套管柱强度设计计算
- 格式:pdf
- 大小:174.63 KB
- 文档页数:7
已知数据井深D=3233.3 m 钻井液密度ρd=1.15 g/cm3套管外径d=139.7mm 油管线重q=25.3 Kg/m 水密度ρW =1.0 g/cm3抗外挤强度Sc=43.3 MP 抗拉强度St=1548 KN抗内压屈服强度Si=53.4 MP 管体屈服强度1766 KN各安全系数:抗外挤强度Sc=1.0 抗拉强度St=1.8N抗内压屈服强度Si=1.1强度校核1. 校核抗外挤强度井底外挤压力最大Poc=9.81×ρd×D×10-3=9.81×1.15×3233.3×10-3=36.48 KPSc=σ/ Poc=43.3/36.48=1.19>1.0符合要求Poc—套管外挤压力,kPa;D —计算点深度,m;ρd—管外钻井液密度,g/cm3;2. 校核抗拉强度井口处受拉应力最大Fo=q×L×10-3=25.3×9.81×3233.3×10-3=802.48 KNSt=σ/ Fo=1548/802.48=1.93 >1.8符合要求Q—套管单位长度的名义重力,N/m;L—套管长度,m;Fa—井口处套管的轴向拉力,KN;3.校核抗内压强度关井时井口最易受内压力破坏此时井口压力等于井底压力(净水柱压力)Pgas=9.81×ρW×D×10-6=9.81×1000×3233.3×10-6=312.72Pi=P gas/e1.1155×10-4GD= P gas/e0.00011155GD=31.10Si=Pri/Pi=53.4/31.10=1.72>1.1符合要求Pgas —井底天然气压力, MPa;Pi—井口内压力,MPa;D—井深,m;G—天然气与口气密度之比,一般取0.55;4.对油管水泥返高处进行抗外挤强度校核Pcc=Pc×(1.03-0.74×Fm/Fs)=43.3×(1.03-0.74×802.48/1766)=30.04 MPSc=σ/ Pcc=43.3/30.04=1.44>1.0Pcc—存在轴向拉力时的最大允许抗外挤强度,MPa;Pc—无轴向拉力时套管的强度外挤强度,MPa;Fm—轴向拉力,kN;Fs—套管管体屈服强度 kN;;。
一、井身结构设计1.1、钻井液压力体系1.1.1、最大泥浆密度ρmax=ρpmax+Sh (1-1)式中:ρmax-某层套管钻进井段中所用最大泥浆密度,g/cm 3.ρpmax-该井段中所用地层孔隙压力梯度等效密度,g/cm 3Sb-抽吸压力允许值得当量密度,取0.036 g/cm 3。
发生井涌情况时:ρfnk=ρpmax+Sb+Sf+HniHp max .Sk (1-2) 式中:ρfnk-第n 层套管以下发生井涌时,在井内最大压力梯度作用下,上部地层不被压裂所应有的地层破裂压力梯度,g/cm 3Hni-第n 层套管下入深度初选点,mSk-压井时井内压力增高值的等效密度,取0.06g/cm 3Sf-地层压裂安全增值,取0.03g/cm 3。
1.1.2 校核各层套管下到初选点深度Hni 时是否会发生压差卡套ΔPm=9.81Hmm (ρpmax+Sb-ρpmin )×10-3 (1-3) 式中:ΔPm-第n 层套管钻进井段内实际的井内最大静止压差,MPaρpmin-该井段内最小地层孔隙压力梯度等效密度,g/cm 3.Hmm-该井段内最小地层孔隙压力梯度的最大深度,mΔPN-避免发生压差卡套的许用压差,取12MPa 。
1.2 井身结构的设计根据邻井数据,绘制地层压力与破裂压力剖面图,如下图所示:图1-1 地层压力与破裂压力剖面图(1)油层套管下入深度初选点H2的确定由于井深为2160m ,所以确定油层套管的下入深度为2155m 。
(2)表层套管下入深度初选点H1的确定试预取H1i=390m ,由邻井参数得:ρpmax=1.1g/cm 3、Hpmax=2160m 。
以及发生井涌时,由公式1-2并代入各值得:ρf1k=1.1+0.036+0.03+3902160×0.06=1.498g/cm 3根据邻井数据可知390m 以下的最小破裂压力梯度为ρfmin=1.5g/cm 3,因为ρf1k<ρfmin 且相近,所以确定表层套管下入深度初选点为H1=390m 。
套管柱结构与强度设计套管柱结构是石油工程中常用的一种结构形式,它由多个套管组合而成,通常用于油井的钻探和生产过程中。
套管柱的设计需要考虑到其承受外部压力和内部流体压力时的强度问题,以确保其能够在复杂的地质条件下安全地运行。
首先,我们需要了解套管柱结构的基本组成。
一般来说,套管柱由多个套管和接头组合而成。
每个套管都有自己的内径、外径、壁厚等参数,而接头则用于连接不同大小或类型的套管。
在实际应用中,还需要考虑到其他因素如防腐、防爆等问题。
接下来,我们需要考虑到套管柱在承受外部压力时所需具备的强度。
这主要包括两个方面:弯曲强度和挤压强度。
对于弯曲强度来说,我们需要计算出套管在受到侧向载荷时所能承受的最大应力值。
这需要考虑到材料本身的性质、壁厚、长度等因素,并采用相关公式进行计算。
同时,在实际应用中,还需要考虑到套管的支撑方式、地质条件等因素。
对于挤压强度来说,我们需要计算出套管在承受内部流体压力时所能承受的最大应力值。
这同样需要考虑到材料本身的性质、壁厚、长度等因素,并采用相关公式进行计算。
同时,在实际应用中,还需要考虑到套管的接头、防爆措施等因素。
除了以上两个方面,我们还需要考虑到套管柱在复杂地质条件下所需具备的其他强度。
例如,在遇到断层或者地震等情况时,套管柱需要具备足够的抗震和抗变形能力。
这需要在设计时考虑到不同情况下套管柱结构的变化和调整。
