用途又可以分为宏观离散元方法和细观离散元方法,前者主要针对解决规模相对较大的不连续面,如断层节理结构与基础之间的结合面等引起的问题(UDEC,3DEC),后者则着重于数目众多具有不连续特性的接触面或点,如破碎岩体中的破裂面、砂土中的接触面(点)和材料中颗粒之间的接触面(点)等。
PFC(Particle Flow Code)是在著名学者Peter Cundall主持下采用细观离散元理论(又称为粒子流理论)开发的一种数值计算平台,可以广泛地应用于研究细观结构控制问题。
目前,PFC在世界上的应用并不广泛,成果报道也主要集中在PFC国际会议论文集中。
颗粒流PFCZD (Particle Flow Code in 2 Dimensions)平台数值模拟单元有两种:颗粒圆筒和颗粒(disc or particle),主要用于平面应力和平面应变的特殊情况;颗粒流PFC3D(Particle Flow Code in 3 Dimensions)的数值模拟单元是三维球体颗粒(granular),主要用于三维受力分析。
Cundall(2002)博士认为PFC在描述岩土体介质特殊特性方面有着其他常用数值方法不可比拟的优势,主要表现在如下方面:(l)能自动模拟介质基本特性随应力环境的变化;(2)能实现岩土体对历史应力一应变记忆特性的模拟(屈服面变化Kaiser效等);(3)反映剪胀及其对历史应力等的依赖性;(4)自动反映介质的连续非线行应力一应变关系屈服强度和此后的应变软化或硬化过程;(5)能描述循环加载条件下的滞后效应;(6)描述中间应力增大时介质特性的脆性一塑性转化;(7)能考虑增量刚度对中间应力和应力历史的依赖性;(8)能反映应力一应变路径引起的刚度和强度的各向异性问题;(9)描述了强度包线的非线性特征;(10)介质材料微裂缝的自然产生过程;PFC的基本特点粒子流属于不连续介质力学的一种方法,这里的粒子并不直接与介质中是否存在颗粒状物质有关,只是用来描述介质特性的一种方式。
非晶材料的应用非晶材料是一种新兴的材料,由于其独特的物理、化学性质以及微结构,正在得到广泛的关注。
在许多领域中,非晶材料已经被应用,同时也有许多领域正在探索其应用。
本文将介绍非晶材料的应用。
1. 超强韧性合金非晶合金是由三个或更多的金属元素组成的合金。
它们的母材料具有无序的原子结构,这使它们比晶体材料具有更高的强度和硬度。
这些材料通常用于制造抗腐蚀、耐磨损和高温应用的部件,如飞机发动机、汽车制动器、航空航天部件等。
非晶合金还可以用于制造集成电路、计算机芯片等应用。
2. 太阳能电池板非晶硅薄膜太阳能电池板在光能转换效率上较晶体硅略低,但其可以制备成大尺寸、灵活性好、可弯曲性高等特点。
该类电池模组随着先进制造技术的应用,有望取代传统的晶体硅太阳能电池板。
3. 记忆合金非晶合金在形状记忆方面可以被制成许多形状,具有高形状记忆效应、高能量储存特性和高循环稳定性。
这些特性使得非晶合金可以广泛应用于电子、机械、医疗器械等领域。
例如,非晶合金可以作为心脏手术器械、医疗外科器械、自动控制输油管道阀门、智能头发卷等。
4. 功能性玻璃非晶材料可以制成功能性玻璃,由于其优异的光学性能,可以用于制造光学器件,如液晶、液晶显示器等。
同时,非晶玻璃还可以制成防爆材料、装饰玻璃、声学材料等。
5. 磁性材料非晶合金在磁性材料领域已经得到广泛应用,由于其微观结构的非晶性质,使得非晶合金具有相对应的特殊磁性。
非晶合金可以应用于转变、传动装置中,例如大型的磁力发电机、磁力轴承、传动器等。
6. 纳米颗粒非晶材料可以制造出大小只有纳米尺度的微小颗粒。
这些纳米颗粒具有很多优异的性能,包括高强度、高韧性、高稳定性等。
这些优异性质使得非晶材料的纳米颗粒被应用于制造高性能材料、生物医学领域、传感器等。
总之,非晶材料的应用在不同领域中各不相同,但其独特的物理和化学性质使其能够在制造高性能材料、电子器件、磁性材料、生物医学器械等领域得到广泛应用。
随着技术的发展,我们相信非晶材料将在更多领域被应用。