总之,套管柱结构设计是石油工程中非常重要的一环。
它不仅涉及到工程安全和效率问题,还涉及到环境保护和资源利用问题。
因此,在进行设计时,我们需要充分考虑各种因素,并采用科学合理的方法进行计算和优化。
只有如此,才能确保套管柱结构在实际应用中具备足够的强度和稳定性。
2014-2015学年第二学期《完井工程》《套管柱强度校核》上机报告班级:石油工程12级1班姓名:李国锋学号:教师:一、欲解决问题的说明某井177.8毫米油层套管下至井深3600m,ρ=1.6g/cm3,水泥返到地面,预计气层深度3700m处七层压力Pp=59Mpa,尾管射孔完井,油管不带封隔器生产。
试对井段套管柱强度校核。
二、问题求解分析过程①设计方法按照各段所选套管钢级壁厚,查找套管对应抗挤强度,丝扣连接强度,以及抗内压强度,计算各段套管段底外挤力,段顶拉力,以及天然气充满井时的内压力。
从而求得抗挤、抗拉、抗内压系数。
②主要公式Sc=Pc/ρgHSt=Fst/Fm 其中Fm=qgLSi=Pi/(Pp/e1.1155×10-4GD)③符号说明程序中出现符号主要有:Pc——套管受到的外挤力Fm——套管收到的下部套管重力之和Fs——套管的屈服强度Fst——套管的丝扣滑脱强度Sc——套管抗挤系数St——套管抗拉系数Si——套管抗内压系数D——表示某段套管下入深度L——表示某段套管长度三、程序功能介绍及代码①程序功能本程序可以代替人工进行某一井段套管柱强度校核,通过程序可以查看各个井段套管柱是否符合各个安全系数要求。
确保套管柱安全。
②程序运行界面见图1③附源程序代码Private Sub Command1_Click()Dim L1, L2, L3, L4, L5 As Integer Dim D1, D2, D3, D4, D5 As Integer Dim Sc1, Sc2, Sc3, Sc4, Sc5 As Single Dim St1, St2, St3, St4, St5 As Single Dim Si1, Si2, Si3, Si4, Si5 As Single Dim bh1, bh2, bh3, bh4, bh5 As Single Dim ρ As SingleD1 = Val(Text26.Text)ρ = Val(Text27.Text)Pp = Val(Text28.Text)L1 = Val(Text5.Text)L2 = Val(Text4.Text)L3 = Val(Text3.Text)L4 = Val(Text2.Text)L5 = Val(Text1.Text)bh1 = Text20.Textbh2 = Text19.Textbh3 = Text18.Textbh4 = Text17.Text图1 bh5 = Text16.Text'根据段长自动计算井段'Text15.Text = D1Text14.Text = D1 - L1Text13.Text = Text14.TextD2 = Text13.TextText12.Text = D2 - L2Text11.Text = Text12.TextD3 = Text11.TextText10.Text = D3 - L3Text9.Text = Text10.TextD4 = Text9.TextText8.Text = D4 - L4Text7.Text = Text8.TextD5 = Text7.TextText6.Text = D5 - L5'第一段校核'If bh1 = 8.05 Thenq1 = 34.22: Pc1 = 26400000: Pi1 = 43710000: Fst1 = 1966000ElseIf bh1 = 9.19 Thenq1 = 38.69: Pc1 = 37296000: Pi1 = 49918000: Fst1 = 2308000ElseIf bh1 = 10.36 Thenq1 = 43.15: Pc1 = 48398000: Pi1 = 56253000: Fst1 = 2656000ElseIf bh1 = 11.51 Thenq1 = 47.62: Pc1 = 59293000: Pi1 = 62461000: Fst1 = 2989000ElseIf bh1 = 12.65 Thenq1 = 52.08: Pc1 = 70189000: Pi1 = 63706000: Fst1 = 3319000End IfSc1 = Round((Pc1 / (ρ * 9810 * D1)), 2)Label30.Caption = Sc1Fm1 = 9.81 * q1 * L1St1 = Round((Fst1 / Fm1), 2)Label35.Caption = St1Si1 = Round((Pi1 * (2.7183 ^ (0.00011155 * 0.55 * D1)) / (Pp * 1000000)), 2)Label40.Caption = Si1'第二段校核'If bh2 = 8.05 Thenq2 = 34.22: Pc2 = 26400000: Pi2 = 43710000: Fst2 = 1966000ElseIf bh2 = 9.19 Thenq2 = 38.69: Pc2 = 37296000: Pi2 = 49918000: Fst2 = 2308000ElseIf bh2 = 10.36 Thenq2 = 43.15: Pc2 = 48398000: Pi2 = 56253000: Fst2 = 2656000ElseIf bh2 = 11.51 Thenq2 = 47.62: Pc2 = 59293000: Pi2 = 62461000: Fst2 = 2989000ElseIf bh2 = 12.65 Thenq2 = 52.08: Pc2 = 70189000: Pi2 = 63706000: Fst2 = 3319000End IfSc2 = Round((Pc2 / (ρ * 9810 * D2)), 2)Label29.Caption = Sc2Fm2 = (9.81 * q2 * L2) + Fm1St2 = Round((Fst2 / Fm2), 2)Label34.Caption = St2Si2 = Round((Pi2 * (2.7183 ^ (0.00011155 * 0.55 * D2)) / (Pp * 1000000)), 2)Label39.Caption = Si2'第三段校核'If bh3 = 8.05 Thenq3 = 34.22: Pc3 = 26400000: Pi3 = 43710000: Fst3 = 1966000ElseIf bh3 = 9.19 Thenq3 = 38.69: Pc3 = 37296000: Pi3 = 49918000: Fst3 = 2308000ElseIf bh3 = 10.36 Thenq3 = 43.15: Pc3 = 48398000: Pi3 = 56253000: Fst3 = 2656000ElseIf bh3 = 11.51 Thenq3 = 47.62: Pc3 = 59293000: Pi3 = 62461000: Fst3 = 2989000ElseIf bh3 = 12.65 Thenq3 = 52.08: Pc3 = 70189000: Pi3 = 63706000: Fst3 = 3319000End IfSc3 = Round((Pc3 / (ρ * 9810 * D3)), 2)Label28.Caption = Sc3Fm3 = (9.81 * q3 * L3) + Fm2St3 = Round((Fst3 / Fm3), 2)Label33.Caption = St3Si3 = Round((Pi3 * (2.7183 ^ (0.00011155 * 0.55 * D3)) / (Pp * 1000000)), 2)Label38.Caption = Si3'第四段校核'If bh4 = 8.05 Thenq4 = 34.22: Pc4 = 26400000: Pi4 = 43710000: Fst4 = 1966000ElseIf bh4 = 9.19 Thenq4 = 38.69: Pc4 = 37296000: Pi4 = 49918000: Fst4 = 2308000ElseIf bh4 = 10.36 Thenq4 = 43.15: Pc4 = 48398000: Pi4 = 56253000: Fst4 = 2656000ElseIf bh4 = 11.51 Thenq4 = 47.62: Pc4 = 59293000: Pi4 = 62461000: Fst4 = 2989000ElseIf bh4 = 12.65 Thenq4 = 52.08: Pc4 = 70189000: Pi4 = 63706000: Fst4 = 3319000End IfSc4 = Round((Pc4 / (ρ * 9810 * D4)), 2)Label27.Caption = Sc4Fm4 = (9.81 * q4 * L4) + Fm3St4 = Round((Fst4 / Fm4), 2)Label32.Caption = St4Si4 = Round((Pi4 * (2.7183 ^ (0.00011155 * 0.55 * D4)) / (Pp * 1000000)), 2)Label37.Caption = Si4'第五段校核'If bh5 = 8.05 Thenq5 = 34.22: Pc5 = 26400000: Pi5 = 43710000: Fst5 = 1966000ElseIf bh5 = 9.19 Thenq5 = 38.69: Pc5 = 37296000: Pi5 = 49918000: Fst5 = 2308000ElseIf bh5 = 10.36 Thenq5 = 43.15: Pc5 = 48398000: Pi5 = 56253000: Fst5 = 2656000ElseIf bh5 = 11.51 Thenq5 = 47.62: Pc5 = 59293000: Pi5 = 62461000: Fst5 = 2989000ElseIf bh5 = 12.65 Thenq5 = 52.08: Pc5 = 70189000: Pi5 = 63706000: Fst5 = 3319000End IfSc5 = Round((Pc5 / (ρ * 9810 * D5)), 2)Label26.Caption = Sc5Fm5 = (9.81 * q5 * L5) + Fm4St5 = Round((Fst5 / Fm5), 2)Label31.Caption = St5Si5 = Round((Pi5 * (2.7183 ^ (0.00011155 * 0.55 * D5)) / (Pp * 1000000)), 2)Label36.Caption = Si5End Sub四、应用举例为了检验程序是否可用,是否可以准确无误的达到预期设计效果,代入数据检验程序是否可以准确无误的达到目的要求。